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ABSTRACT

Geometry- and Accuracy-Preserving Random Forest Proximities with Applications

by

Jake S. Rhodes, Doctor of Philosophy

Utah State University, 2022

Major Professor: Kevin R. Moon, Ph.D.
Department: Mathematics & Statistics

Many machine learning algorithms require pairwise distances or similarities to generate

decision boundaries or perform more general pattern analysis. Most similarity measures are

supervised and do not make any use of data labels or other auxiliary information. Super-

vised adaptations have been proposed that directly incorporate class labels to exaggerate

inter-class separation or reduce distances between within-class observations. However, it

can be shown that such incorporations disrupt the data structure. Random forests are

classical machine learning predictors which may be used to generate supervised similarities

known in the literature as random forest proximities. We show that traditionally-defined

random forest proximities inherit certain weaknesses similar to those found in other super-

vised similarity measures. We introduce a novel random forest proximity definition that

reflects the true learning of the random forest. We exploit these proximities in a variety of

applications, including data visualization, missing value imputation, and outlier detection,

and show improvements in each application. Additionally, we use random forest proximities

in a new diffusion-based information geometry for supervised dimensionality reduction and

quantify improvements over existing supervised dimensionality reduction techniques.

(116 pages)
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PUBLIC ABSTRACT

Geometry- and Accuracy-Preserving Random Forest Proximities with Applications

Jake S. Rhodes

Many machine learning algorithms use calculated distances or similarities between data

observations to make predictions, cluster similar data, visualize patterns, or generally ex-

plore the data. Most distances or similarity measures do not incorporate known data labels

and are thus considered unsupervised. Supervised methods for measuring distance exist

which incorporate data labels and thereby exaggerate separation between data points of

different classes. This approach tends to distort the natural structure of the data. In-

stead of following similar approaches, we leverage a popular algorithm used for making

data-driven predictions, known as random forests, to naturally incorporate data labels into

similarity measures known as random forest proximities. In this dissertation, we explore

previously defined random forest proximities and demonstrate their weaknesses in popular

proximity-based applications. Additionally, we develop a new proximity definition that can

be used to recreate the random forest’s predictions. We call these random forest-geometry-

and accuracy-Preserving proximities or RF-GAP. We show by proof and empirical demon-

stration can be used to perfectly reconstruct the random forest’s predictions and, as a result,

we argue that RF-GAP proximities provide a truer representation of the random forest’s

learning when used in proximity-based applications. We provide evidence to suggest that

RF-GAP proximities improve applications including imputing missing data, detecting out-

liers, and visualizing the data. We also introduce a new random forest proximity-based

technique that can be used to generate 2- or 3-dimensional data representations which can

be used as a tool to visually explore the data. We show that this method does well at por-

traying the relationship between data variables and the data labels. We show quantitatively

and qualitatively that this method surpasses other existing methods for this task.
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CHAPTER 1

INTRODUCTION

Many methods in machine learning can be described as falling into one of two broad

categories, supervised learning and unsupervised learning. In supervised learning, data

have associated labels. For example, we may have images of cats and dogs respectively

labeled as such. A primary goal in a supervised setting is to learn a function that defines

a decision boundary between classes (classification) or predict some continuous numerical

response (e.g., price of a house) given a collection of predictor variables. In unsupervised

learning, the data do not have labels. Some common goals in unsupervised learning include

clustering or grouping “similar” data together, pattern recognition, and dimensionality

reduction (selecting or extracting feature variables). Unsupervised machine learning can be

used for initial exploration analysis (e.g., via visualizations).

Many supervised and unsupervised machine learning algorithms rely on a notion of pair-

wise distance. Citing a few examples, the k-nearest neighbors (k-NN) algorithm predicts

class labels based on observational distance; nearby observations (based on some distance

metric, often Euclidean or Mahalanobis) determine a test example’s class based on a ma-

jority vote for classification or distance-weighted average for regression. The support vector

machine (SVM) uses observational similarities in its optimization problem to determine

an optimal separating hyperplane to discriminate classes [1]. Multidimensional scaling is

an unsupervised algorithm that optimizes a stress function to best preserve pair-wise dis-

tances in a lower-dimensional Euclidean space [2]. Isomap constructs a k-nearest neighbor

graph and computes geodesic distances from the shortest path between each pair of the

graph’s nodes [3]. Uniform manifold approximation and projection (UMAP) uses distances

to generate a weighted graph from which a lower-dimensional manifold is estimated [4].

Algorithms that require the “kernel trick” (e.g., SVM) apply a kernel function to pair-

wise distances, generating an inner-product from a higher-dimensional space to augment
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non-linear decision-boundaries.

Distances are computed based on the data features which are often numeric, but may

also be categorical, images, text, audio, graph-based, or otherwise. Some common distances

include Minkowski (Euclidean and Manhattan distances being special cases of this), Ma-

halanobis, Wasserstein (or earth-movers distance, which is often associated with generative

adversarial networks (GANs) [5]), Hamming, which is often used for text strings, and Jac-

card (for set dissimilarities). Each of these metrics is unsupervised; they do not incorporate

observation labels in their construction. Labels can provide additional information about

the data distribution. A common assumption in statistics is that the data is independent

and identically distributed. However, data pertaining to different classes (e.g., have differ-

ent labels) often follow different distributions. The incorporation of label-based auxiliary

information in the metric construction can aid in the recovery of class-conditional distribu-

tions so long as it is done in a way that does not disrupt the data structure. Labels can

also be used to determine which features are relevant as discriminators and thus improve

distance metrics under noisy conditions.

In many domains, expert knowledge is required to generate labeled data. In some cases,

labeled examples may be scarce or expensive to generate; such is the case in the medical field

when experts are required to make a diagnosis based on a medical image. However, when

labels are available, they can provide additional insight into the collected data. Formulations

of supervised distance metrics have been introduced in various contexts. Many of these use

class labels to increase the value of a known distance metric (e.g., Euclidean) between

observations of opposing classes [6,7]. Similarity measures between observations of a shared

class may also be increased. For example, the authors of [8] use both a class-based similarity

and dissimilarity measure to augment a Gaussian kernel used in a supervised variant of non-

negative matrix factorization (NMF). Some algorithms attempt to learn a metric that may

be used to increase class discrimination. For example, neighborhood components analysis

(NCA) learns a Mahalanobis distance measure which maximizes the leave-one-out (LOO)

classification accuracy based on a nearest-neighbor classifier [9].
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Current methodologies for generating supervised distance metrics suffer in many of

the above-mentioned applications (such as dimensionality reduction and visualization ap-

proaches) due to their excessively discriminating nature. In some cases, supervised metrics

perfectly separate classes when such separation would not be possible without consideration

of the labels. In a sense, direct and explicit use of labels to exaggerate distance overem-

phasizes the label’s importance over that of the feature variables’ in determining a metric.

Thus, the direct use of labels in the metric construction distorts the data’s inherent struc-

ture and artificially increases the discrimination between classes. We may analogize this

with a classification task. In a classification problem, a function learns a decision boundary

that minimizes some objective loss. The function assigns observations a class based on the

observation’s features variables; labels are not used as features but are objects of the pre-

diction. Directly using labels in the construction of the class assignment function defeats

the purpose of the learner. Similarly, a supervised distance metric should not directly in-

corporate the class labels, especially if the purpose of the learned metric is for downstream

classification.

Observation labels can be influential in the construction of a similarity matrix by

means of a random forest classifier or regressor [10]. These similarities, known as random

forest proximities, were first introduced by Leo Breiman and have since been adapted and

used in a variety of applications [11–15]. In this dissertation, we present a new random

forest proximity measure that more accurately reflects the random forest’s learning and

demonstrates that these proximities improve a variety of proximity-based applications. We

then derive a new random forest proximity-based visualization algorithm that outperforms

existing supervised and unsupervised methods in regard to visualizing feature relevance.

To better understand the construction of pairwise similarities from a random forest, we

visit the random forest algorithm in Chapter 2, discussing the implications of the derived

similarity or proximity measure and providing background and discussion on the implica-

tions and alternative definitions of the random forest proximities. We introduce our novel

definition of the random forest proximities in Chapter 3 which preserves the data-geometry
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learned by the random forest. These random forest geometry- and accuracy-preserving

proximities (RF-GAP) perfectly preserve the random forest’s predictions when serving as

weights in a nearest-neighbor predictor model. Since the random forest’s learning is pre-

served, applications that use these proximities will more accurately reflect the learned in-

formation. This work has been submitted for publication and is currently under review

(see [16]). We compare RF-GAP proximities with existing common applications including

data imputation, visualization, and outlier detection, and show that each of these methods

is improved using RF-GAP proximities. More information about these applications can be

found in Chapter 4. A demonstration of the R package, rfgap, used to run these applications

can be found in Chapter 5. Our main contributions provided in [16] include:

• Defining a new RF proximity (RF-GAP) which preserves the RF-learned data geom-

etry

• Proving that RF-GAP proximities perfectly reconstruct RF predictions when used as

weights in a nearest-neighbor (NN) predictor

• Showing that RF-GAP proximities improve data imputation when compared to ex-

isting proximities

• Empirically demonstrate that RF-GAP improves common proximity-based applica-

tions, including visualization and outlier detection

In Chapter 6, we introduce a supervised variation of a manifold-learning approach to

dimensionality reduction via random forest proximities. Existing supervised dimensionality

reduction algorithms are not optimized for visualization. Most of these adapt commonly

used distance metrics (such as Euclidean distance) or kernels (e.g., Gaussian) using labels to

accentuate the distance between classes. In doing so, the natural data geometry is distorted.

Our approach indirectly uses data labels to generate a kernel matrix in the form of ran-

dom forest proximities. We apply these proximities in a dimensionality reduction method

optimized for visualization, rather than class separation. We show that the resulting em-

bedding naturally captures variable importance in low dimensions, and discuss a means
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of quantifying the quality of supervised embeddings. Our method uses advances from

the PHATE (Potential of Heat-diffusion for Affinity-based Transition Embedding) algo-

rithm [17] which are applied in the Diffusion maps’ process [18], resulting in the algorithm

we call RF-PHATE. This work was published in the IEEE Statistical Signal Processing

Workshop (2021) [19]. Our main contributions to the paper include:

• Constructing a novel approach to supervised dimensionality reduction based on dif-

fusion and random forest proximities.

• Defining a new method for quantifying the fit of low-dimensional embeddings in a

supervised context.

• Demonstrating the utility of this method in exploratory analysis.

Finally, we provide a conclusion and statement about future works in Chapter 7.



CHAPTER 2

Random Forests and Proximities

More than twenty years after the original publication, random forests are still used in

many scientific fields with great success. Citing some recent examples, Benali et al. [20]

demonstrated superior solar radiation prediction using random forests over neural networks.

The work of [21] showed that random forests produced the best results with the lowest

standard errors in classifying error types in rotating machinery when compared with more

commonly used models in this application, such as the support vector machine (SVM) and

neural networks. Random forests have been used to predict surface water salinity [22], assess

shear strength of soft clays [23], analyze building structure impact on CO2 emissions [24],

model the heterogeneity of water quality [25], predict COVID-19 patient health [26], esti-

mate spatio-temporal COVID-19 cases [27], forecast infectious diarrhea [28], map landslide

susceptibility [29], predict the status of cardiovascular disease [30], predict deforestation

rates [31], estimate nanofluid viscosity [32], asses credit in rural locations [33], classify ac-

tivities via wearable sensors [34], predict heavy-metal distribution [35], predicting RNA

pseudouridine sites [36], and classifying activities from wearable sensors [34]. In [37], ran-

dom forests were used to discriminate between antioxidant treatments applied to Raman

spectra collected from cells exposed to diesel exhaust particles (DEPs).

In addition to high predictive accuracy, random forests provide a number of benefits

to the user [11]. Random forests:

1. Handle problems in both regression and classification

2. Train quickly (especially when compared to other state-of-the-art methods, such as

neural networks)

3. Are relatively insensitive to tuning parameters

4. Provide an estimate of generalization error
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5. Work for both low- and high-dimensional problems

6. Are trivially parallelizable

7. Are insensitive to monotonic transformations

8. Handle irrelevant variables (noise variables)

9. Handle mixed-variable types (e.g., continuous, categorical)

10. Are capable of handling missing values

11. Can impute missing values

12. Model non-linear interactions

13. Are relatively robust to outliers in the predictor space

14. Perform various data analysis types (survival analysis, unsupervised learning)

15. Provide a natural similarity measure

2.1 Random Forest Construction

Prior to Leo Breiman’s work on random forests, he assisted in the development of

classification and regression trees (CART) [38] which provide the framework for the random

forest. A random forest is an ensemble method that uses decision trees as base learners

for its construction. We first review the formulation of the decision trees (base-learners) to

understand the random forest.

Consider the training data space M = {(x1, y1), (x2, y2), · · · (xN , yN )} where each xi ∈

X , is a d-dimensional vector of predictor variables with corresponding response, yi ∈ Y.

A decision tree recursively partitions X by its predictor variables. The full dataset is

considered at the root node. Each partitioning split forms two daughter nodes. Nodes

which are not split are considered terminal. The collection of terminal nodes defines the

final partition, resulting in the decision space.
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For a given continuous predictor variable, split-points are considered between each pair

of consecutive observed values. Usually, these split-points are the midpoints between values,

though any point would do. Observations with the feature value less than the split-point are

sent to the left daughter node while remaining observations are sent to the right daughter

node. See a depiction in Figure 2.1. Considering a categorical predictor variable Xj with

finite set of categories Gj = {gj,1, gj,2, · · · , gj,c}, splits are determined using a subset S ∈ Gj .

Observations containing the included categories are sent to the left daughter node, excluded

to the right. (Note that the determination of left- or right-daughter nodes is by a convention

that is not shared by all software packages. Additionally, not all decision tree packages are

capable of handling categorical variables, such as that from the commonly used Python

library, scikit-learn [39]).

Here we discuss the criteria for the splits. The problem formulation depends on whether

the response variable is categorical or continuous. If the response variable is categorical (i.e.

a classification problem) splits are determined to maximize the class purity of the resulting

daughter nodes. Purity is most frequently measured using the Gini index, C =
∑K

k ̸=k′ p̂kp̂k′ ,

where p̂k is the proportion of observations in class k. This was used in the original CART

paper [38]. Other criteria may be used, such as entropy or misclassification rate [39]. For

a regression problem, a measure of goodness-of-fit is used. Here, the mean-squared error

(MSE) is the typical criterion: C = 1
n

∑n
i=1 (yi − ȳ)2, where ȳ is the mean response value.

The respective criteria are assessed in the resulting daughter nodes, weighted by the number

of observations to the left or right of each split-point.

The binary partition is performed and observations are sent to one of the two resulting

daughter nodes. At each node, the partitioning algorithm is repeated until some stopping

criteria are met, resulting in the set of terminal nodes. See Algorithm 1. Examples of

stopping criteria include node purity, a predefined tree height, or a minimum number of

node observations. The final partition (the terminal nodes) forms the basis for the decision

space for the problem. For classification, a non-weighted majority vote determines the

prediction of a new observation. For regression, an average response value is used. Note
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Fig. 2.1: A depiction of a simple decision tree. Here we have three classes denoted by the colors,
orange, purple, and green. The first split is determined by the second variable of the dataset (x2),
at the split-point 0.75. The second split is determined by the third variable at the split-point 4.85.
Node purity is increased with each split.

that for standalone decision trees, the trees are often pruned and not grown to purity, which

often results in overfitting. In contrast, trees in a random forest are typically not pruned.

