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This thesis discusses the perceptual annoyance of several audio coding artifacts that
have become of interest during the development of USAC, a new low-bitrate speech
and audio coder. A total of four different coding-related phenomena, all of which are
explained below, were investigated in this study. All artifacts were artificially generated
using MATLAB(R) and evaluated in listening tests with approximately ten participants
in each. This work was commissioned by Fraunhofer IIS, Germany – a leader in audio
coding technology and the home of MP3.
In audio coding, signals are usually processed in frames with a length of 20 to 50
milliseconds, which may cause rapid variations in artifacts. In our tests, the level
of critical-bandwidth noise or single harmonics was altered with various speeds. The
results suggest that moderate-speed variations are considered the most annoying.
Harmonic bandwidth extension is a method that generates artificial harmonics by
stretching spectra in frequency. It is useful in audio compression because upper har-
monics need not be encoded explicitly, but can be approximately reconstructed in the
decoding phase. However, the generated harmonic patch will inevitably be incomplete,
which may cause a false additional pitch sensation. The perceived strength of this ghost
pitch was examined with synthetic tones as a function of fundamental and crossover
frequencies.
The masking curve of a signal frame can be efficiently modelled with a spectral envelope.
It can then be used for transferring the frame to the perceptual domain for quantization.
The resulting quantization noise will be less audible if the smoothness of the envelope is
properly adjusted in the first place by modifying the transfer function with a constant.
A proposal for the optimal constant value is provided in this study.
Strong parts of a signal spectrum can be boosted and weak parts diminished by mul-
tiplying the spectrum with its modified envelope. This technique, known as formant
enhancement, enables a better masking of quantization noise, but tends to render the
overall tone unnatural. A model for selecting the optimal spectrum modification pa-
rameter values as a function of perceptual signal-to-noise ratio is proposed.

Keywords: Annoyance, audio coding, listening test, noise, psychoacoustic measure-
ments, psychoacoustics, speech coding.
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Tässä diplomityössä tutkitaan matalan bittinopeuden puhe- ja audiokooderin USACin
kehityksessä merkittäväksi koettujen koodausartifaktien psykoakustista ärsyttävyyttä.
Tutkielmassa käsitellään neljää ilmiötä, jotka on eritelty alempana. Artifaktit mallin-
nettiin MATLAB(R)-ohjelmistolla ja niiden ärsyttävyyttä arvioitiin kuuntelukokein.
Työn toimeksiantaja on saksalainen Fraunhofer-instituutti, joka tunnetaan muun muas-
sa MP3-koodekin kehittäjänä.
Audionkoodauksessa signaaleja käsitellään yleensä noin 20–50 millisekunnin pituisi-
na kehyksinä, jolloin koodausartifaktit voivat vaihdella nopeastikin. Tämän ilmiön
ärsyttävyyttä tutkittiin varioimalla kapeakaistaisen kohinan sekä yksittäisten harmo-
nisten voimakkuutta eri nopeuksilla. Koetulosten perusteella keskinopea vaihtelu koe-
taan ärsyttävimmäksi.
Harmoninen kaistanleveyden laajennus (harmonic bandwidth extension) on menetelmä,
jolla voidaan luoda harmonisia komponentteja rajataajuuden yläpuolelle alkuperäistä
spektriä venyttämällä. Näin audiosignaalin bittinopeutta voidaan laskea, kun ylim-
piä harmonisia ei tarvitse koodata eksplisiittisesti, vaan ne voidaan generoida dekoo-
dauksessa. Koska luotujen harmonisisten joukko on kuitenkin aina puutteellinen, saat-
taa syntyä vaikutelma ylimääräisestä sävelkorkeudesta (ghost pitch). Kuuntelukokeessa
tutkittiin synteettisillä äänillä, miten tämän ilmiön voimakkuus riippuu äänen perus-
taajuudesta ja valitusta rajataajuudesta.
Kuulon peittokäyrää voidaan approksimoida tehokkaasti spektrin verhokäyrällä, jota
käyttäen itse signaalikehys voidaan siirtää perkeptuaaliseen alueeseen kvantisoitavaksi.
Kvantisointikohinan peittymistä voidaan tehostaa säätämällä verhokäyrän pehmeyttä
sen siirtofunktioon sijoitetulla vakiolla. Työssä esitetään ehdotus tämän parametrin
arvoksi.
Sopivasti muokattua verhokäyrää voidaan käyttää myös spektrin voimakkaiden osien
vahvistamiseen ja heikkojen osien vaimentamiseen. Puhesignaaleilla huomattiin, että
tällä formanttien korostamisella voidaan peittää kvantisointikohinaa, mutta samal-
la sointiväri muuttuu epäluonnollisemmaksi. Tekstissä esitetään malli optimaalisten
muokkausvakioiden valitsemiseksi perkeptuaalisen signaali-kohinasuhteen funktiona.

Avainsanat: Ärsyttävyys, audionkoodaus, kohina, kuuntelukoe, psykoakustiikka, psy-
koakustiset mittaukset, puheenkoodaus.
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Chapter 1

Introduction

Audio coding refers to methods for reducing the bitrate of an audio signal. This is
of interest in applications in which transmission or storage capacity is limited. Raw
audio data requires so much space and bandwidth that without effective compression
methods, many everyday applications – mobile phones, internet radios, or portable
music players, to name a few – would not be feasible.
To reach high compression ratios of 1:10 or more, audio coders use lossy com-

pression schemes, meaning that the reconstructed signal is not bit-identical to the
original. The fundamental idea behind a common paradigm known as perceptual
audio coding is that if the coding errors caused by bit reduction are not audible,
they can be considered harmless. Following that principle, sophisticated psychoa-
coustic models are used to determine how signals could be compressed as efficiently
as possible, yet achieving a nearly transparent perceptual quality. [1]
In this thesis, the perceptual annoyance of several important audio coding artifacts

is investigated to help improve the new state of the art Unified Speech and Audio
Coder (USAC) [2]. Traditionally, there have been separate coders optimized either
for speech or generic content while USAC is an endeavor to combine the best speech
and audio compression techniques into a single coder. Because of the low bitrates it
provides, artifacts cannot be totally avoided and hence the focus is on minimizing
their annoyance.

1.1 Milestones in Audio Coding

The first significant breakthroughs of digital audio date back to the 1910’s–1930’s
when such innovations as pulse code modulation (PCM) and the Nyquist-Shannon
sampling theorem were introduced [3]. However, digital audio did not find its way
into widespread use until the T1 telephony in the early 1960’s [4]. The era of
commercial digital recording began in the 1970’s and digital audio finally entered the
consumer market with the introduction of the compact disc (CD) in 1982 [3]. Since
then, analog devices have been disappearing, both in professional and consumer use.
Digital speech coding has attracted substantial interest since the advent of digital

telephony [5]. The first inventions adopted into widespread use were waveform
coders that enhanced the efficiency of PCM. These inventions include companding

1



CHAPTER 1. INTRODUCTION 2

techniques and differential PCM [6]. Around the 1970’s, increasing computing power
enabled the use of methods that are based on modelling the sound source and
estimating its parameters from the signal [5]. Since the 1980’s, much effort has been
placed on developing hybrid coders that combine both parametric and waveform
coding concepts, one notable example being code excited linear prediction (CELP)
presented in 1985 [7]. As the amount of speech and data transferred in mobile
networks is constantly increasing, research on speech coding remains active. Today,
the 3rd Generation Partnership Project (3GPP) has a major role in organizing the
development and standardization of speech codecs. The 3GPP standardized AMR-
line codecs are often considered state of the art for compressing narrowband (AMR-
NB, formerly simply known as AMR), wideband (AMR-WB), or superwideband
(AMR-WB+) speech [8].
The huge capacity requirements of high-quality raw audio1 led to a need for ef-

fective – and therefore inevitably lossy – compression also for music and generic
content. In the late 1980’s, the Moving Pictures Experts Group (MPEG) started
an initiative to develop a standard that would include suitable coding methods for
many application domains [10]. Three audio layers with different complexities were
introduced and the most effective one, layer III, was a significant success in the
consumer market. This layer, commonly known as MP3, allowed compression ra-
tios of approximately 1:10 without significant loss in perceived quality [11]. Five
years later, a new non-backwards compatible codec referred to as Advanced Audio
Coding (AAC) was introduced as a part of the MPEG-2 standard [12]. Other tech-
nologies with a notable market share today include AC-3 by Dolby Laboratories
(used in DVD players and digital television) [13], Windows Media Audio (WMA)
by Microsoft [14], and the open source project Vorbis [15].
In 2007, MPEG initiated a process aiming towards the standardization of a new

universal codec for both music and speech. It was required to be of superior quality
to any existing speech or audio codec at low bitrates. A framework developed jointly
by Fraunhofer IIS and VoiceAge Corporation was selected as the basis of the new
MPEG Unified Speech and Audio Codec, abbreviated as USAC. [2]

1.2 Technical Overview of Unified Speech and Au-

dio Coder

Figure 1.1 illustrates the basic framework of audio coding. First, the raw audio
data is fed to an encoder that analyzes it in many ways and attempts to compress
the signal as efficiently as possible. An essential part of this process is quantization
in which the bitrate is decreased by reducing the precision of sample values in the
frequency domain. In the receiver end, a decoder is responsible for transforming
the compressed data back to the listenable form. The fundamental objective of all
audio coders is to preserve the perceived signal quality as well as possible. [1]

1For example, one second of CD audio requires 1.41 million bits [9].
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Input Encoder Transmission / Storage Decoder Output

Figure 1.1: An overview of a typical audio coding system.

Figure 1.2 shows the basic functionalities of the USAC coder (explained thor-
oughly in [2]). It attempts to combine the best parts of the current state of the art
music and speech coders, High-Efficiency Advanced Audio Coding (HE-AAC) and
Extended Adaptive Multi-Rate – Wideband (AMR-WB+). USAC is based on the
switched core principle, which means that it selects the coding scheme depending
on the signal content. The signal classifier module is responsible for identifying
whether the content is pure speech or something else. However, transitions between
the vastly different coding schemes remain a challenge and might result in audible
artifacts – an issue studied in Chapter 5.

Signal Classifier and Psychoacoustic Model

LPCeSBR
MPEG

Core Coder

MDCT-Enc.

LPD-Enc.

Bitstream Multiplexer

Audio

Encoder

Channel

Bitstream De-Multiplexer

Decoder

Audio
MPEG eSBR LPC MDCT-Dec.

LPD-Dec.

Core Coder

Surround
Encoder

Surround
Decoder Synthesis Synthesis

Input

Output

Figure 1.2: The building blocks of USAC. Figure used with permission from the
authors. [2]
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The available coding schemes share two common processing modules. The tailored
MPEG Surround 2-1-2 mode is used for downmixing stereo signals to mono, as well
as, for extracting parametric information about their spatial properties. Compared
with coding both channels separately, this technique enables significant bit savings
as spatial parameter data is of low bitrate.
Another mutual module, enhanced spectral band replication (eSBR), is an ex-

tended version of the standard spectral band replication (SBR) module used in
AAC. Bitrate can be decreased significantly with the help of the eSBR module as
spectra do not have to be stored as a whole: data above the crossover frequency is
omitted in the encoding process and only the basic information, the spectral enve-
lope for example, is saved. The traditional way of regenerating high frequencies in
the decoder is to simply copy or mirror the lower part of the spectrum, but the eSBR
module also supports a method known as harmonic bandwidth extension (HBE). It
has an advantage of preserving the harmonic relations of tonal components, but as
the high frequency patch has some harmonics missing, audible virtual pitches, often
called ghost tones, might emerge. This problem is investigated in Chapter 6.
For non-speech material, the AAC-based frequency domain coding scheme is se-

lected. Briefly stated, this coding scheme consists of the following stages: first, the
time-domain signal is transformed to the frequency domain with the modified dis-
crete cosine transform (MDCT); second, the resulting frequency bins are carefully
quantized with the help of psychoacoustic models; and third, the resulting data as
well as essential parametric side-information are encoded and saved. In order to
spread the quantization noise in frequency so that it would be masked as efficiently
as possible, quantization is habitually done in the so called perceptual domain. This
domain is discussed in Section 7.1.
Speech signals are directed to the linear prediction domain (LPD) coding scheme

based on AMR-WB+. First, a short-term linear prediction filter is used for ex-
tracting the spectral envelope. After that, the LPD coder makes a rapid selection
between two modes: if the segment seems to fit the speech production model, al-
gebraic code excitation linear prediction coding (ACELP) is used; otherwise, the
weighted linear predictive coding (LPC) residual is coded in the frequency domain
following the principles of the transform coded excitation (TCX) technology. To
further improve the perceived coding quality, the ACELP module incorporates a
technique known as formant enhancement that is discussed in Section 7.2.

