552 research outputs found

    Performance of a path tracing task using stereo and motion based depth cues

    Get PDF
    Stereoscopic displays have a number of properties that could be advantageous in the field of medical diagnosis. The aim of the current study is to get a better understanding of the relative importance of motion based depth cues (object motion, movement parallax) and stereoscopic disparity on the performance of a path tracing task, representative of angiographic visualizations. To date, these cues have not frequently been combined in a single study that would allow a direct comparison of their effects. In this paper, we report on an experiment where we measured the effectiveness of motion-based cues and stereoscopic disparity in terms of completion time, number of errors, perceived workload and perceived discomfort. Results revealed that both object motion and movement parallax enhanced performance in terms of number of correct answers. However, object motion was superior to motion parallax on self-report of mental workload and visual comfort. Stereoscopic disparity significantly decreased completion times when combined with object motion or movement parallax. On accuracy, no effect of stereo was found

    Exploring the Potential of 3D Visualization Techniques for Usage in Collaborative Design

    Get PDF
    Best practice for collaborative design demands good interaction between its collaborators. The capacity to share common knowledge about design models at hand is a basic requirement. With current advancing technologies gathering collective knowledge is more straightforward, as the dialog between experts can be supported better. The potential for 3D visualization techniques to become the right support tool for collaborative design is explored. Special attention is put on the possible usage for remote collaboration. The opportunities for current state-of-the-art visualization techniques from stereoscopic vision to holographic displays are researched. A classification of the various systems is explored with respect to their tangible usage for augmented reality. Appropriate interaction methods can be selected based on the usage scenario

    Subjective Evaluation of Transmission Errors in IPTV and 3DTV

    Get PDF
    The increase of multimedia services delivered over packet-based networks has entailed greater quality expectations of the end-users. This has led to an intensive research on techniques for evaluating the quality of experience perceived by the viewers of audiovisual content, considering the different degradations that it could suffer along the broadcasting system. In this paper, a comprehensive study of the impact of transmission errors affecting video and audio in IPTV is presented. With this aim, subjective assessment tests were carried out proposing a novel methodology trying to keep as close as possible home environment viewing conditions. Also 3DTV content in side-by-side format has been used in the experiments to compare the impact of the degradations. The results provide a better understanding of the effects of transmission errors, and show that the QoE related to the first approach of 3DTV is acceptable, but the visual discomfort that it causes should be reduced

    Subjective quality assessment in stereoscopic video based on analyzing parallax and disparity

    Get PDF
    Disparity may cause visual discomfort. Pairs of video sequences with different levels of parallax, both negative and positive, were presented together to the observers. The observers evaluated the cases in which visual discomfort occurred after visualizing the transition on each pair

    Providing 3D video services: the challenge from 2D to 3DTV quality of experience

    Get PDF
    Recently, three-dimensional (3D) video has decisively burst onto the entertainment industry scene, and has arrived in households even before the standardization process has been completed. 3D television (3DTV) adoption and deployment can be seen as a major leap in television history, similar to previous transitions from black and white (B&W) to color, from analog to digital television (TV), and from standard definition to high definition. In this paper, we analyze current 3D video technology trends in order to define a taxonomy of the availability and possible introduction of 3D-based services. We also propose an audiovisual network services architecture which provides a smooth transition from two-dimensional (2D) to 3DTV in an Internet Protocol (IP)-based scenario. Based on subjective assessment tests, we also analyze those factors which will influence the quality of experience in those 3D video services, focusing on effects of both coding and transmission errors. In addition, examples of the application of the architecture and results of assessment tests are provided

    The influence of the visualization task on the Simulator Sickness symptoms - a comparative SSQ study on 3DTV and 3D immersive glasses

    No full text
    International audienceThe human factors are an essential aspect to take into consideration in order to explain the level of public acceptability of new stereo- scopic devices. A study using the Simulator Sickness Questionnaire allowed us to illustrate the differences in symptoms after the visual- ization of 3D images on a 3DTV screen and on a pair of prototype immersive 3D glasses. Also, the results of our study showed that the visualization task influenced the exploration of the scenes, and there- fore influenced the evolution of the simulator sickness symptoms

    Video Quality Assessment

    Get PDF

    Remote Visual Observation of Real Places Through Virtual Reality Headsets

    Get PDF
    Virtual Reality has always represented a fascinating yet powerful opportunity that has attracted studies and technology developments, especially since the latest release on the market of powerful high-resolution and wide field-of-view VR headsets. While the great potential of such VR systems is common and accepted knowledge, issues remain related to how to design systems and setups capable of fully exploiting the latest hardware advances. The aim of the proposed research is to study and understand how to increase the perceived level of realism and sense of presence when remotely observing real places through VR headset displays. Hence, to produce a set of guidelines that give directions to system designers about how to optimize the display-camera setup to enhance performance, focusing on remote visual observation of real places. The outcome of this investigation represents unique knowledge that is believed to be very beneficial for better VR headset designs towards improved remote observation systems. To achieve the proposed goal, this thesis presents a thorough investigation of existing literature and previous researches, which is carried out systematically to identify the most important factors ruling realism, depth perception, comfort, and sense of presence in VR headset observation. Once identified, these factors are further discussed and assessed through a series of experiments and usability studies, based on a predefined set of research questions. More specifically, the role of familiarity with the observed place, the role of the environment characteristics shown to the viewer, and the role of the display used for the remote observation of the virtual environment are further investigated. To gain more insights, two usability studies are proposed with the aim of defining guidelines and best practices. The main outcomes from the two studies demonstrate that test users can experience an enhanced realistic observation when natural features, higher resolution displays, natural illumination, and high image contrast are used in Mobile VR. In terms of comfort, simple scene layouts and relaxing environments are considered ideal to reduce visual fatigue and eye strain. Furthermore, sense of presence increases when observed environments induce strong emotions, and depth perception improves in VR when several monocular cues such as lights and shadows are combined with binocular depth cues. Based on these results, this investigation then presents a focused evaluation on the outcomes and introduces an innovative eye-adapted High Dynamic Range (HDR) approach, which the author believes to be of great improvement in the context of remote observation when combined with eye-tracked VR headsets. Within this purpose, a third user study is proposed to compare static HDR and eye-adapted HDR observation in VR, to assess that the latter can improve realism, depth perception, sense of presence, and in certain cases even comfort. Results from this last study confirmed the author expectations, proving that eye-adapted HDR and eye tracking should be used to achieve best visual performances for remote observation in modern VR systems
    • …
    corecore