Algorithm 1: Binary Recursive Decision Tree

Input: A set M = {(x1, y1) , . . . , (xN , yN )}, each xi ∈ Rd with label yi.

1. Begin with all points (x1, y1) , . . . , (xN , yN )

2. Find the best split across all possible binary splits on each dimension

3. Split the data into two daughter nodes according to the previous step

4. Repeat until a stopping criteria is met

5. The predicted label for an observation x which resides in terminal node ℓ is given by:

• ĥ(x) = ȳℓ =
1
n

∑n
i=1 yℓi for regression

• ĥ(x) = argmaxy
∑n

i=1 I (yℓi = y) for classification

• where yℓ1 , . . . , yℓn span the observed labels in terminal node ℓ and I(·) is the

0-1 indicator function

Random forests are comprised of an ensemble of randomized decision trees. Consider

again the dataset M = {(x1, y1), (x2, y2), · · · (xN , yN )}. Let T be the set of decision trees

in the forest. For each decision tree t ∈ T , a bootstrap sample of size N is taken to
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train the tree. Observations that are part of the bootstrap sample are known as in-bag

observations, while those which are left out are considered out-of-bag (OOB). Additional

randomization is also used during the partitioning (splitting) process. In a decision tree,

all possible split-points are considered across all of the feature variables and the splits are

determined as described above. Decision trees within a random forest use only a subset of

size m < d feature variables to determine the split-points at each splitting node. This two-

part randomization reduces the correlation between the trees which improves its general

predictive ability [40]. The combined set of terminal nodes forms the decision space for

the random forest. Predictions for a new observations class (or continuous outcome for

regression) are determined using a majority vote across all trees (for classification) or an

unweighted average for a continuous response (regression). See Algorithm 2.

Algorithm 2: Breiman’s Random Forest

Input: A set M = {(x1, y1) , . . . , (xN , yN )}, with X = {x1, · · · ,xN} and each xi

having label yi.
For each t with index 1, · · · , |T |:

1. Take a bootstrap sample Xt of size N from X .

2. Use the data Xt to train a decision tree:

(a) Start with all of Xt

(b) Find the best binary split across a random selection of m < d dimensions

(c) Split the data into two daughter nodes according to the previous step

(d) Repeat until a stopping criterion is met

To make a prediction on x:

• f̂(x) = 1
T

∑T
t=1 ĥt(x) for regression

• f̂(x) = argmaxy
∑T

t=1 I
(
ĥt(x) = y

)
for classification

2.2 Random Forest Proximities

Random forest predictions are determined by voting (or averaging values) across the

trees. Observations which frequently reside in the same terminal nodes are similar to each
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other with respect to variables important in the decision process, while observations which

never reside together are distant from each other in the decision space. Thus, the terminal

nodes of the trees in the random forest can be used to derive a similarity measure with

regards to splitting variables and the overall supervised task. In the following sections,

we formally define these similarities or proximities, discussing applications and alternative

proximity versions. Importantly, we introduce a novel random forest proximity measure

which will be formally defined in Chapter 3, discussing its implications and advantage in

proximity-based applications.

2.2.1 The Original Proximities

The space of terminal nodes can be used to define a similarity measure between ob-

servations. The recursive partitioning of decision trees based on feature variables organizes

observations according to split-points across variables which are most useful at partitioning

data as measured by class purity or goodness of fit. Observations which frequently share

terminal nodes are similar to each other with respect to important variables relative to the

supervised problem. Observations which never reside together are distant from each other

in the same regard. Thus, the frequency in which observations reside in the same terminal

nodes can thus be used as a measure of the closeness of the observations in the context of

the supervised task.

The random forest proximities form a symmetric, N ×N affinity matrix (P) with ones

across the main diagonal. The proximity values range from 0 to 1 as they are simply propor-

tions of co-occurrences of observations; 0 means the two observations are dissimilar enough

to never share a terminal node, 1 being the case where they always reside together. Thus,

1−(P) may be viewed as a squared dissimilarity measure, where the dissimilarity takes into

account the supervised task. It is important to note that this dissimilarity measure naturally

captures variable importance. We see that, unlike unsupervised distances (e.g., Euclidean),

random forest proximity-based dissimilarities use additional information from the class la-

bels. While two observations may be considered somewhat similar in many dimensions of a

Euclidean space, they may have a low proximity value if they differ in variables important
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to the supervised task. Random forests provide the added benefit that they can encode

these dissimilarities using both continuous and categorical variables, whereas most distance

metrics require numerical predictor variables. Additionally, proximity-based dissimilarity

is relatively robust to noise variables. Of the m variables randomly selected at each split,

noise variables are not likely to be used to determine splits whenever a meaningful variable

is present in the subset. These proximities may thus encode meaningful relationships in

high-dimensional data (such as RNA-sequencing data [41], for example).

The decision trees in random forests are usually grown until the terminal nodes are pure

(of one class). As a natural consequence, in-bag observations (observations that were used in

training a given decision tree) of opposing classes will necessarily reside in different terminal

nodes. In a given decision tree, the probability of an observation being in-bag is 1− 1
e ≈ 2

3 .

The original proximity definition thus tends to exaggerate class separation. An example

displaying this behavior can be seen in Figure 2.2. In this figure, multidimensional scaling

(MDS) was applied to the original proximities constructed from a random forest trained on

the Sonar dataset [42] which achieved an OOB error rate of 15.85%. The two-dimensional

representation portrays the dataset as nearly perfectly linearly separable, though this is

clearly not reflected in the random forests error rate.

Group

M, Correct

M, Incorrect

R, Correct

R, Incorrect

Original

Fig. 2.2: MDS applied to the original random forest proximities. The OOB error rate was 15.85%,
however, the lower-dimensional plot appears to be nearly linearly separable. Here we see the exag-
gerated separation captured by the original proximities.
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The original definition also appears to capture a signal in the noise. Consider the

example in Figure 2.3. Here we construct a bivariate normal distribution and randomly

assign points to one of three classes. Multidimensional scaling applied to the proximities

constructed on this dataset appears to show a partial separation of the classes which clearly

should not exist (see Figure 2.3).

y 0 1 2

Original Data MDS on Original Proximities

Fig. 2.3: A random sample of 300 points generated from a bivariate normal distribution was randomly
assigned one of three classes. (a) shows the original bivariate normal data. In (b), multidimensional
scaling was applied to the random forest proximities using the original definition. Here, we can
see that the proximities have some tendency to naturally separate classes where no true separation
should exist. This does not occur using other proximity definitions which will be described in
Chapter 3.

Another proximity definition has been proposed to overcome this apparent weak-

ness [12, 40]. Instead of using all training examples in each tree for the proximities’ con-

struction, the alternative definition only uses OOB samples. This definition overcomes the

weakness of exaggerated separation and diminishes the class bias in the proximities.

We can see in Figure 2.4 that the exaggerated class separation is no longer an issue, but

the relative positions of the scaled observations do appear to be influenced by additional

noise.

Additional random forest proximities have also been defined and will be described and

compared in the following chapter.
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Group M, Correct M, Incorrect R, Correct R, Incorrect

Original OOB

Fig. 2.4: (a) shows the MDS plot using the original definitions. In contrast, (b) uses the OOB
definition (Definition 2). Here, we no longer see exaggerated class separation, but the plot appears
to be much noisier.

2.3 Random Forest Geometry- and Accuracy-Preserving Proximities

The work of Lin and Jeon suggests that random forests may be viewed as a nearest-

neighbor classifier with an adaptive bandwidth [43]. Here, they define voting points as

in-bag observations in the shared terminal node of a test example and show that the test

example’s predicted label is defined by a weighted sum of the voting-point labels (they

only explored the regression task here). To this end, a random forest’s predictions may

be found using a weighted sum (for continuous responses) or a weighted majority average

(for categorical responses). However, Lin and Jeon’s approach only works for new, test

observations. If applied to training observations, the predicted labels do not necessarily

match the true labels.

With their paper as inspiration, we define proximities as weights that, when used in a

nearest-neighbor classifier, perfectly reconstruct the random forest’s predictions. Empirical

results show that the original proximities, when rescaled to serve as weights, do not preserve

the forest’s predictions. This is corroborated by the work of Feng and Baumgartner, who

compared random forest proximities to the random forest predictive errors in regression,

classification, and survival analysis settings [44]. The OOB definition also does not meet

this criterion, nor do those defined in [45,46].
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2.4 Conclusion

In this chapter, we provided enough details of the random forest construction to en-

able the reader to sufficiently understand the varied random forest proximity definitions to

follow. We provided high-level insights regarding the most commonly used proximities. In

Chapter 3, we define a new random forest proximity measure that preserves the random

forest predictions and thus encapsulates the data-geometry learned by the random forest.

We name the proximity random forest-geometry- and accuracy-preserving proximities (RF-

GAP) and show this preservation empirically and by proof. We compare these proximities

with other random forest proximity constructions and show that RF-GAP proximities pro-

vide an advantage in many applications.



CHAPTER 3

RANDOM FOREST GEOMETRY- AND ACCURACY-PRESERVING PROXIMITIES

Random forests have a natural extension to produce pair-wise proximity (similarity)

measures determined by the partitioning space of the decision trees which comprise them.

Unlike unsupervised similarity measures, random forest proximities incorporate variable

importance relative to the supervised task as these variables are more likely to be used

in determining splits in the decision trees [11]. Ideally, random forest proximities should

define a data geometry that is consistent with the learned random forest; that is, the

random forest predictive ability should be recoverable from the proximities. In this case,

applications involving random forest proximities, such as data visualization, can lead to

improved interpretability of the random forests specifically, and more generally the data

geometry relative to the supervised task.

One way to test for consistency is to compute a proximity-weighted predictor where

a data point’s predicted label consists of a proximity-weighted sum of the labels of all

other points. This predictor should match the random forest prediction if the proximities

are consistent with the random forest. However, under Breiman’s original definition, the

proximity-weighed predictions do not match those of the random forest, even when applied

to the training data (see Section 3.3). Thus this definition does not capture the data

geometry learned by the random forest, limiting its potential for improved interpretability

of the random forest.

We define a new random forest proximity measure called random forest-geometry-

and accuracy-preserving proximities (RF-GAP) that defines a data geometry such that the

proximity-weighted predictions exactly match those of the random forest for both regression

and classification. Under our definition, an out-of-bag observation’s proximities are com-

puted via in-bag (training) observations. That is, the sample used to generate a decision

tree also generates the proximities of out-of-bag observations (observations not used to con-
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struct the tree). The proximities of an out-of-bag observation are the mean reciprocal of the

number of in-bag observations in its shared terminal nodes. We prove the equivalence be-

tween the proximity-weighted predictions with those of the random forest and demonstrate

this empirically.

3.1 Random Forest Proximities

Here we provide the details and definitions of several existing random forest proximities

followed by RF-GAP that preserves the geometry learned by the random forest.

Let M = {(x1, y1), (x2, y2), · · · (xN , yN )} be the training data where each xi ∈ X , is a

d-dimensional vector of predictor variables with corresponding response, yi ∈ Y.

We will use the following notation (see Fig. 3.1 for a visual example):

• T is the set of decision trees in a random forest with |T | = T .

• B(t) is the multiset of indices in the bootstrap sample of the training data that is

randomly selected to train the tree t ∈ T . Thus B(t) contains the indices of the in-bag

observations.

• O(t) = {i = 1, . . . , n|i /∈ B(t)}. Thus O(t) is the set of indices of the training data

that are not contained in B(t). O(t) is often referred to as the out-of-bag (OOB)

sample.

• Si = {t ∈ T |i ∈ O(t)}. This is the set of trees in which the observation i is OOB.

• vi(t) contains the indices of all observations that end up in the same terminal node as

xi in tree t.

• Ji(t) = vi(t)∩B(t). This is the set of indices in vi(t) that correspond with the in-bag

observations of t. I.e. these are the observations that are in-bag and end up in the

same terminal node as xi.

Each decision tree t in a random forest is grown by recursively partitioning or splitting

the bootstrap sample into nodes, where splits are determined across a subset of feature
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Fig. 3.1: An example of a random forest and notation with regards to a particular observation
x1. The red-encircled trees are those in which x1 is out of bag, making up the set of trees S1. A
particular tree in S1 is exhibited. The out-of-bag indices for the tree are given in red (i ∈ O(t)),
while the in-bag indices (i ∈ B(t)) are shown in black. The indices of observations residing in the
same terminal node as x1 is given by the set v1(t). J1(t) gives the in-bag observation indices in the
terminal node v1(t).

variables to maximize purity (classification) or minimize the mean squares of the residuals

(regression) in the resulting nodes. This process repeats until a stopping criterion is met.

For classification, splits are typically continued until nodes are pure or of a single one class.

For regression, a common stopping criterion is a predetermined minimum node size (e.g.,

5). The trees in random forests are typically not pruned. OOB samples are commonly used

to provide an unbiased estimate of the forest’s generalization error rate [10].

The strength of the random forest is highly dependent on the predictive power of the

individual decision trees (base learners) and on the low correlation between the decision

trees [40, 47]. In addition to bootstrap sampling, further correlational decrease between

trees is ensured by selecting a random subset of predictor variables at each node for split
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optimization. The number of variables to be considered is designated by the parameter

mtry in many random forest packages [12, 48]. The resulting terminal nodes partition the

input space X . This partition is often used in defining random forest proximities as in

Breiman’s original definition:

Definition 1 (Original Random Forest Proximity [47]). The random forest proximity be-

tween observations i and j is given by:

pOr(i, j) =
1

T

T∑
t=1

I(j ∈ vi(t)),

where T is the number of trees in the forest, vi(t) contains the indices of observations that

end up in the same terminal node as xi in tree t, and I(.) is the indicator function. That

is, the proximity between observations i and j is the proportion of trees in which they reside

in the same terminal node, regardless of bootstrap status.

Definition 1 (the original definition) does not capture the data geometry learned by

the random forest as it does not take an observation’s bootstrap status (whether or not the

observation was used in the training of any particular tree) into account in the proximity

calculation: both in-bag and out-of-bag samples are used. In-bag observations of different

classes will necessarily terminate in different nodes, as trees are grown until pure. Thus this

produces an over-exaggerated class separation in the proximity values.

Despite these weaknesses, this definition has been used for outlier detection, data im-

putation, and visualization. However, these applications may produce misleading results as

this definition tends to overfit the training data, quantified by low error rates as proximity-

weighted predictors. One attempt to overcome this issue redefines the proximity measure

between observations i and j using only trees in which both observations are out-of-bag

(OOB proximities):

Definition 2 (OOB Proximity [12, 40]). The OOB proximity between observations with

indices i and j is given by:
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pOOB(i, j) =

∑
t∈Si

I(j ∈ O(t) ∩ vi(t))∑
t∈Si

I(j ∈ O(t))
,

where O(t) denotes the set of indices of the observations that are out-of-bag in tree t, and

Si is the set of trees for which observation i is out-of-bag. In other words, this proximity

measures the proportion of trees in which observations i and j reside in the same terminal

node, both being out-of-bag.

The OOB definition does not directly use the in-bag training examples in the proximity

construction, leading to proximities that are, in effect, built by test points (OOB observa-

tions have no part in the classifier’s training), rather than training examples. In a given

decision tree, the probability of an observation being OOB is 1
e . Given the independence of

observational selection in the bootstrap process (the sampling is done with replacement), a

given pair of observations being OOB is 1
e2

≈ 1
9 . Thus, we need a larger number of decision

trees to achieve stability in the proximities following the OOB definition.