1.3 Research in This Work

During the development of USAC at Fraunhofer IIS, the perceptual annoyance of
several related coding artifacts has raised great interest. Two of the questions in-
vestigated in this thesis are closely related to audio coding while the rest are of
more general interest as well. All of the phenomena were known and in many ways
well understood already, but measurements were needed to deepen the knowledge
and to enable the use of related techniques in practice. The research is based on
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well-known psychoacoustic concepts and models, but thoughts and experiences of
the development team also were essential sources of information.
Psychoacoustics is about personal experience and perception, which calls for or-

ganizing systematic listening tests. In each test, the number of participants was
approximately ten, all of them being Fraunhofer employees having at least some
earlier test experience. The phenomena were modelled and the test audio files cre-
ated with Matlab. Finally, the results were analyzed with the help of statistical
methods and are presented in this text in a graphical form along with models and
conclusions derived of them. The research topics are briefly presented in the follow-
ing paragraphs.
Quantization noise caused by bit reduction is an inherent feature of all coders.

Signals are normally processed in frames of a length ranging from a few up to a
hundred or more milliseconds. Consequently, quantization noise level may vary
between frames because of core switching, for instance. Similarly, the level of a
single harmonic may vary because of changes in quantization aggressiveness. The
annoyance caused by this time-variance was examined, leading to results that can
be used to optimize bit allocation as well as timing of core switching.
As explained in the previous section, approximating the upper part of a spectrum

with the harmonic bandwidth extension is an efficient way of decreasing the bitrate,
but it has a curious side-effect of producing new pitch sensations in some cases. This
phenomenon was explored by creating synthetic tones with several fundamental and
crossover frequencies and organizing a listening test to evaluate the strength of
the possibly perceived ghost pitch. In reality, the crossover frequency is usually
fixed, but together with an estimated fundamental frequency of the harmonic signal
the strength of the ghost pitch can be estimated and missing harmonics manually
reinserted to weaken the phenomenon.
A spectral envelope can be efficiently extracted from an input frame with linear

predictive coding. The envelope acts as a simple estimate for the psychoacoustic
masking curve and can therefore be used to transfer signal frames to and back from
the perceptual domain. The masking curve approximation and hence the transfor-
mation can be easily improved by smoothening the LPC spectrum by plugging a
single constant into its transfer function. A suggestion for the optimal value of that
constant is provided in the text.
An appropriately modified spectral envelope can also be used to boost strong

peaks and diminish weak valleys of the spectrum of a signal frame. To investigate
how this formant enhancement technique can be efficiently used to hide quantization
noise, we organized a listening test in which the said processing was applied to signals
with different perceptual SNRs. A model for estimating the optimal processing
parameter values as a function of perceptual signal-to-noise ratio is proposed.

1.4 Thesis Structure

First, the essential mathematical tools and techniques used in this thesis are pre-
sented in Chapter 2. After that, in Chapter 3, a brief summary of the psychoacoustic
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models and concepts on which our research is based is provided. The background
part is concluded in Chapter 4 with facts and experiences about organizing and
analyzing listening tests.
The next three chapters are devoted to the empirical research in this work. Chap-

ter 5 discusses time-variance of artifacts, the ghost tone phenomenon is investigated
in Chapter 6, and methods utilizing spectral envelopes are studied in Chapter 7.
The thesis is concluded with a brief summary in Chapter 8. All individual answers

in the listening tests are included in a graphical form in Appendix A and the written
instructions given to the participants can be found in Appendix B.



Chapter 2

Mathematical Background

In this chapter, the most important mathematical tools and techniques used in this
thesis for designing and analyzing listening tests are presented. The aim is to provide
the reader with a compact overview of the essential concepts.

2.1 Signal Transforms

In audio coding applications, time domain signals are often transferred to the fre-
quency domain in which frequency bins are quantized. The modified discrete cosine
transform (MDCT) is usually favored because it allows 50% overlapping of consec-
utive frames without increasing the data rate. Overlapping, in turn, is desired as it
helps to avoid audible artifacts at frame boundaries. [16]

2.1.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) is among the widely used tools in audio signal
processing. The DFT is used for transforming finite-length, discrete-time signals into
finite-length, discrete-frequency signals (forward transform), and vice versa (inverse
transform). The forward transform is defined as

X[k] =
N−1
∑

n=0

x[n]e−j2πkn/N , k = 0, . . . , N − 1,

and the inverse transform as

x[n] =
1

N

N−1
∑

k=0

X[k]ej2πkn/N , n = 0, . . . , N − 1.

The DFT of a time signal of the length N is thus an equally long sequence of evenly
spaced frequency bins. [17]
It is widely recognized that the above stated equations are computationally heavy.

Therefore, an efficient algorithm called the fast Fourier transform (FFT) is typically
used for computing the DFT. [17]

7



CHAPTER 2. MATHEMATICAL BACKGROUND 8

2.1.2 Windowing

Signals are usually processed as separate frames with a length typically in the range
of 20 − 50 ms. A trade-off between the time and frequency resolutions is always
present: the longer the frame, the better the frequency resolution, and vice versa.
Frame length is usually chosen to be a power of two as that is required by many FFT
implementations. There are, however, efficient algorithms designed for transforming
frames of any length. [16, 18]
Frames are “cut” by multiplying the time signal with a window function that

is defined to be zero outside the desired interval. The simplest function is the
rectangular window

wr[n] =

{

1, for n = 0, . . . , N − 1

0, otherwise.

Unfortunately, using the rectangular window results in pronounced discontinuities
at the frame borders. That, in turn, may lead to severe aliasing problems because of
the artificial high frequency components that are produced. By choosing a window
that diminishes smoothly to zero at the edges, the risk of aliasing is greatly reduced,
but the frequency resolution is deteriorated. This trade-off should always be taken
into account when selecting a window function. [16]
The two windows used in this work are the sine window

ws[n] =

{

sin( πn
N−1

), for n = 0, . . . , N − 1

0, otherwise,
(2.1)

which is particularly suitable for the MDCT and the FFT, and the Hamming window

wh[n] =

{

0.54− 0.46 cos( 2πn
N−1

), for n = 0, . . . , N − 1

0, otherwise,

which is well-suited for linear predictive coding [16]. Figure 2.1 illustrates all three
mentioned window functions.

2.1.3 Overlap-Add Technique

When reconstructing the original time domain signal from frequency domain frames,
the initial windowing has to be cancelled. An obvious solution would be to divide
the time domain output frame with the same window function that was used in the
first place. This approach is, however, usually not acceptable because quantization
errors near the edges are magnified greatly. A solution to this problem is the overlap-
add technique in which consecutive frames are partly on top of each other. Usually,
windowing is done both before the forward transform and after the inverse transform
with the functions referred to as the analysis and synthesis windows, respectively.
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Figure 2.1: The rectangular, sine, and Hamming windows in the (a) time and (b)
frequency domains.

The synthesis window helps to keep the quantization errors small near the edges of
the inverse-transformed frames. [16]
To ensure that the output signal is identical to the input signal, we require that

the sum of the overlapping parts of the windows in the frame i and the previous
frame i−1 equals one. In the usual case with a 50% overlap, the necessary condition
can be expressed as

wi
an[n] · wi

syn[n] + wi−1
an [N/2 + n] · wi−1

syn [N/2 + n] = 1, n = 0, . . . , N/2− 1, (2.2)

where wan[n] and wsyn[n] are the analysis and synthesis windows, respectively. If
they are identical and do not change over time, the condition can be simplified to

w2[n] + w2[N/2 + n] = 1, n = 0, . . . , N/2− 1,
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where w[n] is the window function. The sine window defined in Equation (2.1) is
an example of a function satisfying the above conditions. [16]

2.1.4 Modified Discrete Cosine Transform

Unlike the DFT, the MDCT is not invertible as single frames, but relies on a phe-
nomenon called time domain aliasing cancellation (TDAC). In other words, the
inverse-transformed frames have to be added together with an ovelap of exactly
50% in order to achieve a perfect reconstruction of the original signal. Notably,
the number of frequency domain samples in an MDCT frame is only a half of the
number of time domain samples. Hence, the number of input samples in a larger
dataset equals the total number of MDCT output samples and the process can be
said to be critically sampled. To achieve perfect results, the analysis and synthesis
windows must fulfill Condition (2.2). [16]
The forward MDCT transform is defined as

X[k] =
N−1
∑

n=0

x[n] cos

[

2π

N
(n+

N

4
+

1

2
)(k +

1

2
)

]

, k = 0, . . . ,
N

2
− 1,

while the inverse transform (IMDCT) can be written as

x′[n] =
4

N

N/2−1
∑

k=0

X[k] cos

[

2π

N
(n+

N

4
+

1

2
)(k +

1

2
)

]

, n = 0, . . . , N − 1.

A single time domain frame of N samples is thus converted to N/2 equally spaced
frequency bins. [16]
The TDAC concept is best explained graphically. In Figure 2.2a, an artificial

signal of 48 points is plotted in the time domain. The signal is then divided into two
frames of 32 samples with an overlap of 16 samples. The subfigures b and d show
the MDCT coefficients of the frames while the subfigures c and e are the inverse
transformations of the corresponding frames. When the frames are added together,
we arrive in a perfect reconstruction of the original signal as in the subfigure f.

2.2 Signal Energy

In many cases, such as when normalizing loudness, it is necessary to determine the
energy of a signal frame. The energy of a discrete-time signal x[n] during an interval
0 ≤ n ≤ N − 1 can be computed as [17]

E =
N−1
∑

n=0

| x[n] |2.
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Figure 2.2: An illustration of the MDCT and TDAC: a) is a 48-point signal in the
time domain, b) and d) show the MDCT coefficients of the frames [0, 31] and [16, 47],
c) and e) are the corresponding inverse transformed frames, and f) is the resulting
signal when c) and e) are added together.

According to Parseval’s theorem, the above equation can also be expressed in the
frequency domain as [17]

E =
1

N

N−1
∑

k=0

|X[k] |2. (2.3)



CHAPTER 2. MATHEMATICAL BACKGROUND 12

2.3 Linear Predictive Coding

Linear predictive coding (LPC) is a widely used method for storing and transmitting
speech in a compressed form. In this work, however, LPC is only used for extracting
spectral envelopes of signal frames.
As explained in [19], if the transfer function is relatively stationary during the

selected period, we can predict the nth sample of a sequence x[n] by forming a
weighted sum of the p previous samples as

ẋ[n] = −
p

∑

k=1

ak x[n− k],

where ak are real constants. The number of samples p defines the order of the
resulting transfer function. We want to find the optimal values for ak so that the
error e[n] is minimized:

e[n] = x[n]− ẋ[n] = x[n] +

p
∑

k=1

ak x[n− k].

The total energy of the error terms is

E =
N−1
∑

n=0

e2[n]

for a frame of length N . The minimum value of E can be found by setting the
gradient to zero:

∂E

∂ak
= 0, k = 1, . . . , p

and solving for ak. When x[n] is windowed, it has to be zero outside the interval
0 ≤ n ≤ N − 1. Hence, we arrive in a form

p
∑

k=1

ak

N−1−(i−k)
∑

n=0

x[n] x[n+ i− k] = −
N−1+p
∑

n=0

x[n] x[n− i], i = 1, . . . , p. (2.4)

By using the definition of autocorrelation

R(l) =
∑

m

x[m]x[m− l]

and noticing the symmetry R(l) = R(−l), Equation (2.4) can be written as

p
∑

k=1

R(|i− k|) ak = −R(i).
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This results in k linear equations with k unknowns and can be conveniently written
in a matrix form as


















R(0) R(1) R(2) R(3) · · · R(p− 1)

R(1) R(0) R(1) R(2) · · · R(p− 2)

R(2) R(1) R(0) R(1) · · · R(p− 3)
...

