460 research outputs found

    Exploring higher-order neural network node interactions with total correlation

    Full text link
    In domains such as ecological systems, collaborations, and the human brain the variables interact in complex ways. Yet accurately characterizing higher-order variable interactions (HOIs) is a difficult problem that is further exacerbated when the HOIs change across the data. To solve this problem we propose a new method called Local Correlation Explanation (CorEx) to capture HOIs at a local scale by first clustering data points based on their proximity on the data manifold. We then use a multivariate version of the mutual information called the total correlation, to construct a latent factor representation of the data within each cluster to learn the local HOIs. We use Local CorEx to explore HOIs in synthetic and real world data to extract hidden insights about the data structure. Lastly, we demonstrate Local CorEx's suitability to explore and interpret the inner workings of trained neural networks

    Data Visualization, Dimensionality Reduction, and Data Alignment via Manifold Learning

    Get PDF
    The high dimensionality of modern data introduces significant challenges in descriptive and exploratory data analysis. These challenges gave rise to extensive work on dimensionality reduction and manifold learning aiming to provide low dimensional representations that preserve or uncover intrinsic patterns and structures in the data. In this thesis, we expand the current literature in manifold learning developing two methods called DIG (Dynamical Information Geometry) and GRAE (Geometry Regularized Autoencoders). DIG is a method capable of finding low-dimensional representations of high-frequency multivariate time series data, especially suited for visualization. GRAE is a general framework which splices the well-established machinery from kernel manifold learning methods to recover a sensitive geometry, alongside the parametric structure of autoencoders. Manifold learning can also be useful to study data collected from different measurement instruments, conditions, or protocols of the same underlying system. In such cases the data is acquired in a multi-domain representation. The last two Chapters of this thesis are devoted to two new methods capable of aligning multi-domain data, leveraging their geometric structure alongside limited common information. First, we present DTA (Diffusion Transport Alignment), a semi-supervised manifold alignment method that exploits prior one-to-one correspondence knowledge between distinct data views and finds an aligned common representation. And finally, we introduce MALI (Manifold Alignment with Label Information). Here we drop the one-to-one prior correspondences assumption, since in many scenarios such information can not be provided, either due to the nature of the experimental design, or it becomes extremely costly. Instead, MALI only needs side-information in the form of discrete labels/classes present in both domains

    Geometry- and Accuracy-Preserving Random Forest Proximities with Applications

    Get PDF
    Many machine learning algorithms use calculated distances or similarities between data observations to make predictions, cluster similar data, visualize patterns, or generally explore the data. Most distances or similarity measures do not incorporate known data labels and are thus considered unsupervised. Supervised methods for measuring distance exist which incorporate data labels and thereby exaggerate separation between data points of different classes. This approach tends to distort the natural structure of the data. Instead of following similar approaches, we leverage a popular algorithm used for making data-driven predictions, known as random forests, to naturally incorporate data labels into similarity measures known as random forest proximities. In this dissertation, we explore previously defined random forest proximities and demonstrate their weaknesses in popular proximity-based applications. Additionally, we develop a new proximity definition that can be used to recreate the random forest’s predictions. We call these random forest-geometry-and accuracy-Preserving proximities or RF-GAP. We show by proof and empirical demonstration can be used to perfectly reconstruct the random forest’s predictions and, as a result, we argue that RF-GAP proximities provide a truer representation of the random forest’s learning when used in proximity-based applications. We provide evidence to suggest that RF-GAP proximities improve applications including imputing missing data, detecting outliers, and visualizing the data. We also introduce a new random forest proximity-based technique that can be used to generate 2- or 3-dimensional data representations which can be used as a tool to visually explore the data. We show that this method does well at portraying the relationship between data variables and the data labels. We show quantitatively and qualitatively that this method surpasses other existing methods for this task
    • …
    corecore