This definition is currently used in the randomForest [12] package by Liaw and Wiener

in the R programming language [49]. It may have been inadvertently used in papers that

used this package but none made explicit mention of the use of OOB observations in build-

ing proximities. The OOB proximities define a similarity measure that does not reflect

the nuances of the training data, unlike the original proximities, but still do not match

the random forest predictions when serving as weights. We find that this definition gener-

ally produces higher error rates as a proximity-weighted predictor (when compared to the

random forest’s OOB error rate; see Section 3.3).

A few alternative random forest proximity measures beyond Definitions 1 and 2 have

been proposed previously. In [45], the authors define a proximity-based kernel (PBK) which

accounts for the number of branches between observations in each decision tree, defining the

proximity between i and j as pPBK(i, j) = 1
T

∑T
t=1

1
ew·gijt , where T is the number of trees

in the forest, w is a user-defined parameter, and gijt is the number of branches between

observations i and j in tree t. g is defined to be 0 if the observations reside in the same

terminal node. The proximity quality was quantified using the classification accuracy when
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applied as a kernel in a support-vector machine. This definition showed some improvement

over the original definition (Definition 1) only when considering very small numbers of trees

(5 or 10). However, PBK is computationally expensive as all pair-wise branch distances

must be computed within each tree. This is not an issue for small numbers of trees, but

typically the number of trees in a random forest is measured in hundreds or thousands

(randomForest [12] has a default of 500 trees). Additionally, this method adds a user-

defined, tunable parameter which adds to its complexity.

The authors in [50] describe an approach for computing random forest proximities in the

context of a larger class of Random Partitioning Kernels. While most random forest prox-

imities are determined primarily through associations within terminal nodes, this approach

selects a random tree height and partitions the data based on this higher-level splitting.

The authors do not compare with other proximity definitions (nor do they frame their work

in the context of random forest proximities) but they compare this random forest kernel to

other typical kernels (linear, radial basis function (RBF), etc.) using a log-likelihood test.

The random forest kernel outperformed the others in most cases and the authors visually

demonstrated their kernel using 2D PCA plots. The code for this approach is not publicly

available.

Cao et al. introduced two random forest dissimilarity measures which are used in the

context of multi-view classification [46]. The first measure (denoted RFDisNC) weights the

proximity values by the proportion of correctly-classified observations within each node,

accounting for both in- and out-of-bag observations. The second (RFDisIH) is based on

instance hardness. Euclidean distances between observations at each terminal node are

calculated (using only feature variables which were used as splitting variables leading to the

terminal node, to avoid the curse of dimensionality) and used as weights as a part of the

dissimilarity measure. Given this distance, they use k-Disagreeing Neighbors (kDN) in the

formulation of the dissimilarity measure:

dt (xi,xj) =

 kDN (xj) , if vi(t) = vj(t)

1, otherwise
,
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where

kDN (xi) =
|{xj : xj ∈ kNN (xi) , yj ̸= yi} |

k
,

where k −NN(xi) is the set of the k-nearest neighbors of xi in the training data.

The use of k-DN gives a notion of difficulty in classifying a particular observation. In the

multiview problem, the dissimilarities from different views are averaged before classification.

The authors showed that RFDisIH performed better overall on classification tasks compared

with other multi-view methods. However, RFDisIH was not compared with other random

forest proximities in their commonly-used applications (e.g., visualization or imputation).

A similarity measure can be constructed from RFDisIH as RFProxIH = 1− RFDisIH.

While these alternative definitions have shown promise in their respective applications,

their connection to the data geometry learned by the random forest is not clear. In contrast,

we present a new definition of random forest proximities that exactly characterizes the

random forest performance on both in-bag and out-of-bag samples. The design of the new

proximities purposefully models them to match the random forest predictions and follows

the same schema for a classification learning problem. For a typical learner, a training set

is used to build the model, which is subsequently tested on a validation set or previously

unseen observations. Our proximities are similarly constructed. Training examples (in-bag

observations) are used to construct the proximity values to unseen (OOB) observations. In

a given decision tree, the quantity of in-bag observations in an OOB point’s terminal node

determines the weight of the node in the proximity construction. Using training points to

act on test points follows typical classifier behavior, and this particular weighting leads to

the random forest predictions for both the training and test sets.

Definition 3 (Random Forest-Geometry- and Accuracy-Preserving Proximities). Let B(t)

be the multiset of (potentially repeated) indices of bootstrap (in-bag) observations. We define

Ji(t) to be the set of in-bag observations which share the terminal node with observation i

in tree t, or Ji(t) = B(t) ∩ vi(t) with cardinality |Ji(t)|. Then, for given observations i and

j, their proximity measure is defined as:
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pGAP (i, j) =
1

|Si|
∑
t∈Si

I (j ∈ Ji(t))

|Ji(t)|
.

That is, considering only trees for which observation i is out-of-bag, the proximity

between i and j is the average proportion of in-bag observations in the shared terminal node

of i and j over all trees where i is out of bag and j is in bag.

We show in Section 3.2 that the random forest OOB prediction (and thus the general-

ization error rate) is exactly reproduced as a weighted sum (for regression) or a weighted-

majority vote (for classification) using the proximities in Definition 3 as weights. Thus,

this definition characterizes the random forest’s predictions, keeping intact the learned data

geometry. Subsequently, applications using this proximity definition will provide results

that are truer to the random forest from which the proximities are derived. Importantly,

the overfitting present in the original definition is overcome by the RF-GAP construction

as in-bag to in-bag pairs are not used in their construction.

3.2 Random Forests as Proximity-Weighted Predictors

Here we show that the random forest prediction is exactly reproduced as a weighted sum

(for regression) or a weighted-majority vote (for classification) using RF-GAP as weights.

We first show that for a given observation, the proximities are non-negative and sum to

one. In contrast, the proximities in Definitions 1 and 2 must be row-normalized to sum to

one. Note that we require that pGAP (i, i) = 0 for the proximities to sum to one, although

the exact value for pGAP (i, i) does not matter in practice as it is not considered in the

proximity-weighted prediction.

Proposition 1. prop:weights Defining pGAP (i, i) = 0, the random forest proximities (under

Definition 3) are non-negative and
∑N

j=1 pGAP (i, j) = 1.

Proof. It is clear from the definition that pGAP (i, j) ≥ 0 for all i, j. The sum-to-one property

falls directly from the definition:
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N∑
j=1

pGAP (i, j) =
N∑
j=1

1

|Si|
∑
t∈Si

I (j ∈ Ji(t))

|Ji(t)|

=
1

|Si|
∑
t∈Si

1

|Ji(t)|
N∑
j=1

I(j ∈ Ji(t))

=
1

|Si|
∑
t∈Si

1

|Ji(t)|
|Ji(t)|

=
1

|Si|
∑
t∈Si

1

= 1.

This proposition allows us to directly use RF-GAP as weights for classification or

regression. We show that the proximity-weighted prediction under Definition 3 matches the

random forest OOB prediction, giving the same OOB error rate in both the classification

and regression settings. The OOB error rate is typically used to estimate the forest’s

generalization error and quantify its goodness of fit, this indicates that RF-GAP accurately

represents the geometry learned by the random forest.

Theorem 1 (Proximity-Weighted Regression). For a given training data set

S = {(x1, y1) . . . (xN , yN )}, with yi ∈ R, the random forest OOB regression prediction

is exactly determined by the proximity-weighted sum using RF-GAP (Definition 3).

Proof. For a given tree, t, and i ∈ O(t), the decision tree predictor of yi is the mean response

of the in-bag observations in the appropriate terminal node. That is,

ŷi(t) =
1

|Ji(t)|
∑

j∈Ji(t)

yj .

The random forest prediction, ŷi, is the mean response over all trees for which i is out

of bag. That is,
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ŷi =
1

|Si|
∑
t∈Si

ŷi(t)

=
1

|Si|
∑
t∈Si

1

|Ji(t)|
∑

j∈Ji(t)

yj .

The proximity-weighted predictor, ŷpi , is simply the weighted sum of responses, {yj}j ̸=i.

ŷpi =

N∑
j=1

pGAP (i, j)yj

=
N∑
j=1

 1

|Si|
∑
t∈Si

I(j ∈ Ji(t))

|Ji(t)|

 yj

=
1

|Si|
∑
t∈Si

1

|Ji(t)|
N∑
j=1

I(j ∈ Ji(t))yj

=
1

|Si|
∑
t∈Si

1

|Ji(t)|
∑

j∈Ji(t)

yj

= ŷi.

Theorem 2 (Proximity-Weighted Classification). For a given training data set M =

{(x1, y1) , . . . , (xN , yN )}, with yi ∈ {1, · · · ,K} for all i ∈ {1, · · · , N}, the random for-

est OOB classification prediction is exactly determined by the weighted-majority vote using

RF-GAP (Definition 3) as weights.

Proof. Given the training set {(x1, y1) , . . . , (xN , yN )}, with yi ∈ {1 . . .K}, for a given tree

t and observation i ∈ O(t), the decision tree prediction of the label yi is determined by the

majority vote among in-bag observations within the shared terminal node:

ŷi(t) = argmax
l=1,...,K

∑
j∈Ji(t)

I(yj = l).
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Thus, the random forest classification prediction, ŷi, is the most popular predicted class

over all t ∈ Si:

ŷi = argmax
k=1,...,K

∑
t∈Si

I(ŷi(t) = k)

= argmax
k=1,...,K

∑
t∈Si

I

argmax
l=1,...,K

∑
j∈Ji(t)

I(yj = l)

 = k


We show equivalence with the proximity-weighted predictor. The proximity-weighted

predictor predicts the class with the largest proximity-weighted vote:

ŷpi = argmax
k=1,...,K

N∑
j=1

pGAP (i, j)I(yj = k)

= argmax
k=1,...,K


N∑
j=1

 1

|Si|
∑
t∈Si

I(j ∈ Ji(t))

|Ji(t)|

 I(yj = k)


= argmax

k=1,...,K

 1

|Si|
∑
t∈Si

1

|Ji(t)|

 N∑
j=1

I(j ∈ Ji(t), yj = k)


= argmax

k=1,...,K

 1

|Si|
∑
t∈Si

1

|Ji(t)|
∑

j∈Ji(t)

I(yj = k)


= argmax

k=1,...,K

∑
t∈Si

1

|Ji(t)|
∑

j∈Ji(t)

I(yj = k)

 .

The last line holds as |Si| does not depend on k. As classification trees in a random

forest are grown until terminal (leaf) nodes are pure, all in-bag observations belong to the

same class. Denote the common class for any observation j ∈ Ji(t) as yi,t. Then the single

tree predictor is given by
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ŷi(t) = argmax
l=1,...,K

∑
j∈Ji(t)

I(yj = l)

= yi,t.

and the random forest predictor is

ŷi = argmax
k=1,...,K

∑
t∈Si

I(yi,t = k).

The proximity-weighted predictor is thus

ŷpi = argmax
k=1,...,K

∑
t∈Si

1

|Ji(t)|
∑

j∈Ji(t)

I(yj = k)


= argmax

k=1,...,K

∑
t∈Si

1

|Ji(t)|
∑

j∈Ji(t)

I(yi,t = k)


= argmax

k=1,...,K

∑
t∈Si

1

|Ji(t)|
|Ji(t)| I(yi,t = k)


= argmax

k=1,...,K

∑
t∈Si

I(yi,t = k)

= ŷi.

3.3 Experimental Validation of Proximity-Weighed Prediction

To demonstrate that the RF-GAP proximities preserve the random-forest learned data

geometry, we empirically validate Theorems 1 and 2 from Section 3.2, demonstrating that

the random forest predictions are preserved in the proximity construction. We also compare

to the proximity-weighted predictor using the original random forest proximity definition

(Definition 1), the OOB adaptation (Definition 2), PBK [45], and RFProxIH [46].
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We compared proximity-prediction results on 19 datasets from the UCI repository [51].

Each dataset was randomly partitioned into training (80%) and test (20%) sets. For each

dataset, the same trained random forest was used to produce all compared proximities. Ta-

ble 3.1 gives the absolute difference between the proximity-weighted training errors and the

random forest OOB error rate. The proximity-weighted predictor using RF-GAP almost

exactly matches the random forest OOB error rates; discrepancies are due to random tie-

breaking. In contrast, the original definition, PBK, and RFProxIH typically produce much

lower training error rates, suggesting overfitting. The OOB proximities (Definition 2) pro-

duce training error rates that are sometimes lower and sometimes higher than the random

forest OOB error rate. Table 3.1 also provides the difference between the test error rates for

the same datasets. Here, we still see that the proximity predictions using RF-GAP nearly

always match those of the random forest, while this is not the case for the other proximity

constructions.

Table 3.1: Comparison of proximity-weighted predictions to the random forest errors. The random
forest OOB error (on the training set) and test errors are given in the columns under RF. The absolute
difference of the training and test errors with, respectively, the OOB error and RF test error are
given for each proximity-weighed prediction. The results nearest the random forest predictions are
bold. RF-GAP nearly perfectly matches the random forest results, with differences being accounted
for by randomly broken ties in the forest. The other definitions tend to overfit the training data, as
can be seen with the large differences between the OOB and test error rates. This is corroborated by
Fig. 3.3, which plots the differences. Note that RFProxIH is not written for data with a continuous
response. Additionally, since it is generated using Euclidean distance, it is not compatible with
datasets with categorical variables or missing values.

Type RF RF-GAP Original OOB PBK RFProxIH

Data OOB Test Train Test Train Test Train Test Train Test Train Test

Arrhythmia 0.258 0.297 0 0 0.042 0.077 0.067 0.088 0.031 0.077 NA NA
Balance Scale 0.156 0.144 0.004 0 0.07 0.056 0.05 0.056 0.068 0.056 0.068 0.056

Banknote 0.009 0.011 0 0 0.001 0.011 0.009 0.011 0.011 0.018 0.001 0.011
Breast Cancer 0.03 0.043 0 0 0.007 0.014 0.02 0.014 0.011 0.014 0.007 0.014

Car 0.038 0.052 0.007 0.023 0 0.003 0.017 0.006 0.048 0.043 NA NA
Diabetes 0.243 0.182 0.002 0 0.148 0.006 0.028 0.013 0.124 0 0.147 0
Ecoli 0.153 0.088 0 0 0.052 0 0.007 0.015 0.041 0.029 0.049 0
Glass 0.211 0.186 0 0 0.135 0.023 0.029 0.023 0.111 0.047 0.123 0.047

Heart Disease 0.417 0.475 0 0 0.302 0.115 0.194 0.115 0.252 0.18 NA NA
Hill Valley 0.436 0.41 0.002 0 0.347 0.082 0.11 0.131 0.304 0.098 0.331 0.082
Ionosphere 0.075 0.042 0 0 0.025 0 0.004 0 0.021 0 0.025 0

Iris 0.05 0.067 0 0 0.033 0 0.008 0 0.033 0 0.033 0
Liver 0.305 0.336 0 0 0.186 0.078 0.071 0.078 0.162 0.052 NA NA

Lymphography 0.153 0.2 0.008 0 0.093 0.033 0.008 0 0.068 0.033 0.085 0.033
Parkinsons 0.09 0.103 0 0 0.013 0 0.051 0 0.006 0 0.013 0

Seeds 0.063 0.075 0.006 0 0.038 0.025 0.019 0.05 0.019 0.05 0.038 0.025
Sonar 0.169 0.167 0 0 0.145 0.024 0.066 0.024 0.12 0.024 0.145 0.024
Statlog 0.234 0.28 0.001 0 0.139 0.005 0.044 0.015 0.116 0.005 NA NA

Tic-Tac-Toe 0.048 0.042 0.003 0 0.031 0.026 0.038 0.021 0.022 0.057 NA NA

Train - Test – – 0.003 ± 0.008 0.092 ± 0.019 0.004 ± 0.012 0.076 ± 0.016 0.071 ± 0.019
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Fig. 3.2: Training vs. test error of the proximity-weighted predictions across multiple datasets.
We see that the original proximities, PBK, and RFProxIH, tend to overfit the training data, as
demonstrated by points above the line y = x. The random forest errors and RF-GAP nearly
perfectly align in most cases and are each well-described by the line. OOB also follows the identity
line well but does not match the RF predictions.

