4 research outputs found

    Towards improving ViSQOL (Virtual Speech Quality Objective Listener) Using Machine Learning Techniques

    Get PDF
    Vast amounts of sound data are transmitted every second over digital networks. VoIP services and cellular networks transmit speech data in increasingly greater volumes. Objective sound quality models provide an essential function to measure the quality of this data in real-time. However, these models can suffer from a lack of accuracy with various degradations over networks. This research uses machine learning techniques to create one support vector regression and three neural network mapping models for use with ViSQOLAudio. Each of the mapping models (including ViSQOL and ViSQOLAudio) are tested against two separate speech datasets in order to comparatively study accuracy results. Despite the slight cost in positive linear correlation and slight increase in error rate, the study finds that a neural network mapping model with ViSQOLAudio provides the highest levels of accuracy in objective speech quality measurement. In some cases, the accuracy levels can be over double that of ViSQOL. The research demonstrates that ViSQOLAudio can be altered to provide an objective speech quality metric greater than that of ViSQOL

    Deep Neural Networks for End-to-End Optimized Speech Coding

    Get PDF
    Modern compression algorithms are the result of years of research; industry standards such as MP3, JPEG, and G.722.1 required complex hand-engineered compression pipelines, often with much manual tuning involved on the part of the engineers who created them. Recently, deep neural networks have shown a sophisticated ability to learn directly from data, achieving incredible success over traditional hand-engineered features in many areas. Our aim is to extend these "deep learning" methods into the domain of compression. We present a novel deep neural network model and train it to optimize all the steps of a wideband speech-coding pipeline (compression, quantization, entropy coding, and decompression) end-to-end directly from raw speech data, no manual feature engineering necessary. In testing, our learned speech coder performs on par with or better than current standards at a variety of bitrates (~9kbps up to ~24kbps). It also runs in realtime on an Intel i7-4790K CPU

    Measurements in Perceptual Annoyance of Audio Coding Artifacts

    Get PDF
    Tässä diplomityössä tutkitaan matalan bittinopeuden puhe- ja audiokooderin USACin kehityksessä merkittäväksi koettujen koodausartifaktien psykoakustista ärsyttävyyttä. Tutkielmassa käsitellään neljää ilmiötä, jotka on eritelty alempana. Artifaktit mallinnettiin MATLAB(R)-ohjelmistolla ja niiden ärsyttävyyttä arvioitiin kuuntelukokein. Työn toimeksiantaja on saksalainen Fraunhofer-instituutti, joka tunnetaan muun muassa MP3-koodekin kehittäjänä. Audionkoodauksessa signaaleja käsitellään yleensä noin 20-50 millisekunnin pituisina kehyksinä, jolloin koodausartifaktit voivat vaihdella nopeastikin. Tämän ilmiön ärsyttävyyttä tutkittiin varioimalla kapeakaistaisen kohinan sekä yksittäisten harmonisten voimakkuutta eri nopeuksilla. Koetulosten perusteella keskinopea vaihtelu koetaan ärsyttävimmäksi. Harmoninen kaistanleveyden laajennus (harmonic bandwidth extension) on menetelmä, jolla voidaan luoda harmonisia komponentteja rajataajuuden yläpuolelle alkuperäistä spektriä venyttämällä. Näin audiosignaalin bittinopeutta voidaan laskea, kun ylimpiä harmonisia ei tarvitse koodata eksplisiittisesti, vaan ne voidaan generoida dekoodauksessa. Koska luotujen harmonisisten joukko on kuitenkin aina puutteellinen, saattaa syntyä vaikutelma ylimääräisestä sävelkorkeudesta (ghost pitch). Kuuntelukokeessa tutkittiin synteettisillä äänillä, miten tämän ilmiön voimakkuus riippuu äänen perustaajuudesta ja valitusta rajataajuudesta. Kuulon peittokäyrää voidaan approksimoida tehokkaasti spektrin verhokäyrällä, jota käyttäen itse signaalikehys voidaan siirtää perkeptuaaliseen alueeseen kvantisoitavaksi. Kvantisointikohinan peittymistä voidaan tehostaa säätämällä verhokäyrän pehmeyttä sen siirtofunktioon sijoitetulla vakiolla. Työssä esitetään ehdotus tämän parametrin arvoksi. Sopivasti muokattua verhokäyrää voidaan käyttää myös spektrin voimakkaiden osien vahvistamiseen ja heikkojen osien vaimentamiseen. Puhesignaaleilla huomattiin, että tällä formanttien korostamisella voidaan peittää kvantisointikohinaa, mutta samalla sointiväri muuttuu epäluonnollisemmaksi. Tekstissä esitetään malli optimaalisten muokkausvakioiden valitsemiseksi perkeptuaalisen signaali-kohinasuhteen funktiona.This thesis discusses the perceptual annoyance of several audio coding artifacts that have become of interest during the development of USAC, a new low-bitrate speech and audio coder. A total of four different coding-related phenomena, all of which are explained below, were investigated in this study. All artifacts were artificially generated using MATLAB(R) and evaluated in listening tests with approximately ten participants in each. This work was commissioned by Fraunhofer IIS, Germany - a leader in audio coding technology and the home of MP3. In audio coding, signals are usually processed in frames with a length of 20 to 50 milliseconds, which may cause rapid variations in artifacts. In our tests, the level of critical-bandwidth noise or single harmonics was altered with various speeds. The results suggest that moderate-speed variations are considered the most annoying. Harmonic bandwidth extension is a method that generates artificial harmonics by stretching spectra in frequency. It is useful in audio compression because upper harmonics need not be encoded explicitly, but can be approximately reconstructed in the decoding phase. However, the generated harmonic patch will inevitably be incomplete, which may cause a false additional pitch sensation. The perceived strength of this ghost pitch was examined with synthetic tones as a function of fundamental and crossover frequencies. The masking curve of a signal frame can be efficiently modelled with a spectral envelope. It can then be used for transferring the frame to the perceptual domain for quantization. The resulting quantization noise will be less audible if the smoothness of the envelope is properly adjusted in the first place by modifying the transfer function with a constant. A proposal for the optimal constant value is provided in this study. Strong parts of a signal spectrum can be boosted and weak parts diminished by multiplying the spectrum with its modified envelope. This technique, known as formant enhancement, enables a better masking of quantization noise, but tends to render the overall tone unnatural. A model for selecting the optimal spectrum modification parameter values as a function of perceptual signal-to-noise ratio is proposed

    Voice quality evaluation of various codecs

    No full text
    corecore