...
...

...
. . .

...

R(p− 1) R(p− 2) R(p− 3) R(p− 4) · · · R(0)





































a1

a2

a3
...

ap



















= −



















R(1)

R(2)

R(3)
...

R(p)



















.

This system of equations can be solved with any standard method, such as Gaussian
elimination. As the autocorrelation matrix is of Toeplitz form, the computationally
effective Levinson-Durbin recursion is often used.
Finally, the transfer function of the LPC envelope spectrum can be written as an

all-pole filter

W (z) =
1

A(z)
=

1

1 + a1z−1 + a2z−2 + · · ·+ apz−p
.

2.4 Statistical Methods

The statistical methods explained in the following were essential in analyzing the
results of the listening tests. The methods can be used for extracting patterns and
dependencies from data and for estimating the reliability of conclusions.

2.4.1 Median, Interquartile Range, and Boxplot

The median is one of the two most common measures for describing the center of a
sample1. It is defined to be the observation separating the higher half of an ordered
sample from the lower half. If the number of observations is even, the median is
the arithmetic mean of two middle values. The first and third quartiles are defined
similarly: the first quartile cuts off the lowest 25% of a sample while the third
quartile cuts off the lowest 75%. The second quartile is the same as the median.
The interquartile range (IQR), on the other hand, is a measure for describing the
spread of a sample. It is defined as the range of the middle 50% of the sample:

I = Q3 −Q1,

where Q1 and Q3 denote the first and third quartiles. [20]
In this text, the above measures are presented with convenient boxplot figures

(see Figure 7.3 for an example). The upper and lower limits of a box indicate the
first and third quartiles and therefore the length of the box equals the IQR. The
middle line inside the box is the median, while whiskers visualize the range of the

1In the statistical terminology, a sample refers to a set of observations which in this work are
listening test answers and should not be confused with samples in audio signals.
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whole sample, excluding the extreme values. The observations being 1.5I or more
but less than 3I away from the box are called outliers and are denoted by a black
dot. Similarly, those observations being 3I or more away from the box are called
extreme outliers and are denoted by a red circle. [20]

2.4.2 Mean and Confidence Interval

The arithmetic mean is another widely used measure for the center of a sample. It
is defined as

X̄ =
1

N

N
∑

i=1

xi,

where xi are the observations and N is the sample size. The sample mean is also
the best unbiased estimator for the mean of the underlying population from which
the observations are randomly picked. [21].
The 95% confidence interval is usually included with the mean. The statistical

intepretation is that the true mean of the population lies inside the interval with the
probability of 0.95. If the random variable is approximately normally distributed,
the Student’s t distribution can be used for computing the confidence interval:

[

X̄ − t(1−α

2
;N−1)

sx√
N
; X̄ + t(1−α

2
;N−1)

sx√
N

]

,

where sx is the standard deviation of the sample, α = 0.05 is the level of significance
corresponding to the confidence level of 95%, and t(1−α

2
;N−1) is the 1− α

2
quantile of

the one-tail t distribution with N − 1 degrees of freedom. [22]
In this thesis, means and confidence intervals are presented graphically as in

Figure 5.7. Wide horizontal lines represent means while whiskers denote confidence
intervals.

2.4.3 Linear Regression

Linear regression can be used for modeling the relationship between a dependent
(response) variable y and one or more independent (explanatory) variables x. The
relationship is assumed to be linear, hence the name.
As explained in [21], a linear model with i independent variables and n equations

is of form
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...

xn1 · · · xni
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ǫ2
...

ǫn















or simpler as
y = Xβ + ǫ,
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where β is a vector of regression coefficients and ǫ is a vector of random error terms.
The unknown coefficients β are commonly estimated with the method of ordinary
least squares which minimizes the sum of squared residuals:

min ‖ e ‖2= min ‖ y −Xβ̂ ‖2,

where β̂ are the estimated coefficients. The best estimator for them can be shown
to be

β̂ = (XTX)−1XTy.

The explanatory power of the model can be expressed with the goodness of fit
measure that is computed as

R2 = 1− ‖ ǫ ‖2
‖ y ‖2 .

The R-squared always lies in the range 0 ≤ R2 ≤ 1 where higher values indicate
that the model explains the variations in the dependent variable better. In addition,
it is customary to test for the statistical significance of the acquired coefficients in
order to estimate whether the linear relationships really exist.

2.4.4 Bradley-Terry-Luce Pairwise Comparison

Bradley-Terry-Luce (BTL) is an analysis method used for scaling preferences from
research data. In principle, it should be applied to data collected with pairwise
comparisons (i.e. when the listeners are given two choices and are asked to select
one of them). However, the method is also feasible when more than two conditions
are rated at once, assuming that they can be freely compared against each other.
BTL attempts to derive a ratio scale expressing the relative preferences between
them. [23]
First, for a dataset consisting of N conditions, an N ×N probability matrix M

is constructed. The value in each cell (i, j) represents how many times the listeners
have altogether preferred – that is, given a better rating – the stimulus i over the
stimulus j. If both stimuli are given the same rating, the number of occurrences is
increased by 0.5 in both cells (i, j) and (j, i). [24]
To ensure that the test data is suitable for the BTL method, three transitivity

prerequisites are tried. The three stochastic transitivies (weak, moderate, and strong
stochastic transitivities abbreviated as WST, MST, and SST, respectively) imply
that if the probability of choosing x over y is Pxy ≥ 0.5 and the probability of
choosing y over z is Pyz ≥ 0.5, then

Pxz ≥











0.5 (WST)

min{Pxy, Pyz} (MST)

max{Pxy, Pyz} (SST)

(2.5)
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should hold for all conditions. It is unlikely that all these prerequisites hold for the
whole dataset, but the BTL model can still be used if the number of violations is
moderate. [25]
Finally, BTL attempts to link the probability Pxy and a ratio scale u(·) with

maximum likelihood estimation so that [25]

Pxy =
u(x)

u(x) + u(y)
.

In this thesis, a Matlab function provided by Wickelmaier and Schmid was used for
extracting ratio scales as well as for testing the validity of models [24].



Chapter 3

Psychoacoustic Concepts

Psychoacoustics is a well-established scientific branch studying the human percep-
tion of sound. Perceptual audio coding fundamentally relies on psychoacoustic mod-
els and theories as they are needed to estimate the audibility and annoyance of coding
artfacts. Likewise, designing listening tests and interpreting the results correctly re-
quires a vast amount of psychoacoustic knowledge. The research in this thesis rests
on the concepts introduced in the following.

3.1 Critical Bands

Critical bands were first introduced by Harvey Fletcher in 1940 [26]. The concept is
derived from the physiological phenomenon of tones close to each other in frequency
creating overlapping physical responses on the basilar membrane in the inner ear.
Critical bands have a few important implications for audio coding. First, if the
bandwidth of noise with a constant intensity varies but does not exceed the critical
bandwidth, the perceived loudness is also constant. The loudness starts to increase
only after the noise covers more than one critical band, as described in Section 3.2.
Second, if two tones fall into the same critical band, it is often difficult to distinguish
them because the stronger tone tends to mask the softer one, as explained in Section
3.3. [27]
Critical bandwidth depends on the center frequency of the band. Mathematically,

the bandwidth in hertz can be estimated with the popular equation proposed by
Zwicker:

f∆ = 25 + 75 (1 + 1.4 f 2
c )

0.69, (3.1)

where fc is the center frequency in kilohertz [27]. In Figure 3.1, critical bandwidth
is plotted as a function of center frequency.

3.2 Loudness

Loudness refers to the perceived ”strength” of a sound. It is a subjective measure
that is primarily dependent of intensity, but the frequency, bandwidth, and duration
have a slight effect as well [27]. Loudness is an important factor to be controlled

17
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Figure 3.1: Critical bandwidth as a function of center frequency according to Equa-
tion (3.1).

in listening tests because louder sounds are regularly judged to be of better quality
than softer sounds, which might distort the results [28].
Loudness is measured with the phon scale on which the sound pressure level of 1

dB at the frequency of 1 kHz equals 1 phon [27]. Equal-loudness contours in Figure
3.2 illustrate how the sound pressure level of a pure tone has to be varied with
frequency to make the sound equally loud in the whole audible range.
As mentioned in the previous section, critical bands have an important role in

loudness sensation. Figure 3.3 shows the effect of bandwidth when the sound pres-
sure level of spectrally flat noise centered at 1 kHz is kept constant. Clearly, loudness
starts to increase only after the bandwidth has exceeded one critical band.
Numerous models for estimating the loudness of a complex wideband signal have

been proposed in the literature (see e.g. [30]). They are, among other things,
useful for normalizing the loudness of conditions in listening tests. In this research,
however, there were only minor differences in the conditions to be compared and
hence no loudness normalization was seen necessary.

3.3 Masking

Auditory masking is a pivotal concept in perceptual audio coding. It refers to the
everyday phenomenon in which a sound (maskee) is rendered partially or completely
inaudible because of a presence of a louder sound (masker). The concept explains,
for example, why it is difficult to follow a conversation next to a road with heavy
traffic. [31]
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Figure 3.2: Equal-loudness curves for pure tones (adapted from [29]).

In this work, we concentrate mostly on the effects of simultaneous masking, mean-
ing that the masker and the maskee are present at once. Besides that, perception of
a maskee might be affected up to 200 ms after the masker is switched off (forward
masking) or even 20 ms before the masker is turned on (backward masking). The
latter phenomena are known as temporal masking. [27]
In audio coding, it is of interest how spectral peaks are able to mask nearby

frequency components because bitrate reduction is achieved by tolerating artifacts
that will be masked by the original signal. The level below which tones are masked
is called masking threshold [27]. As can be seen from Figure 3.4, the effect is the
strongest near the masker, especially below it. The LPC based weighting filter, as
applied in AMR-WB, is an example of a fairly accurate and computationally effective
method for estimating the masking threshold of an arbitrary spectrum [32].
Masking does not necessarily lead to a complete vanishing of the maskee but it

might be only partly hidden instead. That particular phenomenon is accordingly
referred to as partial masking [27]. Figure 3.5 illustrates partial masking by showing
how the loudness of a tone is affected by critical bandwidth noise present at the same
time.
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Figure 3.5: A 1 kHz pure tone adjusted to be equally loud with and without the
presence of a critical-band-wide noise masker (adapted from [33]).

3.4 Perceptual Domain

If a signal frame is simply transferred to the frequency domain and quantized there
uniformly (i.e. all frequency bins are rounded or truncated equally), the resulting
quantization noise will be flat. It would, however, be beneficial if the noise was
shaped according to the masking function of the frame so that the energy would
be directed to the bins with a higher masking capacity. The perceptual domain
transformation provides a solution to this question by treating the spectral envelope
of the frame as a model for the masking curve and using it for normalizing the
spectral coefficients [34]. In Figure 3.6, a spectrum X(z) of a 32 ms speech frame
along with its spectral envelope W (z) attained with LPC are shown. The spectrum
X(z) is transformed into its perceptual domain counterpart X̂(z) as

X̂(z) = X(z)W−1(z).

Accordingly, the transformation back to the frequency domain is achieved simply
by

X(z) = X̂(z)W (z)

From the above equations it can be seen that if white (quantization) noise is added
in the perceptual domain, it will be favorably shaped once the signal is transferred
back to the original domain. This is because quantization noise is heard easier and
is thus more harmful when added on soft regions of a signal spectrum than on loud
regions.
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Figure 3.6: A 32 ms frame X(z) of a speech signal transformed into the perceptual
domain frame X̂(z) by using the spectral envelope W (z).