The RF-GAP proximities also generally produce the lowest test errors. This can be

seen in Fig. 3.2, which plots the training versus test error rates using the different proximity

measures. Table 3.2 gives the regression slope for each proximity definition. From here it

is clear that the original proximities, PBK, and RFProxIH overfit the training data on

average. This is corroborated in Fig. 3.3, which plots the difference between the random

forest out-of-bag error rates and the proximity-weighted errors across the same datasets,

demonstrating that the RF-GAP predictions nearly perfectly match those of the random

forest for both training and tests sets. It is clear that the original definition, PBK, and

RFProxIH overfit the training data in contrast.

3.4 Conclusion

We perform comparisons with applying MDS to the proximities for visualization in

Section 4.1, data imputation in Section 4.4, and outlier detection in Section 4.2. Random
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Table 3.2: The regression slopes of each proximity type corresponding to the points in Fig. 3.2.
RF-GAP and OOB do not exhibit bias towards the training data as they have a slope close to one,
while the larger slope of the other proximity definitions indicate they are overfitting the data.

Type Slope

RF-GAP 1.036
Original 1.700
OOB 1.044
PBK 1.664
RFProxIH 1.3955

Fig. 3.3: These boxplots show the absolute difference between the proximity-weighted prediction
training and test errors with the random forest OOB error rate and test error, respectively, across
five proximity definitions. RF-GAP proximity predictions most nearly match the random forest
predictions for both the training (left) and test (right) data, thus, best preserving the geometry
learned by the random forest. Various UCI datasets were randomly split into training and test
datasets for this (80% training, 20% test).

forest proximities have already been established as successful in these applications. Thus, we

focus our comparisons in these applications on existing random forest proximity definitions

to show that the improved representation of the random forest geometry in RF-GAP leads

to improved performance.

In this chapter, we presented a new definition of random forest proximities called RF-

GAP that characterizes the random forest out-of-bag prediction results using a weighted

nearest neighbor predictor. We proved that the performance of the proximity-weighted

predictor exactly matches the out-of-bag prediction results of the trained random forest
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and also demonstrated this relationship empirically. Thus, RF-GAP proximities capture

the random forest-learned data geometry which can provide improvements over existing

definitions in proximity-based applications. See the arXiv version of this work at https:

//arxiv.org/abs/2201.12682.

https://arxiv.org/abs/2201.12682
https://arxiv.org/abs/2201.12682


CHAPTER 4

APPLICATIONS OF RF PROXIMITIES

Under Leo Breiman’s original random forest proximity definition and under the out-of-

bag (OOB) adaptation, random forest proximities are kernel matrices (matrices indicating

pair-wise similarities). They are symmetric, positive definite, and bounded above by one.

The random forest- geometry-and accuracy-preserving proximities (RF-GAP) from [16],

however, are not symmetric and the diagonals, at least for the purpose of weighted-neighbor

predictions, are defined to be 0. Both of these may be simply addressed to form a proper

kernel. Serving as a similarity matrix, random forest proximities have been applied to a va-

riety of tasks in multiple scientific fields. Some applications include clustering, visualization,

imputation, and visualization, among others. Random forest (RF) proximities may replace

traditional affinities, such as a Gaussian kernel, or distances, such as Euclidean distance, in

virtually any machine learning (ML) task which requires them. Here we discuss common

applications in which RF proximities are traditionally used, though they may benefit several

additional uses.

4.1 Visualization and Clustering

Leo Breiman [10, 47] first used multi-dimensional scaling (MDS) on random forest

proximities to visualize the data. Since then, MDS with random forest proximities has

been used in many applications including tumor profiling [15], visualizing biomarkers [52],

pathway analysis [53], multi-view learning [13, 14], and unsupervised learning [54]. On a

related note, proximities can be useful in data clustering [54].

In [54], Shi and Horvath introduced an unsupervised approach to random forests which

uses generated synthetic data as a second class. Original data is given the label 1, while the

synthetic data is given the label 0. The now binary-class dataset is used to train a random

forest and used to produce a proximity matrix. In that paper, the authors demonstrate
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the ability of random forest proximities to cluster data into biologically meaningful groups

more favorably when compared to Euclidean distance-based clustering. This method was

also compared in [55] and showed that random-forest proximity-based clustering provided

superior results when compared to Euclidean, Chebyshev, and Canberra distances in the

context of high-throughput cellular sequencing data.

Similar observations were found when clustering tumor profiling from micro-array

data [15]. Here, the authors also extended proximity-based clustering to t-SNE plots for

enhanced visualization. [56] used random forest proximities for a k-Medoids clustering prob-

lem in the context of network traffic. They showed that this random-forest-based approach

provided the highest accuracy (comparing ground-truth labels to cluster-generated labels)

compared to a number of algorithms commonly used in the field. The authors of [57] came up

with a proximity-based ensemble method for clustering. Here, they were able to improve

clustering improvement on single nucleotide polymorphisms. The cluster fit was quanti-

fied using normalized mutual information. [14] used random forest proximities to visualize

Alzheimer’s patient outcomes via multi-dimensional scaling, showing improved separation

between the groups of patients when compared with Euclidean-based visualizations. [58]

used proximities to find cluster centers for normal and anomalous training examples in the

context of detection systems. Random forest-based visualizations are improved using the

RF-GAP proximities, though no experimentation has been done using these proximities for

unsupervised clustering.

Here, we compare visualizations using the five different proximities. In each case, metric

MDS was applied to
√
1− prox to produce two-dimensional visualizations.

Figure 4.1 gives an example of MDS applied to the classic Sonar dataset from UCI [51]

with an OOB error rate was 15.85%. RF-GAP proximities (Figure 4.1 (a)) show two class

groupings with misclassified observations between the groups or within the opposing class.

The original proximities, PBK, and RFProxIH (Figure 4.1 (b, d, and e, respectively)) show

a fairly clear separation between the two classes. For these proximities, they appear nearly

linearly separable which does not accurately reflect the data nor the geometry learned
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Group M, Correct M, Incorrect R, Correct R, Incorrect

RF−GAP Original OOB PBK RFProxIH

Fig. 4.1: Comparison of MDS embeddings using different RF proximity definitions. Proximities
were constructed from a random forest trained on the two-class Sonar dataset (208 observations of
60 variables) from the UCI repository which gave an OOB error rate of 15.87%. Multi-dimensional
scaling (MDS) was applied to

√
1− prox using (a) RF-GAP proximities, (b) the original proximities,

(c) OOB proximities (Definition 2), (d) PBK, and RFProxIH. Using RF-GAP proximities, the visu-
alization depicts a good representation of the forest’s classification problem. For correctly-classified
points (filled), there are two clear groupings, while misclassified points (unfilled) are generally lo-
cated between the groupings or found within the opposite class’s cluster, albeit closer to the decision
boundary than not. The original definition, PBK, and RFProxIH over-exaggerate the separation
between classes. This is apparent in examples (b), (d), and (e) as the two classes appear nearly
linearly separable which does not accurately depict the random forest’s performance on the dataset.
Using only OOB samples to generate the proximities improves upon those three but seems to add
some noise to the visualization. There are still two major class clusters, but some correctly classified
points are found farther inside the opposite class’ cluster compared to the RF-GAP visualization.

by the random forest. Definition 2 (Figure 4.1 (c) has a similar effect as the RF-GAP

definition, but with a less clear boundary and seemingly misplaced observations that are

deep within the wrong class. These results suggest that RF-GAP can lead to improved

supervised visualization and dimensionality reduction techniques. See Section 4.7.1 for

further experiments.

4.2 Outlier Detection

Random forest proximities may be used to calculate outliers in a supervised setting.

An observation’s outlier score is typically defined to be inversely proportional to its average

within-class proximity measure. In [59], the authors compared proximity-based outlier

detection in the context of the Internet of Things (IoT) device sensing and demonstrated its

advantage over other multivariate methods. Similarly, the authors of [60] found that network

anomalies can be detected using proximities. This same methodology was used to detect

and then remove outliers in pathway analysis problems which lead to much better results in

both classification and regression contexts [53]. In [61], it was shown that proximity-based
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outlier detection was able to accurately identify adulterated foods via infrared spectroscopy.

The algorithm has also been shown to be useful in modeling species distribution [62] and

predicting galaxy spectral measurements [63]. [64] uses proximities as a part of a non-linear

model and demonstrates its effectiveness in fault detection.

In the classification setting, outliers may be described as observations with measure-

ments that significantly differ from those of other observations within the same class. In

some cases, these outliers may be similar to observations in a different class, or perhaps

they may distinguish themselves from observations in all known classes. In either case, out-

lying observations may negatively impact the training of many classification and regression

algorithms, although random forests themselves are rather robust to outliers in the feature

variables [11].

Random forest proximity measures can be used to detect within-class outliers which

are likely to have small proximity measures with other observations within the same class.

Thus, small average proximity values within a class may be used as an outlier measure. We

describe the algorithm as follows:

1. For each observation, i, compute the raw outlier measure score as
∑

j∈class(i)
n

prox2(i,j)
.

2. Within each class, determine the median and mean absolute deviation of the raw

scores.

3. Subtract the median from the raw score and divide by the mean absolute deviation.

The outlier detection measure may be used in conjunction with MDS for visualization.

See Figure 4.2 for an example using the Gene Expression Cancer dataset from UCI which

has 5 classes across 801 observations and 20,531 variables. Here, the point sizes of the scatter

plot are proportionally scaled to the outlier measure. From the figure, it is clear that points

outside of their respective class clusters have higher outlier measures. That the outlier

measure is inversely proportional to the average proximity to within-class observations is

clear in the case of RF-GAP proximities (Figure 4.2 (a)) and is not very clear in the cases
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Fig. 4.2: MDS applied to the random forest proximities computed from the Gene Expression Cancer
dataset from UCI. The point sizes are inversely proportional to the average proximity of a given
observation to all other within-class observations. Misclassified observations are designated by an
outline of the color of the misclassified label. The misclassifications in (a) (RF-GAP), (c) (OOB),
and (d) (PBK) are clear based on the distance from the blue cluster. The original proximities, (b),
and RFProxIH (e) do not clearly account for the misclassified points. The outlier measure scaling
in (a) gives a clear reflection of the distance of points to their respective clusters.

of the original definition (b) and RFProxIH (e). This suggests that RF-GAP can be used

to improve random forest outlier detection.

Figures 4.3 and 4.4 provide the outlier scores and some outlying examples in the MNIST

hand-written digit dataset based on the RF-GAP score. The images are those which received

the highest proximity-based outlier scores. In particular, the first digit is a 6 which may

be easily mistaken for a 1 given the minuscule loop at the bottom of the digit. The second

digit has a true label 0 but looks much more like a 6 with its protruding tail at the top of

the digit. Some of the figures may be indistinguishable for a human.
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Fig. 4.3: A sorted plot of the outlier measures for the MNIST test dataset as provided by RF-GAP.
The vertical axis is the outlier measure as described in Section 4.2. The top seven outlying images
are labeled with an index and shown in Figure 4.4.

Index: 2136
Label: 6

Index: 6652
Label: 0

Index: 4202
Label: 1

Index: 1248
Label: 9

Index: 4177
Label: 2

Index: 2190
Label: 9

Index: 1774
Label: 1

Fig. 4.4: The top seven outlying digits per RF-GAP (see Figure 4.3). Some of these digits may even
be difficult for a human to classify, corroborating the RF-GAP outlier score.

4.3 Multi-Modal Learning

Multi-modal/multiview problems can also be approached using random forest proximi-

ties. Gray et al. additively combined random forest proximities from different modalities or

views (FDG-PET and MR imaging) of persons with Alzheimer’s disease or with mild cog-

nitive impairment. They applied MDS to the combined proximities to create an embedding

used for classification. Classification on the multi-modal embedding showed significantly

better results than classification on both modes separately [14]. Cao, Bernard, Sabourin,

and Heutte explored variations of proximity-based classification techniques in the context
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of multi-view radiomics problems [13]. They compared with the work from [14] and joined

proximity matrices using linear combinations. The authors explored random forest pa-

rameters to determine the quality of the proximity matrices. They concluded that a large

number of maximum-depth trees produced the best quality proximities, quantified using a

one-nearest neighbor classifier. Using our proposed random forest proximity measure which

accurately reflects the random forest predictions from each view may add to the success of

this method, thus creating a truer forest ensemble for multi-view learning.

4.4 Imputation

Random forest proximities are used to impute missing data by replacing missing values

of a given variable with a proximity-weighted sum of non-missing values. The authors of [65]

compared nine methods (including simple methods, such as mean-value imputation, and

more sophisticated models, such as Bayesian Principal Components Analysis and nearest-

neighbor-based approaches) for data imputation across seven mechanisms (points missing

at random, completely at random, not at random, etc.) for artificially removed data points.

They showed that in most cases, random-forest proximity-based imputation provided the

best imputation results.

These results were corroborated by Pantanowitz and Marwala, who used proximity-

based methods to impute missing data in the context of HIV seroprevalence [66]. They

compared their results with five additional imputation methods, including neural networks,

and random forest-neural network hybrids, and concluded that random forest imputation

produced the most accurate results with the lowest standard errors. Shah et al. compare

random forest imputation with multivariate imputation by chained equations (MICE [67])

on cardiovascular health records data [68]. They showed that random forest imputation

methods typically produced more accurate results and that in some circumstances MICE

gave biased results under default parameterization. In [65] it was similarly shown that

random forests produced the most accurate imputation in a comprehensive metabolomics

imputation study. Here we describe the algorithm for random forest imputation and com-

pare results using various proximity definitions.
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To impute missing values of variable j:

1. If variable j is continuous, initialize the imputation with the median of the in-class

values of variable j; otherwise, initialize it with the most frequent in-class value. In

the regression context, the median or most frequent values are computed across all

observations without missing values in variable j

2. Train a random forest using the imputed dataset

3. Construct the proximity matrix from the forest

4. If variable j is continuous, replace the missing values with the proximity-weighted

sum of the non-missing values. If categorical, replace the missing values with the

proximity-weighed majority vote

5. Repeat steps 2 - 4 as required. In many cases, a single iteration is sufficient

We show empirically that random forest imputation is generally improved using the

RF-GAP proximity definition. For our experiment, we selected various datasets from the

UCI repository [51] and for each dataset, we removed 5%, 10%, 25%, 50%, and 75% of

values at random (that is, the values are missing completely at random, or MCAR), using

the missMethods R package [69]. Two comparisons were made: 1) we computed the mean

MSE across 100 repetitions using a single iteration, and 2) we computed the mean (across

10 repetitions) MSE at each of 15 iterations.

A summary of performance rankings is given in Table 4.1. Across all compared prox-

imity definitions (RF-GAP, OOB, Original, and RFProxIH), RF-GAP achieved the best

imputation scores at all percentages less than 75% and outperformed across 69% of the

datasets when the percentage of missing values was 75%. For full results, see Table 4.2

in the supplementary materials which gives the mean MSE across 100 repetitions using a

single iteration of the above-described algorithm. The number of observations and variables

for each dataset are provided in the table.

Supplementary figures in Section 4.7 (Figure 4.11, 4.12, and 4.13) compare imputation

results across 16 datasets, using 15 iterations in each experiment with the mean MSE and
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Table 4.1: The average ranks of the imputation scores across the various UCI datasets and five
percentages of missing values. Each imputation experiment was repeated 100 times with different
random initialization. For each percentage under 75%, RF-GAP always produced the best results.
See Table 4.2 for full imputation results.

5% 10% 25% 50% 75%

RF-GAP 1.00 1.00 1.00 1.00 1.31
Original 2.69 2.88 2.62 2.69 2.44
OOB 2.62 2.62 2.62 2.56 2.38

RFProxIH 3.69 3.50 3.75 3.75 3.88

standard errors recorded for each of the repetitions. The value recorded at iteration 0 is

the MSE given the median- or majority-imputed datasets. In many cases, the imputation

appears to converge quickly with relatively few iterations. Generally, the RF-GAP proxim-

ities outperformed the other definitions at each number of iterations. For high percentages

of missing values (at least 75%), or for small datasets, the random forest imputation does

not always converge and performance may actually decrease as the number of iterations

increases. These results suggest that RF-GAP can be used to improve random forest im-

putation.

4.5 Variable Importance Assessment

Random forest variable importance assessment is usually done via random variable

permutation, but may also be done using the forest’s proximity values. One approach is

to measure the changes in proximities as variables are randomly permuted. This approach

was used in the context of gene selection and was shown to be more sensitive to selecting

meaningful genes when compared with the traditional random forest permutation impor-

tance [70]. In [71], feature contributions to the random forest decision space (defined by

proximities) are explored. While many measures of variable importance are generally com-

puted at a global level, the authors propose local, permutation-based feature importance

which captures both the contribution (influence of the feature in the decision space) and

closeness (position in the decision space relative to the in- and out-class), giving further

insight to the contribution of each feature at the terminal node level.
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4.6 Additional Uses

Seoane et al. proposed the use of random forest proximities to measure gene annotations

with some improvement in precision over other existing methods [72]. In [73], the authors

proposed the use of proximities as a matching method for observational studies. They

iteratively matched subjects with the highest proximity values but of opposing groups in

order to group similar subjects for comparisons across the study. They showed that this

method was superior to propensity and other techniques. In [74], the authors provide

a proximity-based surrogate model to estimate extreme tower loads on a wind turbine.

Here, the motivation for a random-forest proximity-based model was the incapability of

existing models to handle the sparse, high-dimensional data. The proximities were used to

successfully impute turbine loads based on proximity-matching.

4.7 Additional Experimental Results

Here we present additional experimental results, demonstrating that using RF-GAP

leads to improved imputation, visualization, and outlier detection over the other random

forest proximity measures.

4.7.1 Multidimensional Scaling and Outlier Detection

Here we provide additional examples of MDS applied to the various random forest

proximities. In Figure 4.5, we compare the plotted MDS embeddings on the Ionosphere

data from the UCI [51]. It is clear from the images that the random forest’s misclassified

points are typically found on the border between the two class clusters in the RF-GAP

embeddings while this is not always the case for the other proximity measures. Additional

figures (4.6, 4.7, and 4.8) are given to display MDS applied to the proximities. In Figure 4.6

we see similar patterns which were displayed in Figure 4.1; exaggerated separation in the

Original and RFProxIH and excess noise in OOB. RF-GAP seems to accurately portray

why the misclassifications are made in the context of proximity-weighed predictions.

Figures 4.8, 4.9, and 4.10 give additional examples of proximity-based outlier scores.

Points that are farther from their respective class clusters can be viewed as outliers and are
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Group b, Correct b, Incorrect g, Correct g, Incorrect

RF−GAP Original OOB PBK RFProxIH

Fig. 4.5: MDS applied to various random forest proximities on the Ionosphere dataset. This binary
classification problem predicts whether or not returned radar signals are representative of a structure
(good) or not (bad). We see a similar pattern here regarding the MDS embeddings as in Figure 4.1.
The class separations are somewhat exaggerated for the Original, PBK, and RFProxIH proximities,
while points clearly susceptible to misclassification are identifiable in the RF-GAP and OOB plots.

Group 0, Correct 0, Incorrect 1, Correct 1, Incorrect

RF−GAP Original OOB PBK RFProxIH

Fig. 4.6: MDS applied to various random forest proximities on the Parkinson’s dataset (UCI), which
tests whether machine learning algorithms can discriminate between healthy and unhealthy speech
signals recorded from people with Parkinson’s disease. From the RF-GAP embeddings, it is clear
that misclassified points are on the borders or edges of the main clusters. This provides an example
where random forest predictions correspond to proximity-weighted predictions. This is not always
clear in the other embeddings. For example, the Original MDS embeddings show a misclassified
1 (in the bottom right of the figure) which is the nearest observation of the same class. Again,
RFProxIH shows a nearly perfectly linear separation between classes, which is unreasonable with a
random forest error rate of 8.2%.

often misclassified. The point size is proportional to the outlier measure in the figure. This,

however, may not be as clear when two or three points are far from their respective cluster

but near to each other.

4.7.2 Data Imputation

Here we show extended results on data imputation using random forest proximities.

Table 4.2 shows the average imputation results for 100 trials across 16 datasets from the

UCI repository [51] using four of the proximity measures with a single iteration. For each

dataset, values were removed completely at random in amounts of 5%, 10%, 25%, 50%,
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Fig. 4.7: The ecoli dataset with eight classes after applying MDS to the random forest proximities.
RF-GAP and OOB show looser clusters compared with the others. This is suggestive of less over-
fitting of the training data.

Group setosa, Correct versicolor, Correct versicolor, Incorrect virginica, Correct virginica, Incorrect

RF−GAP Original OOB PBK RFProxIH

Fig. 4.8: Fisher’s Iris dataset with MDS applied to the random forest proximities. Here, point size
is proportional to the outlier score provided by each method. In each case, observations with high
outlier scores corresponded to misclassified points.

Group 1, Correct
1, Incorrect

2, Correct
2, Incorrect

3, Correct
3, Incorrect

RF−GAP Original OOB PBK RFProxIH

Fig. 4.9: The seeds dataset compares three varieties of wheat seeds using geometric properties (e.g.,
width, length) as features. The OOB and RF-GAP proximities produce more cluster-like structures,
vs. the branching seen by the other definitions. RF-GAP clearly shows why the misclassifications
are taking place.
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Group 1, Correct 1, Incorrect 2, Correct 2, Incorrect 3, Correct

RF−GAP Original OOB PBK RFProxIH

Fig. 4.10: The wine dataset consists of three classes (corresponding to locations of cultivation) and
13 features. The tight clusters of each class using the original, PBK, and RFProxIH proximities
suggests overfitting to the training data. It seems RF-GAP may show more sensitivity to outliers.

and 75%. The PBK proximities were omitted from this study due to their slow computa-

tional complexity. Additionally, some datasets were not compatible with RFProxIH due to

continuous responses or categorical features.

The mean squared error (MSE) is almost universally lower when using RF-GAP for

imputation. RF-GAP is only outperformed sometimes when the amount of missing values

reaches 75%. Even in these cases, RF-GAP is always in second place. The Banknote,

Ionosphere, Optical Digits, Parkinson’s, and Waveform datasets particularly show good ex-

amples of RF-GAP for imputation. Here, RF-GAP outperforms each of the other definitions

and the error decreases monotonically.

Figures 4.11, 4.12, and 4.13 show imputation results across multiple iterations. Each

experiment was repeated 100 times across 15 iterations. In general, RF-GAP outperforms

the other proximity-weighted imputations although the imputation tends to be much noisier

for smaller datasets (Balance Scale, Ecoli, Iris, and Seeds, for example [51]) and less reliable

for large percentages of missing values. This is particularly prominent when 75% of the

data is missing. In some of these cases, the error increases with the number of iterations,

for example, in the Ecoli and Diabetes data sets.

4.8 Proximity Application Conclusion

All of the above-described applications have historically used definitions of random

forest proximities that do not envelope the data geometry learned by the random forest.

In contrast, RF-GAP accurately reflects this geometry which was demonstrated by our
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Fig. 4.11: Additional imputation results. See Figure 4.13 for more details.

application experiments presented in this chapter. Indeed, we showed empirically that using

RF-GAP gives data visualizations that more accurately represent the geometry learned from

the random forests, outlier scores that are more reflective of the random forest’s learning,



46

Fig. 4.12: Additional imputation results. See Figure 4.13 for more details.

and improved random forest imputations.

Additional random forest proximity applications will be explored in future works, in-

cluding quantifying outlier detection performance, comparing outlier detection against non-
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Fig. 4.13: This figure, Figure 4.11 and 4.12 give the mean-squared error (MSE) between the original
and imputed values using four random forest proximity measures. All data variables were scaled
from 0 to 1 for comparability. The scores were compared using 1 to 15 imputation iterations as
described in Section 4.4 and each experiment was conducted over 10 repetitions using the original
proximities, OOB proximities, RF-GAP proximities, and RFProxIH. Imputation 0 provides the MSE
for the median-filled imputation. Four different percentages of values missing completely at random
(MCAR) were used (5%, 10%, 25%, and 50%) across several datasets from the UCI repository. In
general, RF-GAP outperforms the other proximity-weighted imputations. See additional results in
Table 4.2 for a single iteration.

tree based methods, assessing variable importance, and applying RF-GAP to multi-view

learning. This last application shows promise as classification accuracy was greatly in-

creased after combining proximities in [13, 14] using other definitions. Multi-view learning

may also be paired with this approach in some domains to visualize and assess contribu-

tions from the various modes or to perform manifold alignment. An additional area of

improvement is scalability. Our approach is useful for datasets with a few thousand obser-
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vations, but we can expand its capabilities by implementing a sparse version of RF-GAP.

Further adaptations may make random forest proximity applications accessible for even

larger datasets.
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Table 4.2: Complete results for data imputation using random forest proximities using a single itera-
tion. For each considered dataset, values were removed completely at random in the amounts of 5%,
10%, 25%, 50%, and 75%. Missing values were imputed using various proximity definitions (PBK
was not used here for computational considerations). The experiment was repeated 100 times for
all datasets. The two numbers directly below each dataset indicate the number of observations and
number of variables, respectively. The average of the mean-squared errors (MSE) between the orig-
inal and imputed values are recorded along with the standard errors. For missing value percentages
up through 50%, RF-GAP proximities (Definition 3) provided the most accurate imputation across
all datasets. At 75% missing values, RF-GAP proximities outperformed across 69% of datasets.
Otherwise, the RF-GAP proximities are in second place. Note: some datasets were not compatible
with RFProxIH due to continuous response or categorical feature vectors.

Data Proximity 5% 10% 25% 50% 75%
Arrhythmia RF-GAP 8.35 ± 0.03 11.76 ± 0.02 18.99 ± 0.02 27.68 ± 0.02 35.49 ± 0.02

452 Original 8.72 ± 0.02 12.24 ± 0.03 19.54 ± 0.02 28.20 ± 0.02 35.66 ± 0.02
279 OOB 8.77 ± 0.02 12.30 ± 0.02 19.59 ± 0.02 28.24 ± 0.02 35.30 ± 0.01

RFProxIH 8.75 ± 0.03 12.27 ± 0.02 19.62 ± 0.02 28.33 ± 0.02 35.95 ± 0.02
Balance Scale RF-GAP 3.87 ± 0.02 5.47 ± 0.02 8.78 ± 0.02 12.35 ± 0.02 15.01 ± 0.02

645 Original 3.94 ± 0.02 5.59 ± 0.02 8.92 ± 0.03 12.43 ± 0.02 15.00 ± 0.03
4 OOB 3.96 ± 0.02 5.63 ± 0.03 8.97 ± 0.02 12.49 ± 0.02 15.05 ± 0.02

RFProxIH 3.91 ± 0.02 5.61 ± 0.03 8.93 ± 0.02 12.45 ± 0.02 15.02 ± 0.03
Banknote RF-GAP 2.50 ± 0.02 3.56 ± 0.01 5.86 ± 0.01 8.88 ± 0.02 11.40 ± 0.01

1372 Original 2.64 ± 0.01 3.77 ± 0.01 6.21 ± 0.02 9.25 ± 0.02 11.66 ± 0.01
5 OOB 2.64 ± 0.02 3.81 ± 0.02 6.24 ± 0.01 9.28 ± 0.02 11.70 ± 0.01

RFProxIH 2.65 ± 0.01 3.77 ± 0.02 6.20 ± 0.02 9.28 ± 0.01 11.70 ± 0.01
Diabetes RF-GAP 2.56 ± 0.02 3.69 ± 0.02 5.95 ± 0.02 8.58 ± 0.01 10.70 ± 0.01

678 Original 2.67 ± 0.02 3.81 ± 0.02 6.19 ± 0.02 8.83 ± 0.02 10.80 ± 0.01
8 OOB 2.63 ± 0.02 3.78 ± 0.02 6.15 ± 0.01 8.81 ± 0.01 10.80 ± 0.01

RFProxIH 2.65 ± 0.02 3.83 ± 0.02 6.23 ± 0.02 8.88 ± 0.01 10.81 ± 0.01
Ecoli RF-GAP 1.20 ± 0.02 1.74 ± 0.02 2.73 ± 0.02 4.01 ± 0.02 5.10 ± 0.02
336 Original 1.20 ± 0.02 1.79 ± 0.02 2.82 ± 0.02 4.03 ± 0.02 5.13 ± 0.03
8 OOB 1.28 ± 0.02 1.76 ± 0.03 2.91 ± 0.02 4.09 ± 0.02 5.17 ± 0.04

RFProxIH NA NA NA NA NA
Glass RF-GAP 1.19 ± 0.02 1.73 ± 0.02 2.89 ± 0.02 4.29 ± 0.02 5.63 ± 0.02
214 Original 1.25 ± 0.02 1.78 ± 0.02 3.01 ± 0.02 4.43 ± 0.02 5.67 ± 0.02
10 OOB 1.28 ± 0.02 1.81 ± 0.02 3.03 ± 0.02 4.40 ± 0.02 5.634 ± 0.01

RFProxIH 1.29 ± 0.02 1.78 ± 0.02 3.02 ± 0.02 4.45 ± 0.02 5.69 ± 0.02
Hill Valley RF-GAP 2.38 ± 0.02 7.57 ± 0.05 16.60 ± 0.03 24.88 ± 0.02 31.50 ± 0.02

606 Original 3.46 ± 0.03 9.27 ± 0.03 17.40 ± 0.03 26.04 ± 0.02 33.05 ± 0.02
101 OOB 2.90 ± 0.03 9.03 ± 0.03 17.30 ± 0.03 25.88 ± 0.02 32.95 ± 0.02

RFProxIH 3.77 ± 0.03 9.54 ± 0.03 17.54 ± 0.03 26.06 ± 0.02 33.06 ± 0.02
Ionosphere RF-GAP 5.47 ± 0.02 7.71 ± 0.02 12.59 ± 0.02 18.77 ± 0.02 24.12 ± 0.01

351 Original 5.90 ± 0.02 8.34 ± 0.02 13.56 ± 0.02 19.81 ± 0.02 24.68 ± 0.01
34 OOB 5.84 ± 0.02 8.25 ± 0.02 13.43 ± 0.02 19.68 ± 0.02 24.67 ± 0.01