3.5 Perceptual Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is a widely used measure for quantifying the relative
amount of noise mixed in a signal frame [35]. It is usually defined in a logarithmic
scale as an energy ratio

SNR = 10 log10
Es

En

,

where Es and En are the signal and noise energies, respectively. According to Equa-
tion (2.3), SNR can also be computed in the frequency domain as

SNR = 20 log10
‖ X[k] ‖
‖ N [k] ‖ , (3.2)

where N [k] is the noise.
In audio coding, it is generally desired that the output and input signals would

be as close to (perceptually) identical as possible. Therefore, it is sensible to insert
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their difference Y [k]−X[k] in the previous equation for N [k]:

SNRP = 20 log10
‖ Y [k] ‖

‖ Y [k]−X[k] ‖ .

If both the nominator and the denominator are transferred to the perceptual domain,
we arrive in the equation

SNRP = 20 log10
||Y [k]W−1[k]||

|| (Y [k]−X[k])W−1[k]|| , (3.3)

which defines the perceptual SNR of a coding process.



Chapter 4

Listening Test Methods and
Procedures

The listening test methods and procedures used in this thesis as well as the ways of
analyzing the results are explained in this chapter. In addition, some test designing
and organizing experiences of the author are shared.

4.1 Methods

As different questions call for different test methods, the research problem should
first be formulated carefully. Some typical cases are assessing the amount of signal
degradation, finding the optimal level for a parameter, or examining whether an
artifact is audible. The test should always be simple enough so that the results would
be reliable considering the often limited number of listeners. The recommended
procedure is to start with piloting the test with a few listeners and once it seems
to be able to provide valid answers to the research question, the whole test can
be executed. Naturally, it is neither advisable nor ethical to deliberately tune the
experiment so that it would support the researcher’s hypothesis.

4.1.1 Multiple Stimuli with Hidden Reference Anchor

The popular multiple stimuli with hidden reference anchor (MUSHRA) listening test
method was developed especially for evaluating intermediate audio quality, which
makes it particularly suitable for testing low-bitrate coders. All investigated coders
are present at the same time in each item, thus they are compared not just with the
reference, but with each other too. Besides guaranteeing more reliable results, this
setting makes the execution faster. [36]
In a MUSHRA test, each item includes the original signal as a reference and a set

of modified signals called conditions. Along with the coded excerpts, a few special
conditions known as anchors are included. The hidden reference anchor is just a
duplicate of the reference signal, but there are also one or more low-quality anchors,
at least one of them being of clearly inferior quality to the other conditions. The
ITU-R Recommendation requires that at least the hidden reference and the original

24
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signal lowpass filtered at 3.5 kHz always have to be present. The purpose of the
anchors is to create reference points for ratings and to make the results of different
tests comparable. The listener is implicitly expected to give at least one condition
a full rating of 100 because the hidden reference is invariably present while the
other anchors may be rated freely. The rating scale is specified as shown in Table
4.1. Because of the high resolution of the scale, the results may be treated in the
analysis phase as if they were on a continuous scale. [36]

Table 4.1: The MUSHRA grading scale.

80–100 Excellent

60–80 Good

40–60 Fair

20–40 Poor

0–20 Bad

Wavswitch, a program developed earlier at Fraunhofer IIS, was used for executing
the MUSHRA tests (see Figure 4.1 for a screenshot). Wavswitch supports switching
between the reference signal and the conditions in an item seamlessly while keeping
them time-aligned. This is not mandatory according to the ITU-R Recommendation,
but it is sometimes seen advisable [22]. The listeners were also allowed to listen to
and set loops on audio freely.

Figure 4.1: A screenshot of Wavswitch that was used in the MUSHRA tests.
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Figure 4.2: A screenshot of ListeningTestGUI used in the modified MUSHRA and
rating without reference tests.

4.1.2 Modified MUSHRA

For a few test, we used a slightly modified version of MUSHRA as the test procedure.
It is a non-standard modification that is used internally at Fraunhofer. In standard
MUSHRA tests, the reference signal corresponds to the maximum value of 100 of
the rating scale and the listener is asked to evaluate the magnitude of artifacts in
conditions. However, since in some of our measurements the goal was to investigate
subjective quality or pleasantness instead, it was desirable to allow the use of higher
ratings than what the reference is said to represent because conditions might have
been perceived sonically superior to the reference.
In our modified MUSHRA setting, the rating scale is nailed with two reference

signals at fixed values. The original signal (called a high reference) corresponds to
the reference signal in MUSHRA and is said to represent the rating of 90. The low
reference is a low-quality version of the original signal and is fixed at the rating of
10. To retain some compatibility with the original MUSHRA, the condition set of
each item includes the hidden reference (advised to be given the rating of 90) and
the 3.5 kHz lowpass anchor (rated freely).
The Modified MUSHRA tests were executed with the ListeningGUI software de-

veloped earlier at Fraunhofer IIS. A screenshot of the GUI is shown in Figure 4.2.
The high and low references could be played by clicking the corresponding buttons
on the left while the conditions were played with the numbered buttons and rated
with the sliders above them.
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4.1.3 Method of Adjustment

In method of adjustment (MOA) tests, listeners are asked to set the level of the
parameter in question, such as volume, according to some guidelines. MOA is con-
venient if the researcher wants to know, for example, when an artifact is barely
detectable or – as in this thesis – when it is as annoying as a reference artifact.
Some or all items might be evaluated multiple times and the answers finally aver-
aged to get more reliable results. In addition, the reliability of single listeners may
be estimated by inspecting the coherence of her answers related to the same item.
Despite the repetition, MOA tests are relatively fast to execute. [37]
A simple Matlab program was developed for conducting the MOA tests in this

thesis. A screenshot of the graphical user interface (GUI) is shown in Figure 4.3.
The listener could play the reference signal (containing the investigated artifact at
a fixed level) and the condition signal (the level of the investigated artifact adjusted
with the slider) freely.

Figure 4.3: A screenshot of the custom Matlab GUI used in the MOA tests.

4.1.4 Rating Without Reference

Rating without reference (RWR) is a non-standard listening test method that we
developed for a special case when conditions could be rated without a separate ref-
erence signal. This is possible e.g. when the listener is asked to rate the proportion
of one artifact to another, and they both exist at the same time, in the same au-
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dio signal. Self-explanatory anchors, preferably with audible examples, should be
provided to help with using the rating scale.
The main advantage of RWR is that it is almost as fast to execute as the on-off

procedure in which the listener just answers whether some feature seems to exist or
not. Thus, it is possible to evaluate up to 100 items without the test being overly
time-consuming. However, the listeners may find rating difficult, which may lead to
unreliable results with a high variance.
The RWR method was realized with ListeningTestGUI presented above. In con-

trast to the screenshot in Figure 4.2, only one slider existed at a time and there was
no reference signal. The listeners were again permitted to listen to and set loops on
items freely. The rating scale was defined from 0 to 100.

4.1.5 Test Equipment

All tests were conducted with Apple Mac Mini computers running either OSX 10.4 or
10.5. The computers were equipped with an Edirol audio interface (either UA-1000
or UA-25) and high quality Stax headphones with a dedicated amplifier. Background
noise in the listening rooms was low enough to be considered negligible. Listeners
were free to adjust the volume in every test.

4.2 Procedures for Analyzing Test Results

In a nutshell, there are three major steps in handling the acquired listening test data.
First, the clear outliers should be excluded in the procedure often referred to as post-
screening [22]. The second step is to determine and use the analysis methods that
fit the situation best and are the most likely to reveal useful information. Finally,
the results should be presented as informatively as possible.

4.2.1 Post-Screening

To ensure a high quality of the final results, unreliable listeners are rejected from
further analyses. There are many possible causes for the unreliability: perhaps the
listener did not understand the test procedure correctly, she did not really hear the
artifacts and was just guessing, or she could not provide consistent answers for some
other reason. However, listeners should be rejected very cautiously and with larger
sample sizes it might not be necessary at all [36]. Depending on the test method,
the post-screening phase might consist of some or all of the following phases [22, 23]:

Verify that the listener understood the test procedure correctly. For example,
at least one condition must always be given a rating of 100 in MUSHRA tests.

Check that the listener detected the possible hidden reference correctly. Minor
and not repeated errors may be regarded as acceptable.
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Check that the ratings of other anchors make sense. For example, the anchor
of the lowest quality should not be given a high rating compared with other
conditions.

Check the consistency of the answers if there were repetitions.

Reject the listener if a too small part of the rating scale was used.

If the listener gave very different answers from the others, figure out whether
she is too inexperienced, found artifacts not detected by the other participants,
or if she just has a different preference.

4.2.2 Analysis Methods

It is convenient to begin with briefly illustrating the distribution of the answers with
a boxplot. The average ratings can, in turn, be illustrated with a plot showing the
means and 95% confidence intervals. From such figure, it can be concluded that if
the confidence intervals of two conditions are not overlapping, there probably was
some real consensus about their relative quality.
Despite the anchors, listeners tend to use the rating scale differently. Especially

if the conditions in items are very similar to each other, it might be beneficial to
extract the differences between the ratings. The individual bias is then removed
and the statistical differences might be more pronounced, but without a cost of
reducing the degrees of freedom [22]. This technique is, however, only feasible if the
conditions were present at once, as in MUSHRA tests.
If the above assumption holds, the ratings can also be treated as if they were

acquired with a paired comparison test and be analyzed with BTL. Each possible
pair of conditions in an item is examined and the number of times one condition was
preferred over any another is counted. If two conditions were given equal ratings,
the interpretation is that the listener was not able to hear a difference or could not
decide which one was superior. In that case, the preference count for both conditions
is increased by 0.5 because the probability of selecting either of them would have
been 0.5 in case the listener was forced to make a choice. [24]
In addition, linear regression can be used for extracting the linear dependency

between variables. Even though causality is not definitely implied, a regression
model is often useful for understanding how the investigated parameters affect the
perceived outcome. The model can also be used for selecting the optimal values for
the parameters in an encoding process.

4.3 Guidelines for Organizing Listening Tests

In this section, some of our informal experiences about designing and conducting
listening tests are shared. To begin with, the overall execution time of a test should
not exceed approximately 20 minutes in order to avoid listening fatigue and losing
concentration. Most tests in our research were considered particularly tiring as they
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either consisted of the same sound played repeatedly with only slight variations in
it or because the artifacts were hard to hear.
The question of whether naive or experienced listeners should be invited to take

the test has to be carefully assessed. If the test is subjective and straightly related
to consumer applications, a natural choice would be to invite naive listeners as they
supposedly represent the everyman perspective. However, it turned out that most
participants not used to analytic listening were relatively inconsistent with their
answers and struggled with hearing even relatively clear differences in conditions.
In other words, obtaining statistically significant results would require an impractical
number of participants. Therefore, it is often advisable to work with experienced
listeners because it leads to more meaningful results with fewer participants. The
BS.1534 Recommendation also states that experts should be favored for that very
reason [36].
It is particularly important to confirm that the listeners have understood the test

method and the instructions correctly. It is advisable to provide all the necessary
information also in a written form and to make the test interface as simple and
intuitive as possible. In addition, the pitfall of making the artifacts too subtle
should be avoided: while the test organizer himself is usually thoroughly familiar
with the artifacts and hence recognizes them easily, it should not be forgotten that
the listeners probably hear them for the first time. The participants may be assisted
in this regard by providing them with some clear examples before the actual test,
but sometimes it is justifiable not to reveal the artifacts beforehand.
As always, all variables other than those to be examined should be kept constant

as precisely as possible. Loudness, in particular, is a factor that deserves special
attention because even simple modifications, such as adding noise to the original
signal, have an effect on it. It is widely known that even experienced listeners have
a tendency to favor louder sounds in terms of quality [28].
One factor that is often overlooked is collecting qualitative insights from the lis-

teners. Especially in such tests that compare unusual attributes or are otherwise
atypical, it is beneficial to receive verbal feedback on what sonic properties the lis-
tener paid attention to. Qualitative opinions can be easily collected by having a
short conversation with the listener right after the test and it is often useful to also
include a chance to write short comments during the test.