RFProxIH NA NA NA NA NA
Iris RF-GAP 0.63 ± 0.01 0.85 ± 0.01 1.37 ± 0.01 1.98 ± 0.01 2.53 ± 0.01
150 Original 0.63 ± 0.01 0.88 ± 0.01 1.40 ± 0.01 2.02 ± 0.01 2.53 ± 0.01
4 OOB 0.63 ± 0.01 0.88 ± 0.01 1.41 ± 0.01 2.00 ± 0.01 2.52 ± 0.01

RFProxIH 0.61 ± 0.01 0.88 ± 0.01 1.43 ± 0.01 2.03 ± 0.01 2.54 ± 0.01
Lymphography RF-GAP 3.62 ± 0.02 5.29 ± 0.02 8.44 ± 0.02 12.34 ± 0.02 15.69 ± 0.03

148 Original 3.64 ± 0.02 5.43 ± 0.03 8.65 ± 0.02 12.51 ± 0.02 15.69 ± 0.02
18 OOB 3.70 ± 0.02 5.43 ± 0.02 8.67 ± 0.02 12.56 ± 0.02 15.71 ± 0.02

RFProxIH 3.71 ± 0.02 5.42 ± 0.02 8.75 ± 0.02 12.50 ± 0.02 15.74 ± 0.02
Optdigits RF-GAP 18.75 ± 0.02 26.86 ± 0.02 44.19 ± 0.02 66.30 ± 0.02 85.63 ± 0.02

5620 Original 20.63 ± 0.02 29.58 ± 0.02 48.21 ± 0.02 70.84 ± 0.02 88.43 ± 0.01
64 OOB 20.60 ± 0.02 29.44 ± 0.02 48.03 ± 0.02 70.51 ± 0.02 88.25 ± 0.01

RFProxIH 20.69 ± 0.02 29.63 ± 0.02 48.45 ± 0.02 71.02 ± 0.02 88.48 ± 0.01
Parkinsons RF-GAP 2.08 ± 0.02 3.04 ± 0.02 4.93 ± 0.02 7.46 ± 0.02 9.59 ± 0.01

197 Original 2.27 ± 0.02 3.30 ± 0.02 5.39 ± 0.02 7.90 ± 0.01 9.80 ± 0.01
23 OOB 2.26 ± 0.02 3.28 ± 0.02 5.32 ± 0.01 7.80 ± 0.01 9.76 ± 0.01

RFProxIH NA NA NA NA NA
Seeds RF-GAP 0.92 ± 0.01 1.31 ± 0.01 2.16 ± 0.01 3.21 ± 0.01 4.14 ± 0.01
210 Original 1.01 ± 0.01 1.44 ± 0.01 2.34 ± 0.01 3.38 ± 0.01 4.23 ± 0.01
7 OOB 1 ± 0.01 1.41 ± 0.01 2.28 ± 0.01 3.30 ± 0.01 4.18 ± 0.01

RFProxIH 1.04 ± 0.01 1.46 ± 0.01 2.36 ± 0.01 3.42 ± 0.01 4.27 ± 0.01
Sonar RF-GAP 4.39 ± 0.01 6.49 ± 0.01 10.59 ± 0.02 15.72 ± 0.01 19.95 ± 0.01
208 Original 4.67 ± 0.02 6.86 ± 0.02 11.08 ± 0.01 16.17 ± 0.01 20.17 ± 0.01
60 OOB 4.64 ± 0.02 6.78 ± 0.02 10.98 ± 0.01 16.06 ± 0.01 20.12 ± 0.01

RFProxIH 4.72 ± 0.02 6.91 ± 0.02 11.20 ± 0.02 16.17 ± 0.01 20.17 ± 0.01
Waveform RF-GAP 12.92 ± 0.01 18.33 ± 0.01 29.27 ± 0.01 42.24 ± 0.01 52.91 ± 0.01

5000 Original 13.32 ± 0.01 18.97 ± 0.01 30.37 ± 0.01 43.58 ± 0.01 53.77 ± 0.01
21 OOB 13.31 ± 0.01 18.93 ± 0.01 30.32 ± 0.01 43.54 ± 0.01 53.75 ± 0.01

RFProxIH NA NA NA NA NA
Wine RF-GAP 1.53 ± 0.01 2.22 ± 0.01 3.50 ± 0.01 5.06 ± 0.01 6.38 ± 0.01
178 Original 1.58 ± 0.01 2.27 ± 0.01 3.55 ± 0.01 5.10 ± 0.01 6.38 ± 0.01
13 OOB 1.60 ± 0.01 2.25 ± 0.01 3.54 ± 0.01 5.10 ± 0.01 6.38 ± 0.01

RFProxIH 1.59 ± 0.01 2.27 ± 0.01 3.5 ± 0.01 5.10 ± 0.01 6.38 ± 0.01



CHAPTER 5

RF-GAP R PACKAGE

5.1 Introduction

Though many papers describe and make use of applications of random forest prox-

imities, very little has been done in examining the quality of the proximity measures re-

garding how well the proximities incorporate the random forest’s learning. A few papers

have compared variations of random forest proximities in the context of classification, but

none have directly related these classification results to the random forest’s learning. For

example, Englund et al. compared the quality of random forest proximities, which they

termed proximity-based kernels (PBK) by using them as a kernel for the support vector

machine [45]. Davies and Ghahramani compared random forest proximities with other com-

mon kernel functions, including linear, polynomial, and radial basis function (RBF). They

used these kernels in Gaussian Processes and support vector machines (SVM) [50]. Cao

et al. [46] compared two novel random forest proximity definitions with the Leo Breiman’s

original formulation and that of Englund et al. to show minor improvements in classification

tasks and in multi-modal learning. However, in each of these cases, it is unclear how these

proximities relate to the random forest’s learning.

Random forest predictions are calculated by voting within terminal nodes, which nodes

form the decision space of the forest. In this sense, proximity constructions based on

terminal nodes should be able to convey all of the information about the random forest’s

predictions. However, existing random forest proximities do not accurately convey the

decision space of the forest. That is, the proximities cannot be directly used to reconstruct

random forest predictions. We showed that under the RF-GAP proximity definition, the

random forest’s predictions may be perfectly reconstructed using proximities as weights

in a nearest-neighbor prediction problem. Since these proximities can be used to directly
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reconstruct random forest predictions, we argue that the data geometry learned by the

random forest is captured by these proximities, thus, applications using these proximities

provide a truer representation of the learning.

For transparency and ease of use, we make the RF-GAP software freely available to

users through an R [49] package named after the methodology, rfgap. See the Github

repository here https://github.com/KevinMoonLab/RF-GAP. In the package, we provide

a simple means of constructing and comparing three types of random forest proximities,

including RF-GAP, Leo Breiman’s original formulation in which the proximity between two

observations is the proportion of shared terminal nodes across all trees, and a variation

of this in which only out-of-bag (non-training) samples are used in the proximity matrix

construction. See Definitions 1, 2, and 3. Two additional proximity constructions were

compared in our paper [16], including Englund’s PBK [45] and Cao’s RFDisIH [46]; however,

neither of these papers provided publicly available code, and our implementations were not

optimized for computational efficiency.

Though there exist R packages that compute the original and OOB random forest

proximities [12,75,76], we construct our own proximities to enable a direct comparison with

RF-GAP proximities using the same random forest. For fast computation and ease of use,

we use the ranger [48] package to build the forest from which we construct proximities.

The rfgap package makes it simple to compare the extent to which the proximities cap-

ture the random forest’s learning. In this chapter, we demonstrate the use of our package

in a variety of applications, including proximity construction, classification and regression

using proximities as weights, visualization via multidimensional scaling, missing data im-

putation, and outlier detection using RF-GAP proximities.

5.2 Constructing Proximities

Random forests are capable of making predictions on both continuous and categori-

cal response variables for regression and classification, respectively. Additionally, random

forests handle mixed feature variables, that is, predictor variables may be either numeric

or categorical and since the partitioning decisions are rank-based, numerical predictor vari-

https://github.com/KevinMoonLab/RF-GAP
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ables do not need to be normalized or standardized as is typical in other machine learning

contexts (e.g., neural networks). Thus, the construction of random forest-based proximities

does not require the same preprocessing steps as may be needed for other ML processes.

This simplifies the use of random forests and thus, for our purposes, the generation of

random forest proximities.

Let x be a dataframe or matrix object with labels y. Here y must be numeric (for a

regression forest) or a factor type (for a classification task). If y is a character vector it will

be coerced to be a factor type. To generate the proximities, we use the get proximities

function. The user may use a pre-trained random forest to construct the proximities,

which has the benefit of a direct comparison of proximity types, or to train when calling

get proximities. We demonstrate these two options below in Listing 5.1 using the iris

dataset accessible in R.

library(rfgap)

# Defining the data and labels

x <- iris[, -5]

y <- iris[, 5]

# Constructing the RF -GAP proximities

proximities <- get_proximities(x, y, seed = 42)

Listing 5.1: Defining the RF-GAP proximities on the Iris dataset.

This is the simplest way to generate proximities. Here we simply call get proximities

using the dataframe x and labels y as inputs. By default, RF-GAP proximities are con-

structed. The argument type allows the user to select the type of proximities to be con-

structed, the package currently supports "original", "oob", and "rfgap".

The user may train a random forest prior to calling get proximities. In this case,

the user must train the ranger forest with the options keep.inbag and write.forest set

to TRUE. Using a pre-trained forest allows the user to fairly compare different proximity
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types without the need of retraining a forest each time. An example of constructing the

proximities in this manner is shown below in Listing 5.2.

library(rfgap)

# Defining the data and labels

x <- iris[, -5]

y <- iris[, 5]

# Training the random forest

rf <- ranger(x = x, y = y, keep.inbag = TRUE , write.forest =

TRUE , seed = 42)

# Constructing three sets of proximities

proximities_rfgap <- get_proximities(x, rf = rf,

type = ’rfgap’)

proximities_oob <- get_proximities(x, rf = rf,

type = ’oob’)

proximities_orig <- get_proximities(x, rf = rf,

type = ’original ’)

Listing 5.2: Here we pretrain a random forest prior to the proximity construction. This allows the

user to easily compare different proximities. In this example, the code generates all three available

proximity types.

get proximities has the additional option for the user to supply a test set. Including

the test set will extend the proximities to the test observations. This is done by using the

argument x test, as demonstrated below in 5.3. The returned proximity matrix will have

n train+ n test rows and columns.

set.seed (42)

train_idx <- sample(nrow(x), size = round (.7 * nrow(x)))
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x_train <- x[train_idx , ]

y_train <- y[train_idx]

x_test <- x[-train_idx , ]

y_test <- y[-train_idx]

proximities <- get_proximities(x = x_train , y = y_train ,

x_test = x_test)

Listing 5.3: Here we split the data into training and test sets. The training set is used to build the

forest and construct the proximities. Pairwise proximities between all training and test examples

are constructed.

The returned proximity matrix is an S3 object of type rf proximities. This object

type has additional methods associated with it for making predictions, producing visual-

izations, detecting outliers, and imputing missing data. We will discuss these methods in

subsequent sections.

5.3 Proximity-Based Predictions

We have shown that RF-GAP proximities serve as weights which may be used to

perfectly reconstruct the forests predictions. To make predictive comparisons simple, we

extend the generic predict function to accept the rf proximities class. The user simply

needs to provide the proximities and corresponding labels y. The labels must be either

numeric for regression, or factors for classification. Predictions are made using a proximity-

weighted class vote or proximity-weighted sum. That is, for the regression problem,

ŷpi =

N∑
j=1

prox(i, j)yj (5.1)
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and for the classification problem with K classes,

ŷpi = argmax
k=1,...,K

N∑
j=1

prox(i, j)I (yj = k) (5.2)

where ŷpi is the proximity-weighted prediction, and I(.) is the 0 − 1 indicator function.

Note that for proximity types other than "rfgap" the proximities are rescaled so that the

rows sum to one to define the weights. In Listing 5.4, we compute the proximity-weighted

predictions and compare the results to those of the random forest. Here we see that the

RF-GAP proximity-weighted predictions match those of the random forest.

library(rfgap)

# Defining the data and labels

x <- iris[, -5]

y <- iris[, 5]

# Training the random forest

rf <- ranger(x = x, y = y, write.forest = TRUE ,

keep.inbag = TRUE , seed = 42)

predictions_rf <- rf$predictions

# Constructing the RF -GAP proximities

proximities_rfgap <- get_proximities(x, rf = rf)

proximities_original <- get_proximities(x, rf = rf,

type = ’original ’)

# Proximity -weighted predictions

predictions_rfgap <- predict(proximities_rfgap , y)

predictions_original <- predict(proximities_original , y)
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# Proportion of predictions matching the rf predictions

sum(predictions_rfgap$predictions == predictions_rf) / nrow(x)

# 1

sum(predictions_original$predictions == predictions_rf) / nrow

(x)

# 0.9533333

Listing 5.4: Here we construct and compare the proximity-weighted predictions with those of the

random forest. The generic predict function takes on the rf proximities S3 object along with

the class labels to make the prediction. We compare the proximity-weighted predictions with those

of the random forest. RF-GAP proximity predictions perfectly match.

The result of this predict function is a list with two elements; predictions which

give the classification or regression predictions, and error which is the error rate of the

predictions. The behavior of this function is similar to that of a k-NN function. To extend

the functionality to a test set, the user will need to include the proximity matrix which

includes both training and test examples, the training labels y, and the test labels y test.

If the test labels are included, the predictions list will also contain the test predictions

and test error rate. An example is given in Listing 5.5.

library(rfgap)

# Defining the data and labels

x <- iris[, -5]

y <- iris[, 5]

set.seed (42)

train_idx <- sample(nrow(x), size = round (.7 * nrow(x)))

x_train <- x[train_idx , ]
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y_train <- y[train_idx]

x_test <- x[-train_idx , ]

y_test <- y[-train_idx]

proximities <- get_proximities(x = x_train , y = y_train , x_

test = x_test)

predictions <- predict(proximities , y, y_test = y_test)

Listing 5.5: Here we demonstrate the use of the predict function with the RF-GAP proximities

extended to a test set. The number of rows of the proximity matrix must match the number of

training + test observations.

The primary purpose of the proximity-weighted predictions is not to circumvent the

forest, but to compare the predicted results with those of the forest to assess the learning

captured by the proximities. In Chapter 3, we showed that RF-GAP proximity predictions

match those of the random forest, while the original and OOB proximities do not.

5.4 Random Forest Imputation

Empirical studies conducted in [66] showed that data imputation via random forests

was, on average, 32% more accurate than imputation using auto-associative neural networks

and genetic algorithms. We showed that in datasets with missing value percentages less

than 75%, RF-GAP proximities always outperformed other random forest proximity-based

imputations and usually outperformed when 75% of the data were missing. rfgap provides

a simple means of imputing missing values using the rf impute function.

Suppose x is an n× d dataframe with missing values. The imputation process for each

variable in x has two parts. First, if variable j is categorical, missing values are replaced

with the most common within-class value. If continuous, the median within-class value is

used. After the initial imputation, a random forest is trained using the imputed dataframe
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and a proximity matrix is constructed. The missing values are imputed using a proximity-

weighted sum or majority vote of non-missing variable values. The process is iterative.

Repeating the latter step of training the forest and reconstructing the proximities tends to

improve the imputation results, but often one to four iterations are sufficient.

The rfgap package provides a simple function to run random forest imputation. It

is assumed that the missing data takes the form NA. The function rf impute requires the

dataset with missing values, x, vector of associated labels, y, the proximity type (default is

rfgap), number of iterations to run the imputation (n iters, default 1), and any additional

ranger options (...). The function returns a dataframe with the imputed values. An

additional argument, x true, may be used to supply the true data without missing values.

This is used for testing the quality of the imputation. If the user supplies x true, then

function returns a list with two elements, the imputed dataframe and the mean-squared

error between the true and imputed values.

An example is given below in Listing 5.6 using the airquality dataset provided in R.

library(rfgap)

x <- airquality[, 1:4]

y <- airquality[, 5]

x_imp <- rf_impute(x, y, n_iters = 5, seed = 42)

Listing 5.6: The proximity-based random forest imputation applied to the airquality R dataset.

Here we run the iterative imputation 5 times.

5.5 Visualization Via MDS

The original and OOB random forest proximities serve as proper kernel matrices. They

are symmetric, positive definite with ones along the main diagonal. RF-GAP proximities

may be symmetrized and the proximity value between an observation and itself redefined to

serve as a proper kernel. As such, 1− proximities may be viewed as a squared distance in

a Euclidean space. We apply these random forest distances, d(xi, xj) =
√

1− prox(xi, xj)



59

Class

setosa

versicolor

virginica

Fig. 5.1: Non-metric MDS applied to RF-GAP proximities generated from the Iris dataset.

to multidimensional scaling using the function rf mds. To use this function, the user may

choose to supply a precomputed proximity matrix, a trained ranger object, or just the

dataframe x with labels y (x is required). If a proximity matrix is not supplied, the user

may choose the proximity type (default is RF-GAP). Two types of MDS may be run; metric

MDS using the cmdscale function from the stats package, and non-metric MDS using the

isoMDS function from the MASS packages. The number of dimensions can be selected using

the n dim argument (default is 2). The generic plot function may be used to generate a

scatterplot of the MDS embeddings based on the ggplot2 package [77]. If the labels, y, are

supplied, the points will be colored and shaped according to class if y is of factor type, or

just colored according to scale if y is numeric. See an example in Listing 5.5.

# Defining the dataframe and labels

x <- iris[, -5]

y <- as.factor(iris[, 5])

# Get the non -metric MDS embeddings

mds <- rf_mds(x, y)

plot(mds , y)
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5.6 Outlier Detection

Random forest proximities provide a means of assigning outlier scores in a classification

setting. Most outlier/anomaly detection methods are unsupervised where class labels are

not used or not available. We briefly describe the random forest proximity-based outlier

scoring.

1. For a given observation xi, compute the raw outlier score
∑

xj∈class(xi)
n

prox2(xi,xj)

2. For each class, calculate the median and mean absolute deviation (MAD) of the scores

3. Standardize the raw score, subtracting the mean and dividing by the MAD

The original description of this algorithm (see [47]) suggests carefully observing obser-

vations exceeding an outlier score threshold of 10. However, the outlier scoring appears to

depend on the dataset, type of proximity, and scaling of the dataset and proximities.

To compute the outlier scores, we use the function rf outliers which takes the a

dataframe or rf proximities object, x, labels y, and proximity type as arguments. The

proximity type is ignored if an rf proximities object is supplied. Additionally, the user

may provide a pretrained ranger if x is the data matrix, rather than a proximity matrix.

rf outliers returns an object of S3 type rf outlier which is an array of the length of

the number of objects in the dataset x.

We extend the generic plot function to take the rf outlier S3 class. plot.rf outlier

provides a scatterplot of an MDS embedding where point sizes are scaled by the outlier

scores. The arguments min point size and scale factor determine the minimum point

size and the factor by which to scale the outlier scores to determine the point sizes of the

plot. See example code in Listing 5.7 with resulting Figure 5.2.

cars <- mtcars[, -2]

cyl <- as.factor(mtcars[, 2])

# Computing the outlier scores and plot the MDS embedding

out <- rf_outliers(x = cars , y = cyl)
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plot(out , data = cars , y = cyl)

Listing 5.7: Here we determine the RF-GAP proximity outlier scores for the mtcars dataset using

the number of cylinders as the data labels and subsequently generate a scatterplot using the outlier

scores to scale the point sizes.

Class

4

6

8

scale

2

3

4

5

Fig. 5.2: MDS applied to the mtcars dataset with point sizes scaled according to the random forest
proximity outlier scores.

5.7 Conclusion

The rfgap package allows the user to simply generate three types of random forest

proximities, including RF-GAP proximities as defined in 3. We make it simple for the user

to use and evaluate the most common proximity-based applications including imputation,

visualization, and outlier detection. In the future, we will include additional applications,

including variable prototyping, artificial data upsampling, and multi-modal learning.



CHAPTER 6

RF-PHATE1

6.1 Introduction

In the ever-growing presence of large, high-dimensional data, dimensionality reduction

plays an important role in the data preprocessing pipeline. In many cases, high-dimensional

data can be well-described in much lower dimensions. In some cases, collected feature

variables may be unimportant or uninformative, while in others, redundant information is

captured. Dimensionality reduction is typically done in one of two ways: feature selection

and feature extraction. In the first case, relevant features pertaining to some task are

typically chosen via a backward or forward selection process, as is often done in the context

of linear regression. In the latter case, new features are generated from existing variables.

Perhaps the most prevalent example of this is principal components analysis (PCA [78])

which performs a change of basis of the original data and the number of components is

selected according to the amount of variance explained by the components. Additional

feature extraction techniques include multidimensional scaling (MDS [2]), and non-negative

matrix factorization (NMF [79]). However, such methods are generally used in preparation

for additional downstream tasks and are not usually intended for or adequate to present

visual representations of high-dimensional data. Additionally, PCA and NMF are linear

methods and thus incapable of modeling non-linear interactions in the latent space.

Non-linear approaches have been designed to overcome this inherent weakness. For

example, manifold learning approaches assume that the data are sampled from a low-

dimensional manifold embedded in a high-dimensional space and are designed to find

the underlying (usually non-linear) manifold structure. Some examples of well-known

1Much of the foundational work for this chapter was published in the IEEE Statisti-
cal Signal Processing Workshop in July 2021 [19]. The original article can be found at
https://ieeexplore.ieee.org/document/9513749. The IEEE does not require individuals working on a thesis
to obtain a formal reuse license.
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manifold learning approaches include t-distributed stochastic neighborhood embedding (t-

SNE [80]), uniform manifold approximation and projection (UMAP [4]), isometric mappings

(e.g., Isomap [3]), the potential of heat diffusion for affinity-based transition embedding

(PHATE [17]), diffusion maps (DM [18]), and autoencoders [81]).

However, each of these approaches is unsupervised; auxiliary information (e.g., class

labels) is ignored or unavailable. Supervised dimensionality reduction approaches use this

additional information to further distinguish observational distributions. Supervised adap-

tations for some manifold learning approaches have been formed. For example, supervised

versions of t-SNE, UMAP, and Isomap have been used for both classification and visual-

ization [6, 82–85]. In these examples, class labels are directly incorporated in the distance

metric or kernel function used in the construction of the latent space, inducing exagger-

ated class separation and making the embedding impractical as a preprocessing step for

a downstream classification task. Additionally, the proposed kernel constructions are only

intended for classification tasks and are not defined for continuous labels.

In spite of the weaknesses of many existing supervised dimensionality reduction al-

gorithms, making use of auxiliary information may be useful in differentiating class-based

distributions or recovering information in noisy datasets. We seek to find a supervised dis-

tance measure that preserves observational relationships without disturbing the underlying

manifold structure. To this end, we introduce a supervised visualization approach that in-

corporates random forest learning [10] and diffusion-based dimensionality reduction [18,86],

following advances from PHATE [17] to extract information through a diffusion process

optimized for visualization. Hence, we name our visualization technique RF-PHATE. We

extend PHATE’s algorithm leveraging a damping factor related to Google’s PageRank al-

gorithm [87] to overcome problems related to non-uniform data sampling. Our approach

naturally incorporates variable importance from the trained random forest and provides a

noise-resilient visualization of the feature space which may be used for data exploration. We

show that RF-PHATE outperforms other dimensionality reduction methods in preserving

the feature importance relative to the supervised problem.
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6.2 Supervised Dimensionality Reduction

Dimensionality reduction algorithms can generally be categorized into three major

groups: principal-component-based reduction, matrix factorization, and manifold learning

approaches [88]. The first two categories are typically used as data preprocessing steps and

are not usually intended for visualization. We discuss those here.

Principal components analysis (PCA) determines a projection onto a linear subspace

where the explained variance is maximized [78]. This common approach is often used for

preprocessing high-dimensional data. Its frequent usage is due to its quick implementation

speed and simplicity. The earliest supervised rendition of principal components analy-

sis (SPCA) performs a subset selection of features that are most highly correlated with the

data labels onto which PCA is then applied to generate a new feature space to be used in the

regression problem [89]. The primary motivation for this approach was to handle datasets

where the number of features exceeds the number of observations (p > n), which can be cru-

cial for some downstream tasks. Another variation of SPCA was introduced in [90] based on

probabilistic PCA. Here the authors attempt to model the covariance between the data and

its associated labels. In [91], a kernelizable variation of SPCA was introduced with the aim

of improved classification and visualization. Principal-component-based methods are typi-

cally computationally efficient and thus suitable for large data; however, PCA is linear and

does not therefore accurately capture non-linear relationships in the data structure in low

dimensions. Additionally, the number of components selected is usually determined based

on the global variance explained and does not adequately capture local relationships [90].

Another related and common approach is linear discriminant analysis, or LDA [92].

Similar to PCA, LDA seeks a linear combination of features to maximize explained variance

but does so based on class labels. An extension of LDA was adapted for high-dimensional

data in [93] and shown to be useful in some biological applications. Partial least squares

regression (PLS) and partial least squares-discriminant analysis (PLS-DA) are bilinear fac-

tor models which transform both the feature and response spaces and seek to optimally fit

a linear model to the response variables [94]. PLS is often used in chemometrics [37, 94]
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and is well-suited for problems with multicollinearity, but is not generally intended for

visualization. Both LDA and PLS are not suitable for learning non-linear relationships.

Non-negative matrix factorization or NMF [79] seeks to decompose a data matrix Xn×p

into the product of two matrices Un×d and Vd×p, by minimizing the Frobenius norm of the

difference between X and UV while restricting the entries of U and V to be nonnegative.

The rows of V can be regarded as basis vectors while the columns of U form the axes of the

lower-dimensional space [95]. A number of supervised and semi-supervised modifications to

NMF (SNMF or SSNMF) have been proposed, such as constrained NMF [96], structured

NMF [97], and NMF for constrained clustering [98]. Most of these approaches use the labels

in a regularization term in the optimization problem. The authors of [8] proposed a semi-

supervised NMF with both similarity and dissimilarity regularization terms. In [99–101]

NMF was used for low-dimensional visualization. However, NMF is still a linear method

and therefore does not capture the intrinsic geometric structure of nonlinear data [102].

In addition, supervised versions of NMF tend to accentuate class differences in clusters,

providing inflated separation between groups, and tight clustering within groups. These

supervised approaches are also unsuitable for continuous labels.

6.3 Supervision in Manifold Learning

Manifold-based dimensionality reduction methods attempt to discover the low-dimensional

manifold from which the data is sampled. These approaches are capable of modeling non-

linear relationships between data points and are suitable for finding visually-meaningful

data representations in low dimensions. A few examples are briefly described below.

Isometric mapping or Isomap [3] forms a k-nearest neighbor (k-NN) graph using Eu-

clidean distances and seeks to find the shortest path between nodes, thus approximating

the true geodesic distances upon which MDS is applied for dimensionality reduction. T-

SNE [80] constructs a graph of similarities between observations in the form of conditional

probabilities. A low-dimensional probability distribution (a t-distribution) is found using

gradient descent to optimize the KL divergence between the high- and low-dimensional

distributions. T-SNE performs well at reconstructing local similarities but tends to lose
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the global structure. UMAP [4] works similarly to t-SNE but makes use of fuzzy logic

and nearest neighbor neighbor-descent (NN-descent) to speed up computations. UMAP

maintains local structure and does a better job than t-SNE at capturing global structure,

although this is largely attributed to a better initialization strategy [103]. Locally-linear

embedding (LLE [104]) uses weighted linear reconstructions of points based on the points’

nearest neighbors. These weights are used in an optimization problem to construct the

low-dimensional embedding. Diffusion maps (DM [18]) build a kernel (e.g., Gaussian) from

a Euclidean k-NN graph to calculate local similarities. The kernel is row-normalized to

form a diffusion operator to simulate the transition probabilities of a single step in a “ran-

dom walk”. Eigendecomposition is applied to the powered diffusion operator to map to

lower dimensions. PHATE [17] applies a novel kernel function, the α-decaying kernel, to

Euclidean distances to learn local similarities before applying diffusion steps to learn the

global data structure. MDS is applied to log-transformed rows of the powered diffusion

operator (this process is known as finding the potential distance) to form the embedding.

Laplacian Eigenmaps form another example where Euclidean k-NN or ϵ-ball distances form

a graph to be mapped to lower dimensions via some optimization function.

For most manifold learning algorithms, Euclidean distances are used to form a NN

graph to represent local relationships. The supervised counterparts typically use a class-

based dissimilarity measure instead of Euclidean distances. In each dissimilarity measure,

distances or affinities are defined conditionally upon an instance’s class.

For example, S-Isomap (a supervised variation of Isomap) uses a class-conditional vari-

ation of a Gaussian kernel function to accentuate the distance between classes and diminish

within-class distance and apply the original Isomap algorithm to the NN graph-based con-

structed from this dissimilarity (see Equation 6.1). This same dissimilarity measure was

used in an extension called ES-Isomap [6], in a supervised variation of locally linear em-

bedding called enhanced-supervised LLE (ESLLE [7]), in supervised Laplacian Eigenmaps,

S-LapEig [105], and a supervised version of t-SNE [83]:
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D′ (xi,xj) =


√
1− e

−D2(xi,xj)
β yi = yj√

e
D2(xi,xj)

β − α yi ̸= yj

(6.1)

Here, D(., .) denotes a distance function (usually Euclidean, though other distance metrics

were tried in [7]), β is typically set to the average distance between data points, and α

attempts to diminish separation between similar points of opposing classes.

Other dissimilarity measures have been introduced to artificially exaggerate class sep-

aration or understate intra-class distances. For example, the authors of [106] introduced

Equation 6.2 as a dissimilarity measure to perform WeightedIso, a supervised variation of

Isomap. This dissimilarity measure shrinks the distance between within-class observations

by a simple rescaling of the Euclidean distances.

D′(xi, xj) =


1
αD (xi, xj) yi = yj , α > 1

D (xi, xj) yi ̸= yj

(6.2)

Here the level of α has the effect of shrinking within-class distance while distances between

observations of opposing classes remain unchanged.

In [107], the authors introduced a variation of supervised locally linear embeddings

(SLLE) using the dissimilarity measure given by Equation 6.3 which additively increases

the distance between inter-class observations. The added distance is the maximum inter-

class distance scaled by the parameter α. The embedding tends to be sensitive to the choice

of α and tends to collapse class clusters if α is too large.

D′(xi, xj) =

 D (xi, xj) yi = yj

D (xi, xj) + αmaxD yi ̸= yj , 0 ≤ α ≤ 1
(6.3)

where D is the set of all pairwise distances of the training set.

In each of these approaches, class labels are incorporated to form supervised dissimi-

larity measures to accentuate class-based distance. The three similarities, given by Equa-

tions 6.1, 6.2, and 6.3, are commonly used in supervised manifold learning. In [108], Hajder-
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anj et al. formally analyzed these dissimilarity measures following the theoretical framework

of Balcan et al. [109], who developed a theory of kernel functions to assess their quality as

similarity measures. They define the “goodness” of a kernel function with respect to a given

learning problem, in this case, as a step in dimensionality reduction. Hajderanj et al. show

that the dissimilarity measures are not order-isomorphic functions and thus do not provide

optimal lower-dimensional representations when applied to manifold learning algorithms.