Chapter 5

Time-Varying Artifacts

The perceived effect of amplitude modulation has been of some interest in psychoa-
coustic research. A measure called fluctuation strength is often used to describe
slow or medium speed amplitude variation (up to approximately 20 Hz) while faster
variation is measured with roughness [27, 38]. The sensitivity of human ear to am-
plitude modulation is found to follow a reverse-U shaped curve and peak at the
variation frequency of approximately 4 Hz (Figure 5.1) [27, 39]. The fluctuation
strength is zero until a modulation depth of about 3 dB is reached. After that
point, the effect increases linearly with the logarithm of the modulation depth until
a saturation point at approximately 30 dB is reached. [27] The model of fluctuation
strength has been widely used for describing the annoyance of noise caused e.g. by
wind turbines [40, 41, 42] and engines [43, 44].
In this chapter, the effect of time-variance on the annoyance of audio coding

artifacts is investigated. First, the perceived effect of alternating the level of critical-
bandwidth noise is discussed, after which the study is extended to time-variance of
single harmonics of a periodic signal.

5.1 Band-Limited Noise

As explained in Chapter 1.2, USAC is based on the switched core principle meaning
that the basic functionality is changed according to the type of the input signal.
Figure 5.2 illustrates a case in which the coder erroneously switches between two
modes even though the input signal is a stationary chord sung by a male choir. This
behavior leads to clearly audible, and possibly annoying, fluctuations in quantization
noise.
In this section, it is examined with a listening test if time-variance in the level of

critical-bandwidth noise affects the annoyance caused by the noise. The results can
be used to tackle an important trade-off in audio coding: switching the coder might
help push the noise floor down momentarily, but the annoyance of abrupt changes
might cancel the benefits.

31
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Figure 5.1: Fluctuation strength of amplitude-modulated broad-band noise of 40 dB
modulation depth (adapted from [27]).

5.1.1 Methods

As illustrated in Figure 5.3, the listening test was built around a principle of adjust-
ing the level of critical-bandwidth stationary noise so that it would be equally an-
noying to fluctuating but otherwise similar reference noise. Fluctuation was mostly
periodic, but also one item with a varying, randomized period was included for
completeness. To make the test more realistic, the noise was always added on the
pitchpipe signal depicted in Figure 5.4.
The noise level was always adjusted frame by frame in order to maintain the

SNR constant. The SNR was computed as in Equation (3.2) over the frequency
band the noise covered. Computing the SNR in perceptual domain instead would
not have made a significant difference as the frequency range was such narrow. In
the actual listening test, the SNR difference (in this case, the opposite of the power
level difference between the two noise types) related to the selected and the reference
noise was recorded for each item.
All essential information related to the test arrangements is shown in Table 5.1.

As our initial informal tests indicated that the frequency range would not have had
a significant impact on the results, the noise was centered around the fifth harmonic
that lay in the middle area of the human hearing range [31]. The lower frequency
limit was fl = 1.37 kHz and the upper fu = 1.57 kHz, which according to Equation
(3.1) correspond to approximately one critical band.
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Figure 5.2: A coded excerpt of a stationary chord sung by a male choir. Note the
abrupt changes in the quantization noise.

Table 5.1: The essential information about the test comparing the annoyance of
static and fluctuating noise.

On/off time (ms) 32 64 128 256 512 64− 256

Frequency range 1350− 1600 Hz

SNR (dB) 10 (for 128 ms
only)

15 20 (for 128 ms
only)

Signal Pitchpipe

Frame length (ms) 64

Sampling frequency
(kHz)

16

Bit depth 16

Number of listeners 10

Test method MOA
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Figure 5.3: The listeners adjusted the level of (a) stationary noise while time-varying
noise in the (b) reference signal was fixed. In this example, the modulation frequency
is 0.98 Hz.

In addition, it was briefly investigated if the critical-band SNR in the reference
signal would affect the results. For the majority of the items, the reference noise
level was selected so that the noise would not be particularly prominent but still
clearly audible (SNR = 15 dB). For comparison, the test included one item with
just hearable (SNR = 20 dB) and another with very prominent (SNR = 10 dB)
noise.
A block diagram of the Matlab script used to generate the items is shown in

Figure 5.5. The signals were processed in 50% overlapping frames of 1024 samples
and the noise was added in the MDCT domain. Because of the windowing used in
the process, the noise blocks did not have sharp edges but were turned on and off
smoothly. The α parameter was used to scale the noise to keep the critical-band
SNR constant.
The method of adjustment test was conducted with the custom Matlab interface

presented in Chapter 4.1.3. The level of time-varying noise could be controlled in
steps of 0.5 dB. As the step size is less than the just-noticeable level change of
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Figure 5.4: A frame of the pitchpipe signal that was used in the time-variance tests.
The fundamental frequency is approximately f0 = 300 Hz.

approximately 1 dB [27], it was possible to analyze the results as if the slider values
had been continuous.
There were 10 participants in the listening test. Six of them could be considered as

experienced listeners while four had little prior experience. Each item was evaluated
twice and in random order and the test began with two training items with unique
parameters. The participants were specifically asked to avoid matching the physical
levels of the two noise types and to concentrate on the annoyance instead. The
complete written test instructions can be found in Appendix B.

5.1.2 Results

The distribution of the test answers before post-screening is illustrated in a boxplot
in Figure 5.6. The variance of the answers was relatively high, which was expected as
the test setting was rather unusual. All individual answers are included in Appendix
A, Figure A.1. Compared with the naive listeners (anon07–anon10), the experienced
listeners (anon01–anon06) were clearly more consistent in their repeated answers
and seemed to be following a common preference pattern. In post-screening, all
items with a difference greater than 5 dB between the answers were excluded from
further analysis. In addition, anon09 was considered too unreliable and was rejected
entirely.
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Figure 5.5: A block diagram of the signal generator script in the test comparing the
annoyance of stationary and time-varying noise.

The means and confidence intervals after post-screening are shown in Figure 5.7.
As there is clear overlapping in the confidence intervals of items, conclusions about
annoyance differences should be drawn with caution. However, the two items with
the fastest fluctuations and the SNR of 15 dB were seen significantly worse than the
others with the same SNR, excluding the slowest variation. In addition, the results
suggest that SNR had some effect on the perception of annoyance.

5.2 Amplitude Variation in Harmonics

A common artifact in audio coding is erroneous variation in the harmonic content
of the coded signal. Weak harmonics, usually in the upper frequency range, might
totally vanish in the quantization process and even stronger ones might have their
level altered. To illustrate this, Figure 5.8 shows an excerpt of a coded quasiperiodic
pitchpipe signal. Especially the fourth harmonic vanishes from time to time.
In this section, the annoyance of variation in the level of harmonics is discussed.

The two scenarios explained in the previous paragraph were simulated and their
annoyance evaluated in a listening test. It was designed to be a continuum of the
test examining time-variance of noise, explained in the previous section.
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Figure 5.6: A boxplot of the answers of all listeners in the test comparing the
annoyance of stationary and time-varying noise (before post-screening, n = 10).

5.2.1 Methods

In order to acquire comparable results, the listening test was designed and con-
ducted principally the same way as the previous one described in Section 5.1. The
main difference is that no noise was added to the reference signal, but harmonics
were varied in one of the two ways instead. As before, the listeners were asked to
set the level of stationary noise bandlimited to a frequency range comprising one
critical band and the difference between the condition and reference signal SNRs
was recorded.
In the first scenario (see Figure 5.9a for a graphical explanation), one of the

middle harmonics, located at f = 1.47 kHz, was ”blinking”, i.e. the critical band
centered on the harmonic was attenuated by 0 dB and 4 dB, in turns. The amount of
attenuation was selected so that the phenomenon would be clearly audible but still
realistic. The SNR of the conditions was computed frame by frame over a critical
band f∆ = [1.35, 1.57] kHz as in Equation 3.3. In the frames with zero harmonic
attenuation, the SNR computed from the last attenuated frame was used to set the
noise level for the reference signal.
In the second scenario (see Figure 5.9b), two of the upper harmonics were totally

attenuated in turns. They were located at f1 = 4.7 kHz and f2 = 5.0 kHz, and the
SNR was computed over a frequency range f∆ = [4.35, 5.35] kHz that encompassed
both harmonics. To keep the noise level in the reference signal reasonably stable,
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Figure 5.7: The means and 95% confidence intervals of the answers of all listeners
in the test comparing the annoyance of stationary and time-varying noise (after
post-screening, n = 9).
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Figure 5.8: A coded excerpt of a pitchpipe signal. Note the fluctuations in the
fourth harmonic.
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Figure 5.9: The two scenarios in the listening test examining time-variance of har-
monics: a) the level of one harmonic fluctuating and b) two harmonics alternating.

the SNR in Equation 3.3 was computed in longer frames of 16, 384 samples or 1, 024
ms with a 50% overlap.
The Matlab script used for generating the files was principally similar to that

explained in the previous section (see Figure 5.5) and the general test parameters,
such as the sampling rate, were also the same (see Table 5.1). There were nine
participants in this test, all being experienced listeners. Each item was evaluated
only once to keep the test duration reasonable and the items were in a random
order. The test began with two practice items (one for both scenarios) with unique
parameters. The complete written test instructions given to the participants are
included in Appendix B.

5.2.2 Results

The distribution of the test results before post-screening in the case of one harmonic
is shown in Figure 5.10. Despite the experienced listeners, the variance of the
answers was again quite high. All individual answers are shown in Appendix A,
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Figure A.2. The performance of participants cannot be assessed based on repetitions
as there were not any. Hence, no post-screening actions were taken.
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Figure 5.10: A boxplot of the answers of all listeners in the test investigating the an-
noyance of time-variance in the level of one harmonic (before post-screening, n = 9).

The means and confidence intervals after post-screening are shown in Figure 5.11.
As the confidence intervals are wide and overlapping, statistically significant con-
clusions cannot be drawn from this dataset alone. However, there is a slight hint of
the familiar U-shaped pattern.
A boxplot of all the answers in the case of two harmonics alternating is shown in

Figure 5.12. Again and for the same reasons as before, the variance was relatively
high. All individual answers are included in Appendix A, Figure A.3. There were no
repetitions or an apparent common pattern that most listeners would follow. Hence,
no listeners were rejected, but extreme outliers were discarded from single answers.
The means and confidence intervals of the answers are shown in Figure 5.13.

There is again a slight hint of a U-shaped curve, but due to the limited number of
participants, the results are not statistically significant.

5.3 Conclusions

The listening tests investigating the annoyance of time-variance were considered
difficult among the participants, especially as the test procedure was somewhat
unusual. Because of the time limitations of this project, the number of participants
was slightly insufficient for getting thoroughly satisfactory results having enough
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Figure 5.11: The means and 95% confidence intervals of the answers of all listeners
in the test investigating the annoyance of time-variance in the level of one harmonic
(no post-screening, n = 9).
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Figure 5.12: A boxplot of the answers of all listeners in the test with two harmonics
alternating (before post-screening, n = 9).
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Figure 5.13: The means and 95% confidence intervals of the answers of all listeners
in the test with two harmonics alternating (no post-screening, n = 9).

statistical significance. However, the emerged preference patterns were similar in all
tested scenarios, which increases the reliability of our conclusions.
In accordance with the literature concerning fluctuation strength, the U-shaped

annoyance patterns emerged from each test suggest that moderate-speed amplitude
modulation at around 2-5 Hz is considered the most annoying, independent of the
artifact type. Comments of the listeners also indicate that fast fluctuation is not
heard per se, but such signals are perceived as stationary, albeit modulated.
The results of the noise scenario also suggest that the SNR might be a significant

factor. When time-varying noise in the reference signal became louder, the listeners
had a tendency to push the stationary noise even louder. This indicates that the
annoyance of time-variance might be of more significance when the artifact is easily
heard. However, the results might be somewhat distorted as some listeners reported
that the lowest noise level was virtually inaudible in the test.
The research could be continued with verifying our results with more listeners and

perhaps with other types of artifacts too. More modulation speed values should be
included in further tests to enhance the accuracy of the findings.



Chapter 6

Ghost Pitch

Bandwidth extension refers to a family of various audio coding methods in which
only the lower part of a spectrum is explicitly encoded while the upper part is
artificially reconstructed on the decoder side. As the amount of information that
has to be saved is much lower than in explicit encoding, significant bit savings can
be achieved.
Perhaps the best-known bandwidth extension method is spectral band replication

(SBR) in which the high frequencies (HF) are generated by copying or mirroring
the low frequency (LF) band [45]. USAC also supports a novel method known as
harmonic bandwidth extension (HBE) that is based on stretching the LF band. It
has an advantage of preserving the harmonic relations of the tonal components, but
unfortunately the HF patch will necessarily be incomplete [46]. As the pitch of a
tone is determined by the whole set of harmonics (being multiples of the fundamental
frequency by definition) and not just by the fundamental frequency [47], a possibility
of an additional pitch sensation, called ghost pitch, emerges.
It has been long known that even if the fundamental component of a tone is

missing, a pitch perception at that frequency might still occur [48]. This virtual
pitch sensation is thought to be possible because the listener mentally resolves which
fundamental frequencies could be related to the set of harmonics in question. For
example, the only common submultiple of harmonics at 600 Hz and 750 Hz is 150
Hz which must thus be the fundamental frequency [49].
It is widely accepted that harmonics in the so called frequency dominance region

are particularly important in the pitch perception [50, 51]. For typical fundamen-
tal frequencies below approximately 1000 Hz, the dominant harmonics are the few
first ones [51, 50, 52], but there seems to be individual differences in their relative
importance [52]. For higher fundamental frequencies, the role of upper harmonics
decreases and the pitch is mainly determined by the fundamental frequency [51]. It
has also been shown that the importance of a single low harmonic typically increases
with its level as related to adjacent harmonics [52]. On the other hand, the phase
of harmonics does not seem to have a significant effect [53].
In this chapter, the ghost pitch phenomenon is examined specifically in relation

to the use of HBE in coding applications. The goal is to understand how the
fundamental frequency of a harmonic tone and the crossover frequency separating

43
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the LF and HF bands are related to the perceived strength of the possible ghost
pitch. It is useful to be able to estimate the likelihood of a ghost pitch sensation in
encoding as it helps to decide whether the problem should be tackled by manually
reinserting some of the missing harmonics, for instance.

6.1 Background

Figure 6.1 illustrates how an HF band can be generated from an LF band with HBE.
In that example, the LF spectrum is first stretched by an integer factor of 2 with
a phase vocoder, which effectively stretches the signal in time to twice the original
length while keeping frequencies intact. Decimating the signal by the same factor
of 2 (i.e. dropping every second sample) results in returning to the original length
whereupon the frequency of each harmonic is doubled. Finally, the generated HF
band is exctracted with a bandpass filter and the output signal is constructed by
combining the original LF and the new HF bands. Figure 6.2 illustrates how the
resulting spectrum is formed. Note that all odd harmonics are missing in the HF
spectrum. [46]

LF
Phase Vocoder

Time x2

Downsampler
↓ 2

Bandpass
Filter

+ LF+HF

Figure 6.1: A block diagram of HBE with a factor of 2.

The LF band can also be stretched with larger factors to extend the generated
frequency range, but in that case the harmonic patch will be even sparser. One
useful possibility is to mix HF parts produced by different stretch factors to get
better harmonic coverage. To ensure a high perceived quality of the outcome, the
envelope of the synthetic HF part should always be shaped to match the envelope
of the original spectrum.

6.2 Methods

In the listening test explained in this chapter, the strength of the ghost pitch sen-
sation in HBE was evaluated with periodic signals as a function of fundamental
frequency f0 and crossover frequency fx. Six values were selected for both of those
parameters and all possible combinations of them were evaluated with two different
spectral envelopes, totalling 72 items to be rated in terms of perceived ghost pitch
loudness. All signals were synthetic as full control over harmonics was desired. The
test arrangements are summarized in Table 6.1.
In real applications, crossover frequencies are likely to be set to integer divisions

of the Nyquist frequency. For example, if the sampling rate was fs = 16 kHz and
the HBE factor h = 2, an obvious choice for the crossover frequency would be
fx = 0.5fs/h = 4 kHz. Following that logic, the typical sampling rates of 16, 22.05,
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fx fx

fx

Figure 6.2: In HBE, the HF spectrum (red) is generated by stretching the original LF
spectrum (blue) after which the two bands are combined. The crossover frequency
is denoted with fx.

Table 6.1: A summary of the ghost pitch test arrangements.

f0 (Hz) 100 170 289 491 835 1420

fx (kHz) 4 5.513 6 8 11.025 12

Spectral envelope Loudness −3 dB/octave

Signal generation Additive synthesis; spectra extended to Nyquist frequency

Fade in/out Sine/cosine window, 150 ms

Sampling frequency 48 kHz

Bit depth 16

Test method Rating without reference

24, 32, 44.1, and 48 kHz would produce the crossover frequencies evaluated in this
test. Fundamental frequencies f0, on the other hand, were selected to cover the
normal range of typical musical instruments [31]. The frequencies were distributed
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logarithmically so that in terms of musical intervals they would be approximately a
major 6th apart.
Two different spectral envelopes were applied in the items: one following the equal-

loudness contour at 60 phon (Figure 3.2) and another with a −3 dB per octave tilt.
The former can be argued to be the most neutral choice since all harmonics are
equally loud while the latter was included to represent a more natural tone.
The timbre and pitch of a tone are mostly independent of the phase of harmonics

[31, 53]. In our test, the phase was simply randomized with two functions, one for
each spectral envelope. On the one hand, it is known that the attack of a tone plays
a crucial role in a timbre sensation [31]. The possible impact of attack was excluded
by fading the signals in and out smoothly using the first quarters of the sine and
cosine windows as the amplitude functions.
The items were generated offline with Matlab in which HBE was simulated with

additive synthesis. In reality, HBE with the factor of 2 would produce harmonics up
to twice the crossover frequency, but we chose to ignore this limitation by extending
all signal spectra up to the Nyquist frequency.
The total number of listeners was eight with varying amounts of listening test ex-

perience. Five of them could be considered experienced while three were relatively
inexperienced. Because of the large number of items, the time-efficient rating with-
out reference method was selected for the listening tests. The listeners were asked
to rate the ghost pitch loudness using a scale with a step size of 1 by considering
the following guidelines:

If you hear only one pitch, set the slider to 0.

If you hear two equally loud pitches, set the slider to 100.

If you hear two pitches, but one is stronger than the other, set the slider in
between 0 and 100 according to the perceived loudness ratio of the pitches
(e.g. set the slider to 50 if the loudness of the softer pitch is 50% of the louder
one).

The complete written test instructions are included in Appendix B.

6.3 Results

All individual answers are included in Appendix A, Figures A.4 and A.5 (among
the listeners, anon01-anon02 and anon04-anon07 can be considered experienced).
First, it can be clearly seen that the bias in the ratings is vastly different between
listeners (compare anon02 and anon03, for example). Some participants commented
afterwards that it was hard to adjust to the rating scale as there were no examples at
the beginning of the test. Second, even the relative ratings are not nearly consistent
among listeners. For instance, anon06 and anon07 seemed to perceive the effect of
fundamental frequency almost oppositely. While it is possible that the participants
perceived the ghost pitches differently, it is more likely that some of them did not
understand the objective, the test method itself turned out to be unreliable, or that
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the synthesized items were not suitable and should have been substituted with real
sounds.
To summarize the distribution of the answers of the listeners, the interquartile

ranges are plotted in Figure 6.3. There seems to be a consensus on some items while
the IQR is very high in others, without any apparent logic. This cannot be caused
by the time needed for adjusting to the scale as the items were in random order.
The means of the answers are shown in Figure 6.4. As there were no repetitions,

no clear common rating patterns, or anything revealing whether a single listener had
understood the test correctly, nothing could be rejected in post-screening. It seems
that, at least in the items with the tilted envelope, the listeners on average perceived
a stronger ghost pitch sensation with lower fundamental and crossover frequencies.
Our limited data suggests that the nature of the ghost pitch phenomenon cannot

necessarily be fully captured with a simple linear model. However, to quantify our
findings, a two-variable linear regression model describing the perceived ghost pitch
strength with a scale from 0 to 100 was derived from the results (Figure 6.5):

g(f0, fx) = 52.4− 0.0141f0 − 0.0009fx. (6.1)

As expected, the model does not fit the data that well and the goodness of fit is
hence low, R2 = 0.051. Nevertheless, some linear dependence on both regressors
seems to exist as the significance level for the model as a whole is P = 0.0000
(F = 15.4), for the constant coefficient P = 0.0000 (t = 13.6), for the f0 coefficient
P = 0.0426 (t = −2.03), and for the fx coefficient P = 0.0000 (t = −5.17).

6.4 Conclusions

While our test results are relatively noisy and the dependence might be more com-
plicated than what can be uncovered from our limited data, the results suggest
that ghost pitch sensation is louder for lower fundamental and crossover frequen-
cies. This is in line with what is known about virtual pitch. First, it is suggested in
the literature that lower harmonics play the most important role in pitch sensation.
Increasing the crossover frequency in HBE makes the sparse harmonic patch begin
higher in frequency and hence provides less indication of the virtual pitch suggested
by the harmonic composition of the HF band. Second, it is proposed in the liter-
ature that harmonics of a tone become less important in pitch sensation when the
fundamental frequency gets higher. Increasing the fundamental frequency of a tone
in HBE also increases the frequency of the suggested virtual pitch and therefore the
incompleteness of the HF patch becomes less significant.
To investigate ghost pitch further, more participants would be needed for a test.

It is not clear if the rating without reference method itself was too unreliable in
our case, but at least there should be some example items and answers in the
beginning. In addition, the test could be tried with real tones as the sensation
seems to be stronger and clearer in that case. In the meanwhile, the two-variable
linear regression model in Equation (6.1) can be used as a starting point for further
research or encoder designs.
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Figure 6.3: The interquartile ranges of the answers of all listeners for a) the loudness
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screening).
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Chapter 7

Spectral Envelopes in Audio
Coding

As explained in 3.4, signals are customarily quantized in the perceptual domain in
order to minimize the annoyance of the resulting noise. The first part of this chapter
discusses an improvement for that process by modifying the transfer function of the
spectral envelope used in the transformation.
Formant enhancement is another technique for shaping and hiding quantization

noise. It refers to boosting strong and diminish weak parts of the spectra of the
frames in encoding. Using spectral envelopes as the basis for that procedure is
examined in the second part of this chapter.

7.1 Optimizing Perceptual Domain Transforma-

tion

In a perceptual domain transformation, an estimate for the masking curve is re-
quired for each frame, for which a spectral envelope is often used. To improve the
masking curve approximation and thus enhance the masking of quantization noise,
the envelope can be modified with a method belonging to the class of bandwidth
expansion: the spectral peaks of the envelope are widened and the spectrum thus
smoothed by plugging a constant into its transfer function [54]. The goal of this lis-
tening test was to find the optimal value for the smoothing constant. In this section,
the technique is introduced in more detail and the results and methods of a listening
test aimed toward finding the optimal parameter for the bandwidth expansion are
presented.

7.1.1 Background

In an example shown in Figure 7.1, an envelope W (z) of the spectrum X(z) of a
signal frame is extracted with LPC. The poles of this all-pole transfer function W (z)
can be moved inwards by choosing a constant γ0 < 1 and evaluating the transfer

51
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function as

W (z/γ0) =
1

1 + a1γ0z−1 + a2γ2
0z

−2 + ...+ akγk
0z

−k
,

where ak are the constant coefficients of the transfer function [54]. Moving the poles
towards the origin has an effect of flattening the envelope as can be seen in Figure
7.1.
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Figure 7.1: A 32 ms frame of a speech signal transformed from a frequency do-
main representation X(z) into a perceptual domain counterpart X̂(z). The spectral
envelope W (z) used for the transformation is smoothed with the constant γ0 = 0.91.

If all frequency bins of a signal frame are quantized equally, the resulting noise
can be modelled as white noise V (z) (having a flat spectrum by definition) added
to the frame. In the frequency domain, the outcome is simply

Y (z) = X(z) + V (z).

However, if the quantization is done in the perceptual domain instead, back in the
original domain the signal becomes

Y (z) = X(z) + V (z)W (z/γ0)
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The perceptual SNR of the outcome can be computed as

SNRP = 10 log10
‖ X[k]W−1

γ0
[k] ‖

‖ V [z] ‖ .

The smoothing parameter γ0 should be chosen so that the noise is concentrated
under strong parts of the input spectrum, which would lead to a higher perceived
SNR and, supposedly, a decreased annoyance.

7.1.2 Methods

Our methods can be described as follows. First, the input signals were divided into
overlapping frames. Second, the envelope spectra of the frames were extracted with
LPC and smoothened with different γ0 values. Third, for each input signal frame, a
frame of white noise was created and shaped with the corresponding modified LPC
envelope. Finally, the output signals were constructed by adding the input signal
frames and the corresponding noise frames. In the listening tests, the participants
were then asked to compare and rate the perceived quality of the conditions and
hence evaluate the effect of γ0.
As listed in Table 7.1, five γ0 values that clearly covered the practically usable

range were selected for the test. Two pure vocal excerpts were chosen for the test
signals: one from an English-speaking male newsreader and another from the infa-
mous track ”Tom’s Diner” by Suzanne Vega. Music and mixed content were ignored
because our informal tests suggested that the effect of adjusting γ0 would be almost
inaudible in those cases. This is probably because spectral envelopes in musical
content tend to be quite flat and thus smoothing would not make a significant dif-
ference.

Table 7.1: The parameters of the listening test investigating perceptual domain
transformation.

γ0 0.84 0.88 0.92 0.96 1.00

SNRP (dB) 6 12 18

Signal Male newsreader
(English)

Suzanne Vega:
Tom’s Diner

Frame length (ms) 32

Sampling frequency (kHz) 16

Bit depth 16

Number of listeners 10

Test method MUSHRA
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Perceptual SNR was also varied to investigate whether it has an impact on the
listener preferences. It was kept constant in conditions by multiplying each generated
noise frame with a scalar α before adding to the signal frame:

α =

√

1

SNRP

‖ X[k]W−1
γ0

[k] ‖
‖ V [k] ‖ .

Furthermore, to keep the loudness of conditions roughly equal to that of the reference
signal, each output frame was multiplied with a scalar σ given by

σ =
‖ X[k]W−1

γ0
[k] ‖

‖ X[k]W−1[k] + V [k] ‖ .

This equalized the energy of the input and output frames in the perceptual domain
and seemed to be reasonably accurate for loudness normalizing. The test signals
were generated with a Matlab script illustrated as a block diagram in Figure 7.2.
MUSHRA was chosen as the test method as it enabled comparing all γ0 values

related to a single item at once. In addition, the total number of conditions was
quite large which made MUSHRA a reasonable choice as it is fast to execute. The
test was anticipated to be challenging and therefore only experienced listeners were
invited. There were 10 participants in total. The complete written test instructions
can be found in Appendix B.

7.1.3 Results

The distribution of the listening test answers before post-screening is summarized in
a boxplot in Figure 7.3. All individual answers are included in Appendix A, Figure
A.6. All listeners were experienced and very familiar with the MUSHRA method,
hence no post-screening actions other than discarding extreme outliers were seen
necessary. Altogether, the hidden reference anchor (HidRef) was detected correctly
in all but one items and the 3.5 kHz lowpass anchor (LPAnchor) was consistently
rated reasonably. The means and confidence intervals of the ratings after post-
screening are shown in Figure 7.4 for each item.
As expected, there was clear positive correlation between perceptual SNR and the

given ratings. However, the differences of the ratings of conditions were generally
small and the confidence intervals are clearly overlapping, even though there seems
to be a reverse U-shaped pattern of preferences shared by most items. From Figure
A.6 can be seen that the listeners used the rating scale very differently, especially in
terms of bias. To overcome this problem, the means and 95% confidence intervals
are calculated for the differences between the ratings of adjacent γ0 values in Figure
7.5. The individual bias in using the scale is thus disregarded, but the magnitude of
the perceived differences is preserved. Apparently, the differences were clear in the
items with a low perceptual SNR, but especially the low-noise items with SNRP = 18
dB were difficult.
As the patterns of answers are relatively similar in each item, we can reasonably

judge that perceptual SNR did not affect the preferences significantly. Therefore,
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Figure 7.2: A block diagram of the condition generator in the test investigating
perceptual domain transformation.

all items could be combined to get the curve shown in Figure 7.6, in which the
lowest rated value γ0 = 1.0 is (arbitrarily) set to zero and the points are connected
with cubic spline interpolation. The overshoot in the red curve is a result of the
interpolation and is not related to the preferences of the listeners. The maximum of
the curve, and hence the candidate for the optimal value, is at γ0 = 0.913.
Still another way to interpret the results is to analyze them as if they were acquired

with pairwise comparisons, as explained in Section 4.2.2. In this method, even the
magnitudes of the rating differences between conditions are disregarded. The data
satisfied the stochastic transitivity requirements in Equation 2.5 reasonably well and
hence the ratio scale could be derived with the BTL method from the combination
of all items. For easier comparison, the BTL curve, shown in Figure 7.6, was scaled
vertically so that it would roughly match the curve found earlier with the difference
method. The maximum value of the BTL curve is at γ0 = 0.915 which is very close
to that found with the difference method.
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ceptual domain transformation (before post-screening, n = 10, left = male speech,
right = Suzanne Vega).
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screening, n = 10, all items combined). The points are connected with cubic spline
interpolation.

7.2 Formant Enhancement

In formant enhancement, quantization noise is hidden by boosting strong and di-
minishing weak parts of the spectrum of a signal frame in encoding. This can be
easily done by multiplying the frame with its own spectral envelope which is modi-
fied similarly than is often done in the perceptual weighting filters in audio coders
belonging to the code excited linear prediction (CELP) family (see e.g. [55] and [56]
for examples). In this second part of the chapter, the objective was to find opti-
mal values for the formant enhancement parameters in terms of perceived quality
of quantized signals.

7.2.1 Background

Let us begin with extracting a spectral envelope W (z) of an input frame X(z) as in
Section 7.1.1. However, this time the all-pole transfer function is converted to the
form

F (z) =
W (z/γz)

W (z/γp)
=

1 + a1γzz
−1 + a2γ

2
zz

−2 + ...+ akγ
k
z z

−k

1 + a1γz−1
p + a2γ2z−2

p + ...+ akγkz−k
p

,

where γz ≤ 1 and γp ≤ 1 are constants. By adjusting the relation of γz and γp,
the positions of the poles and zeros, and hence the shape of the spectrum, can be
controlled. Figure 7.7 shows an example of a modified spectral envelope F (z) with
γz = 0.7 and γp = 0.9. The modified envelope inherits some of the waving of the
original envelope, but, unlike in bandwidth expansion, is is not tilted.



CHAPTER 7. SPECTRAL ENVELOPES IN AUDIO CODING 60

 

 

Frequency (kHz)

M
ag
n
it
u
d
e
(d
B
)

0 2 4 6 8

40

20

0

−20

−40

−60

X(z)
W (z)

F (z)

X̂(z)

Figure 7.7: A 32 ms frame of a speech signal transformed from a frequency domain
representation X(z) into a perceptual domain counterpart X̂(z) with the spectral
envelope W (z). The frame is pre-processed by multiplying it with its modified
spectral envelope F (z).

As shown in Figure 7.7, an input frame X(z) can be pre-processed by multiplying
it with its modified spectral envelope F (z) before a perceptual domain transforma-
tion. After quantization and back in the frequency domain, the output frame thus
becomes

Y (z) = X(z)F (z) + V (z)W (z/γ0).

7.2.2 Methods

In the preparation of this listening test, the audio signals were first processed with
formant enhancement using different combinations of γz and γp. Quantization noise,
modelled again with white noise in the perceptual domain, was then added. Finally,
the participants of the listening test were asked to compare and rate the perceived
quality of the conditions and hence evaluate the impact of γz and γp.
As summarized in Table 7.2, a wide range of five γz values was selected for the

test while γp was kept constant. The selection of the latter was not critical per se
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because the outcome specifically depends on the relation of these to parameters.
The source signals were selected for the same reasons as in the test investigating
perceptual domain transformation, the only difference being that the male speech
excerpt was changed to one of a slightly higher technical quality.

Table 7.2: The parameters of the test investigating the perceived effect of formant
enhancement.

γz 0.55 0.70 0.80 0.85 1.00

γp 0.90

γ0 0.91

SNRP (dB) 6 12 18

Signal Male speech
(German)

Suzanne Vega:
Tom’s Diner

Frame length (ms) 32

Sampling frequency (kHz) 16

Bit depth 16

Number of listeners 8

Test method Modified MUSHRA

Perceptual SNR was also varied in the conditions because our informal tests as
well as general reasoning suggested that it probably has a significant effect on γz
preferences. Perceptual SNR was kept constant and loudness normalized as in the
perceptual domain transformation test. The signals were generated with the Matlab
script illustrated in Figure 7.8.
Modified MUSHRA was a natural choice for the test method as we expected that

listeners might perceive some conditions superior to the reference signal and the
method had to support that occasion. As the conditions were created to be rather
easy to distinguish, four experienced and four naive listeners were invited to take
the test. The complete written test instructions are included in Appendix B.

7.2.3 Results

The distribution of the listening test results before post-screening is shown in a
boxplot in Figure 7.9 and all individual answers can be found in Appendix A, Figure
A.7. As the hidden reference was missed several times, anon06 was discarded in post-
screening as too unreliable. In addition, the Suzanne Vega item with SNRP = ∞
of anon08 was rejected because the hidden reference was severely off. The extreme
outliers were also removed from any item as usual.
The means and 95% confidence intervals of the answers in Figure 7.10 indicate

that the γz preference is dependent of perceptual SNR. To see this more clearly,
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Figure 7.8: A block diagram of the Matlab script for generating the conditions in
the formant enhancement test.

a rating scale constructed with BTL is plotted for each perceptual SNR in Figure
7.11. The points are connected with cubic spline interpolation that has a tendency
to overshooting, which produces artificial waving in the preference function. The
maxima of the red (Suzanne Vega) and blue (male speech) curves are located at
{0.590, 0.643, 0.859, 0.861} and {0.550, 0.634, 0.856, 0.900}, respectively. Hence, a
linear regression model (plotted in Figure 7.12) for estimating the optimal γz as a
function of SNRP could be expressed as

γz(SNRP) = 0.019SNRP + 0.45, (7.1)

when γp = 0.9. The model fits the data reasonably well since R2 = 0.90. In addition,
both regression coefficients are significant with the level α = 0.01.
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Figure 7.10: The means and 95% confidence intervals of the answers of all listeners
in the formant enhancement test (after post-screening, n = 7, left = Suzanne Vega,
right = male speech).
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dB as it is roughly the limit where noise becomes inaudible.



CHAPTER 7. SPECTRAL ENVELOPES IN AUDIO CODING 66

7.3 Conclusions

Our results indicate that the differences in the perceived impact of different γ0 values
in the perceptual domain transformation are small with speech and in case of music
with flatter spectra differences would probably be mostly nonexistent. Hence we
conclude that this parameter is not particularly critical, but it is, however, recom-
mended to use the value γ0 = 0.91 for optimal results, at least in frequency domain
speech coders. Voice type or perceptual SNR do not seem to have a significant effect
on the optimal value.
According to our test results and listener feedback, formant enhancement is an

efficient way to hide quantization noise, but boosting formants tends to render the
overall tone unnatural and boomy. This trade-off explains why heavy formant boost-
ing is apparently preferred when the noise is prominent, and vice versa. Voice type
does not seem to affect the parameter selection. Furthermore, the method is likely
to be much less effective with musical content. If perceptual SNR can be esti-
mated during the encoding process, Equation (7.1) can be used for controlling the
parameters of formant enhancement. Regarding real world applications, it would
be of interest to study further whether the resulting boominess could be tempered
without sacrificing the improvement in the perceived annoyance of the noise.



Chapter 8

Summary

The purpose of this work was to investigate the annoyance of a few audio coding
artifacts and some methods for minimizing it. The studied artifacts and methods
were already known at Fraunhofer IIS, the commissioner of the thesis, but listen-
ing tests were needed to acquire quantitative knowledge to help in tuning USAC
compliant encoders.
The effect of time-variance in the perceived annoyance of coding artifacts was

investigated in Chapter 5. In the listening tests, the level of critical-bandwidth
noise, single harmonics, and pairs of harmonics was varied at different speeds and
the resulting annoyance was compared with that caused by stationary noise. The
results suggest that moderate-speed variation at approximately 2 to 4 Hz is perceived
as the most annoying. It seems that very slow variation does not draw the listener’s
attention as strongly and, on the other hand, faster variation is seemingly heard
more as a continuous, though modulated, signal. Further tests should be organized
to verify these results and it would probably be fruitful to extend the focus to other
types of artifacts too.
Ghost pitch refers to an extraneous pitch sensation that might emerge when

harmonic bandwidth extension is used to generate harmonics above the selected
crossover frequency. It is the incompleteness of the generated harmonic patch which
might manifest itself as a perceived virtual pitch. The strength of that pitch as a
function of fundamental and crossover frequencies was examined in Chapter 6 with
synthetic tones. The listening tests provided vague indications that lower fundamen-
tal and crossover frequencies might generally lead to stronger ghost pitch sensations.
However, further research with more participants, more parameter values, and pos-
sibly more natural tones is clearly needed.
Performing quantization in the perceptual domain instead of the ordinary fre-

quency domain is advantageous as the resulting noise becomes favorably shaped
and its annoyance is consequently decreased. The transformation can be further
enhanced in terms of noise hiding by smoothing the spectral envelope used in the
process. In the first part of Chapter 7, the objective was to find the optimal value for
the parameter controlling the intensity of the smoothing. According to the listening
tests, the optimal value is approximately 0.91 for speech signals. Music or mixed
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signals were not included in the tests as the effect of smoothing was found to be too
subtle to get reliable results with the limited number of listeners available.
In order to further hide quantization noise in speech signals, strong parts of a

spectrum can be boosted and weak parts diminished in encoding by multiplying the
signal frame with its modified spectral envelope. The results of the listening test
presented in the second part of Chapter 7 suggest that this formant enhancement
technique is efficient in hiding quantization noise, but overuse tends to render the
overall tone of the audio boomy. A model for selecting the spectral modification
parameters as a function of perceived signal-to-noise ratio is presented in the text.
An interesting topic for further research would be to study whether the boominess
could be decreased without sacrificing the ability to hide noise.
Many of our tests were somewhat unusual in a sense that the listeners were asked

to make atypical comparisons and highly subjective judgments. As a result, most
participants found it difficult to rate the conditions and thus the answers varied
greatly. However, our experiences and results suggest that even in more subjective
tests opinions begin to converge when the number of listeners becomes large enough.
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Appendix A

Complete Listening Test Results

This appendix includes all individual responses in each listening test discussed in
the main matter. To ensure good readability, axes or ticks are not labelled in every
case.
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Figure A.1: Individual answers of all listeners in the test examining fluctuation
of noise (Section 5.1). Refer to Figure 5.6 for x-axis tick labels. Each item was
evaluated twice.
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Figure A.2: Individual answers of all listeners in the test examining fluctuation of
one harmonic (Section 5.2). Refer to Figure 5.10 for x-axis tick labels.
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Figure A.3: Individual answers of all listeners in the test examining fluctuation of
two harmonics (Section 5.2). Refer to Figure 5.12 for x-axis tick labels.
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Figure A.5: Individual answers of listeners 5–8 in the ghost pitch test (Chapter 6).
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Figure A.6: Individual answers of all listeners in the perceptual domain transfor-
mation test (Section 7.1). Refer to Figure 7.3 for x-axis tick labels. Each triplet
represents perceptual SNR values of 6, 12, and 18 dB, respectively. Male speech
items are marked with blue and Suzanne Vega items with red.
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Appendix B

Listening Test Instructions

OVERVIEW 
 
The purpose of this test is to investigate how annoying it is if critical-band noise in a signal is constantly 
switching on and off instead of being stationary. The signals in this test are: 
 

� Reference = pitchpipe with fluctuating noise (fixed) 
     

� Condition = pitchpipe + stationary noise (noise level adjustable) 
 
Your task is to adjust the level of the stationary noise (condition) so that you find it equally annoying 
as the fluctuating noise (reference).  
 
 
SOFTWARE USAGE 
 
The test software is to be used with keyboard only (an exception being the user name window where the 
mouse must be used to click OK...). All keyboard commands are shown in the UI window. 
 
 
STARTING THE TEST 
 
1) Open Matlab 
2) Navigate to /Users/wavswitch/paunonli/var_noise  
    (e.g. by typing cd /Users/wavswitch/paunonli/var_noise on the command window…) 
3) Type Match(‘ var_noise ’) to begin  
 
 
Thanks for your time, 
 
Lari (6781, paunonli@iis...) 

Figure B.1: Written instructions for the test examining fluctuation of noise (Section
5.1).
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OVERVIEW 
 
The purpose of this test is to investigate how annoying it is if harmonics are 'blinking', that is, constantly 
switching on and off. The signals in this test are: 
 

� Reference = pitchpipe with one harmonic pulsating (fixed) 
    OR  

� Reference = pitchpipe with two harmonics switching on and off in turns (fixed) 
 

� Condition = pitchpipe + stationary noise (noise level adjustable) 
 
Your task is to adjust the level of the stationary noise (condition) so that you find it equally annoying 
as the blinking phenomenon (reference). Yep, it truly is like comparing apples (strange behavior in 
harmonics) and oranges (stationary noise)... good luck! 
 
 
SOFTWARE USAGE 
 
The test software is to be used with keyboard only (an exception being the user name window where the 
mouse must be used to click OK...). All keyboard commands are shown in the UI window. 
 
 
STARTING THE TEST 
 
1) Open Matlab 
2) Navigate to /Users/wavswitch/paunonli/varharmtest  
    (e.g. by typing cd /Users/wavswitch/paunonli/varharmtest on the command window…) 
3) Type Match(‘varharmtest’) to begin  
 
 
WHAT IS THE “RESET AUDIO” BUTTON USED FOR?  
 
Well, earlier there have been some issues with the audio library used in this GUI. If you experience 
problems with audio, this button *might* work... Otherwise you can just ignore it. 
 
 
Thanks for your time, 
 
Lari (6781, paunonli@iis...) 

Figure B.2: Written instructions for the test examining fluctuation of harmonics
(Section 5.2).
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INTRODUCTION 
 
Harmonic Bandwidth Extension is a technology in which only lower frequencies are encoded explicitely 
and higher harmonics are later generated from the LF part in the decoding process. It has a curious side 
effect of sometimes creating pitch sensations that were not present in the original signal. 
 
This test consists of synthetic waveforms that simulate the HBE technique. Your task is to evaluate the 
presence of these new pitch sensations called ghost pitches. 
 
 
TEST PROCEDURES 
 
The test procedure is simple: each item consists of one signal, and you are asked to rate the loudness of 
the ghost pitch as compared to the most prominent pitch (which is in most cases the fundamental 
pitch…). You can use the whole scale continuously from 0 to 100 by keeping these “anchors” in mind:  
 

� If you hear only one pitch -> set the slider to 0 

� If you hear two equally loud pitches -> set the slider to 100 

� If you hear two pitches but one is stronger than another -> set the slider in between 0 and 
100 accordingly (i.e. according to how you perceive the ratio of their loudnesses… rating of 50 
would mean that the loudness of the softer tone is 50% of the louder one etc.) 

 
There are quite a few items, but they should be fast to rate because this test does not require highly 
analytical listening. Just listen to the condition for a while, set the slider and move on – takes perhaps 
about 15 seconds or so. 
 
 
SOFTWARE USAGE 
 
The test uses the MUSHRA mode of ListeningTestGUI. However, because the test procedure is not really 
MUSHRA, there is no reference signal (nor hidden reference or lowpass anchor). You are kindly asked 
to just listen to the condition 1 and set the slider from 0 to 100 as described above. Please ignore the 
written scale (“excellent, good, fair…”) next to the slider ! 
 
 
WHERE AND HOW CAN I TAKE THE TEST? 
 
It is available in two listening rooms: Hendrix and Beethoven. 
 
To start the test: 
 

1) Start ListeningTestGUI (available on the desktop or on the dock) 
2) Click “open con!g -!le” 
3) Navigate to /wavswitch/paunonli/ghosttest/ghost1.ltg (Hendrix) or 

/wavswitch/users/paunonli/ghosttest/ghost1.ltg (Beethoven) 
 
 
Thanks for your time, 
 
Lari (6781, paunonli@iis...) 

Figure B.3: Written instructions for the ghost pitch test (Chapter 6).
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INTRODUCTION 
 
Signals are often quantized in the perceptual domain instead of the normal MDCT domain in order to 
minimize the annoyance of the resulting noise. In the transformation, an estimate of the masking curve is 
required for each frame, for which a spectral envelope might be used. To enhance the masking of 
quantization noise, the envelope can be smoothed by modifying its transfer function slightly. The goal of 
this listening test is to find the optimal parameters for the smoothing. 
 
TEST PROCEDURES 
 
The test method is MUSHRA with normal hidden reference and lowpass filtered anchors. You are kindly 
asked to rate the conditions in terms of the annoyance of quantization noise. The reference signal is 
noiseless. 
 
WHERE AND HOW CAN I TAKE THE TEST? 
 
It is available in Hendrix and uses Wavswitch. 
 
To start the test: 
 

1 Go to folder /wavswitch/paunonli/envelope/  
2  Run prac-envelope.sh for warmup rounds 
3 Run envelope.sh for the actual test 

 
 
Thank you for your time, 
 
Lari (6781, paunonli@iis...) 

Figure B.4: Written instructions for the perceptual domain transformation test
(Section 7.1).



APPENDIX B. LISTENING TEST INSTRUCTIONS XIII

INTRODUCTION 
 
The purpose of this listening test is to study the effects of a pre-processing method in which strong parts 
of the spectrum are boosted and valleys are diminished before quantization. Each item consists of a signal 
excerpt with a certain predetermined perceptual SNR and the processing is applied to conditions with 
different parameters. 
 
 
TEST PROCEDURES 
 
Please keep in mind that this test is all about your personal preferences and subjective quality 
perceptions. 
 
The procedure is a slightly modi�ed version of MUSHRA. The rating scale is again 0…100 but there are 
two fixed anchors: the low anchor (at 10) and the high anchor (at 90). The conditions should be rated 
against these two fixed anchors and it is also possible to rate them above the high or below the 
low anchor (i.e. the whole range 0…100 may be used freely).  In other words, it is possible that you think 
that a condition sounds better than the high anchor. 
 
Each item includes a duplicate of the high anchor which should be rated to 90 (just like the hidden 
reference in MUSHRA but it is to be rated to 90, not 100).  
 
 
WHERE AND HOW CAN I TAKE THE TEST? 
 
It is available in Hendrix. 
 
To start the test: 
 

1 Go to folder /wavswitch/paunonli/gvalleytest/  
2  Start the ListeningTestGUI version located in the above mentioned folder* 
3 Click “open con�g -�le” 
4 Navigate to /wavswitch/paunonli/gvalleytest/gtestvalley.ltg 

 
* This test procedure won’t work with the basic version of ListeningTestGUI  that is found on the desktop  
 
 
Thanks for your time, 
 
Lari (6781, paunonli@iis...) 

Figure B.5: Written instructions for the formant enhancement test (Section 7.2).
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