The authors conclude that these measures may aid in downstream classification tasks, but

should not be used in visualization as the manifold structure is destroyed.

Instead of directly incorporating class labels into a dissimilarity measure, we propose

to use random forests to learn the local data structure. Random forests naturally provide a

measure of similarity via the random forest proximities discussed previously. In Section 6.4,

we discuss the advantages of using random forest proximities for dimensionality reduction,

emphasizing the benefits of using RF-GAP proximity measures from [16].

6.4 Random Forest-Based Dimensionality Reduction

Random forests are highly-effective supervised learners which are easy to train given

their flexibility with the variable type (they handle mixed categorical and continuous vari-

ables) and little or no parameter tuning [10]. In addition to high predictive accuracy,

random forests provide a measure of similarity or proximity. The random forest proximities

are supervised measures that are driven by but do not directly incorporate data labels;

the decision space of random forests partitions data according to class but the similarity

measures are not rescaled or exaggerated conditional upon the class labels as do most of the

supervised manifold learning approaches described in Section 6.2 (See Equations 6.1, 6.2

and 6.3). Furthermore, the use of random forests provides a means of generating supervised

similarities to unlabeled, out-of-sample points.

Random forests are formed by ensembling randomized binary-recursive decision trees.

In each tree, the recursion process partitions or splits the data favorable to class purification

(in a classification problem) or goodness of fit (in a regression problem).

In a classification forest, a non-weighted majority vote determines the prediction of a
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new observation. For regression, an average response value is used. Thus, the random forest

can be seen as a nearest-neighbor decision algorithm, where “neighbors” are observations

in a shared terminal node. These local neighborhoods form the bases for a supervised

similarity measure which may be used as a weighted k-NN graph used in manifold learning.

The space of terminal nodes is used to define a similarity measure between observations.

The recursive partitioning based on feature variables organizes observations according to

split-points across variables which are most useful at partitioning data according to class

purity or goodness of fit. Observations which frequently share terminal nodes are similar to

each other with respect to important variables relative to the supervised problem. Observa-

tions which never reside together are distant from each other in the same regard. Thus, the

frequency in which observations reside in the same terminal nodes is an indication of the

closeness of the observations in the context of the supervised task. We emphasize that this

distance measure naturally captures variable importance pertaining to the decision space.

While two observations may be considered similar in certain dimensions of a Euclidean

space, they may have a low proximity value if they differ in variables important to the

supervised task. Proximity-based distance is also robust to noise variables, making them

useful for high-dimensional data as may be the case in biological contexts.

Analysis of both the originally defined and OOB proximities was performed in Chap-

ter 3, in which we concluded that neither definition accurately reflects the random forest’s

general learning. In the same chapter, we argue that RF-GAP proximities, which preserve

the random forest’s decision space, can be used to improve proximity-based applications.

However, as the RF-GAP proximities do not form a proper kernel function (they are not

symmetric nor positive-definite), we redefine the main diagonal entries as 1 and symmetrize

them as a fix. With these adjustments, we can use RF-GAP proximities as a supervised

kernel to be used in manifold learning.

Random forests have been shown to behave as a k-NN algorithm with a weighted, adap-

tive metric [43]. The proximities produced by the random forest can therefore be viewed

as locally-adaptive affinities in the predictor space. Manifold learning approaches typically
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start with a notion of local distance or affinity, often in the form of a k-NN graph. Thus,

the random forest proximities prove useful in manifold learning for reducing dimensionality

to two or three dimensions for visualization. Indeed, random forest proximities have been

widely used in the context of visualization [15,52–54], but almost exclusively in conjunction

with MDS, although they have been used in t-SNE [55]. MDS with random forest proximi-

ties can provide meaningful visualizations when applied to small, simple datasets, but more

advanced manifold learning approaches allow for useful, low-dimensional representations for

noisy, large datasets. In Section 6.5, we discuss recent advances in diffusion-based processes

optimized for visualization suitable for large datasets.

6.5 Diffusion-based Information Geometry

The diffusion process begins with the construction of a k-NN graph from pairwise

Euclidean distances. A kernel function (typically Gaussian with a fixed bandwidth) is

applied to the graph to represent observational similarities in an N×N matrix. The matrix

is row-normalized ensuring each row’s entries sum to one. This row-stochastic matrix, P , is

known as the diffusion operator and represents the probabilities of all possible single-step

transitions between observations. High-affinity values between observations suggest that

observations are similar and their transition probabilities will also be high. Through a

powering process, P t represents a random walk across the manifold structure where global

relationships are learned. Through the powering process, small probabilities are quickly

reduced to zero, providing a means of filtering or denoising the learned manifold. Finally,

eigendecomposition is applied to the powered diffusion operator to map to lower dimensions.

Although the process is intuitive and works well for dimensionality reduction, diffu-

sion maps has some weaknesses that prevent it from creating good visualizations in many

contexts. First, a fixed bandwidth for all points is often not appropriate as the data may

not be sampled uniformly. Second, choosing a good time scale t for the diffusion process is

difficult and largely overlooked in classical diffusion maps. A small value of t can lead to

insufficient denoising and an overemphasis on the local structure while a large value of t can

lead to oversmoothing and an overemphasis on the global structure. Third, the eigende-
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composition in diffusion maps often places the information learned in P t into different and

higher dimensions [17,110], which is not amenable for visualization. We discuss counters to

each of these weaknesses.

Instead of applying a kernel function to Euclidean distances, we encode local similarities

as random forest proximities. These locally-adaptive similarities partially overcome the

weakness of a fixed-bandwidth kernel function. However, if the data has many partially

disjoint clusters, global relationships may not be properly reflected in the transition process.

For example, the transition process may favor a single cluster with only transition inlets but

no outlets, leading to over- and under-represented clusters after diffusing. We counter this

scenario with the introduction of a damping factor, β ∈ (0, 1], inspired by the PageRank

algorithm in [87].

Created in the context of ranking internet pages, the damping factor was inspired to

overcome the problems of “spider traps” and dead ends, that is, sets of links from which all

out-links pointed amongst themselves or towards a single page, forming an inward-facing

“cluster” of links. Analogously, we counter poor exit probabilities by redefining the diffusion

operator P as Pβ = β
NP + (1−β)

N 11T , where 1 is a vector of ones of length N and β has a

default of 0.9. Here, the transition probabilities allow for random jumps or “teleportation”,

creating small exit probabilities from isolated clusters or dead-ends.

To properly select t, we follow the inspiration of PHATE [17], which uses von Neumann

Entropy (VNE) of the diffused operator to provide a good choice of t for visualization. The

VNE of the diffused operator P t
β is the Shannon entropy of the normalized eigenvalues of P t

β.

Since the entropy of a discrete random variable is maximized with a uniform distribution,

the VNE is a soft proxy for the number of significant eigenvalues of P t
β. The more significant

eigenvalues there are the closer the normalized eigenvalues are to a uniform distribution,

and the higher the VNE. Typically, t is chosen to be around the transition from rapid to

slow decay in the VNE as this is considered to be a point in the diffusion process where

noise has been eliminated and oversmoothing begins [17].
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To overcome the weaknesses stemming from the eigendecomposition in standard dif-

fusion maps, we apply an information distance to the powered diffusion operator P t
β to

create the potential distance [17]. The potential distance is calculated by applying a log-

transformation on P t
β and then calculating the Euclidean distance between rows, although

other information distances can also be used [111]. The potential distance is sensitive to dif-

ferences in both the tails and the more dense regions of the diffused probabilities, resulting

in a distance that preserves both local and global relationships. These distances are then

embedded into low-dimensions using metric MDS, as is done in Isomap [3]. This extracts

the information in low dimensions for better visualization.

The RF-PHATE algorithm proceeds as follows. Given the training dataset M =

{(X ,Y)} = {(x1, y1), (x2, y2), · · · (xN , yN )}, we generate the low-dimensional embedding

G following the steps below.

1. Train the random forest (RF) on M

2. Generate the RF-GAP [16] proximities (P) from the RF

3. Row-normalize P to form the initial diffusion operator P

4. Apply damping to form Pβ = β
NP + (1−β)

N 11T

5. Perform t steps as selected using VNE to form P t
β

6. Determine the potential distance Dt from P t
β

7. Form the embedding G applying MDS to Dt

6.6 Experimental Results

Here we demonstrate the utility of RF-PHATE in data exploration. The use of random

forests aids the method’s ability to capture variable importance in the lower dimensional

embedding. In Figure 6.1, we display the RF-PHATE embedding of the Optical Handwrit-

ten Digits training dataset [51] which consists of 3828 handwritten digits (0 - 9) scaled down

to 8 × 8 pixels. Each pixel is assigned a value from 0 to 16 depending on the gray-scale
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intensity. The trained random forest identified the features V44, V22, and V43 as the most

important features to classify the digits. In light of the RF-PHATE embedding, V44 and

43 appear to be important in distinguishing the digits 3, 5, and 9 from the remaining digits.

The figure also shows that V22 can be used to distinguish digits 5 and 6 from the rest. These

particular pixel locations make sense for these distinctions, given they represent values in

the lower-left hand part of the digit, and upper right, respectively (see Figure 6.2).
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Fig. 6.1: The RF-PHATE embedding of the Optical Handwritten Digits dataset colored by digit
label and the top three important variables for classification, respectively. Here we see that pixel
44 can be used to distinguish digits 3, 5, and 9 from the remaining digits. Pixel 22 appears to be
useful at discriminating digits 5 and 6 from the rest. This makes sense in light of the positions of
these pixels, as demonstrated in Figure 6.2

In Figure 6.3, we color the RF-PHATE embedding of the Car Evaluation Database [112]

according to class and important variables. The dataset consists of 1728 instances of cars

with six variables including buying price, maintenance costs, number of doors, person ca-

pacity, luggage boot size, and safety evaluation. The object of this dataset is to predict the
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Fig. 6.2: An example image from the Optical Handwritten Digits dataset with pixels 43, 22, and
44 highlighted in red, orange, and yellow, respectively. Viewed in conjunction with the RF-PHATE
embedding in Figure 6.1, it is clear to see why pixels 43, and 44 may be used to discern digits 3, 5,
and 9 from the others and why pixel 22 helps differentiate between 5, 6, and the rest.

car acceptability level. According to the trained random forest, the most important variable

for determining the car’s acceptability level is the safety rating. The next two important

variables are the car’s carrying capacity and price. It is clear in the figure that the safety

rating partitions the dataset in two, with high safety ratings in the right-most clusters and

medium-low safety on the left. Cars that only hold two people are always considered un-

acceptable according to the dataset ratings. This can be seen in the small cluster on the

bottom left of the graph. After accounting for both safety and capacity, the smaller clusters

are then split into buying price levels. Cars that are labeled “very good” always have either

a low or medium buying price, but never a high or very high price.

Unsupervised dimensionality reduction methods tend to fail in the presence of noisy

variables. Supervised methods such as PLS and LDA determine class-based discriminating

features and are thus capable of handling noise variables. However, such linear methods

are not optimized for low-dimensional visualizations. In noisy settings, supervised manifold

learning approaches that use the dissimilarity measures given by Equations 6.1, 6.3, and 6.2

tend to put same-class points into very tight clusters, while at the same time perfectly sep-

arating classes. This can be suitable for downstream classification but does not accurately

exhibit the data’s structure.

Due to random forest’s noise resilience, RF-PHATE can produce meaningful embed-

dings even in the presence of noise variables. In Figure 6.4, we display the RF-PHATE

embedding of the Iris [113] dataset with an additional 500 noise variables, each sampled
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Fig. 6.3: An RF-PHATE embedding of the Car Evaluation Database. The top important variable,
safety rating, partitions the embedding into two linearly-separable sections between the “high”
class and the remaining. From here, the data is conditionally partitioned based on capacity and
then buying price. Any car with a person capacity of two is automatically assigned the label
“unacceptable”. “Very good” labels are always associated with high safety ratings and low or
medium buying prices.

from a uniform [0, 1] distribution. The original four variables of the Iris dataset are also

normalized to the same scale. In the same figure, we compare 18 additional embeddings on

the same dataset, 7 supervised and 11 unsupervised. The RF-PHATE embedding closely

resembles the expectation of the familiar data’s structure.

6.7 Quantifying an Embedding’s Fit

The quality of an embedding can be difficult to quantify. In an unsupervised setting,

order-preserving or rank-based distance correlations may be used to determine goodness of

fit, such as Mantel’s test [114] or DEMaP [17]. However, in supervised settings, the data

distributions may be class-conditional and the goals of downstream tasks may not align
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Fig. 6.4: 20 embeddings of the Iris dataset with an additional 500 uniformly distributed noise vari-
ables. Supervised embeddings are shown with white backgrounds, while unsupervised are shown
with grey backgrounds. The RF-PHATE embeddings (shown with β values of 0.9 and 1) exhibit
a structure true to the data. None of the unsupervised embeddings display any meaningful visu-
alizations. Class-dissimilarity manifold learning approaches (ES-Isomap and ES-LLE) completely
destroy the data structure.
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with those of unsupervised settings. In some supervised cases, a k-NN classifier is used

to assess the quality of the embedding [6, 7]. However, this only assesses the local data

structure and is not a global indicator of fit. Here we present a new approach to quantify

supervised embeddings, using a local means (k-NN) to describe a global measure of variable

importance.

Practitioners often seek a selection of variables that are best suited for a prediction

task. It is often the case that noisy or otherwise unusual variables are collected alongside

useful data. To assess supervised embeddings, we determine to what extent important

variables are used in the embedding structure. One means of ascribing variable importance

is through a permutation process. Permutation feature importance performs a random

permutation across all feature variables taken one at a time. The model’s score (error or

loss) is assessed after each permutation. If the error is significantly increased after a certain

variable permutation, that variable is deemed important for the supervised task.

We assess the embedding quality by determining to what extent variables important

to the supervised task are used in the embedding generation. That is, embeddings useful

in classification should also be useful in constructing the embedding space. The process is

described below.

1. Determine the permutation variable importance scores using a k-NN classifier

2. Use a k-NN regressor to predict the embeddings space using the original data features

3. Run the permutation variable importance scores using the k-NN regressor

4. Compute the correlation between the two sets of importance scores

To summarize our results, we computed the importance correlation scores using 19

datasets from the UCI repository [51]. The permutation scores were run 10 times per

dataset. We normalized each correlation, ρ, across each dataset, by differencing with the

maximum correlation within the dataset. That is, we compute ρ̄ = ρmax − ρ (lower is

better). We present the summarized results in Figure 6.5. Here we see that RF-PHATE
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best captures variable importance in low dimensions. Additionally, and not unexpectedly,

each of the supervised methods outperforms the unsupervised ones at this task.
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Fig. 6.5: Summarized results of the normalized importance correlations across 19 UCI datasets (lower
is better) reduced to two dimensions. RR-PHATE with β = 0.9 most consistently captures variable
importance in lower dimensions. As expected, each of the supervised embeddings outperform the
unsupervised ones according to this measure.

6.8 Out-of-Sample Extension

Modern manifold learning algorithms produced fixed coordinates in the latent space,

but do not typically provide a means to extend to new observations. That is, to incorpo-

rate previously unseen data in the embedding, the algorithm must be rerun in its entirety.

Additionally, the use of a full pair-wise distance matrix can be impractical when work-

ing with large datasets. To overcome these issues, we provide an autoencoder extension

of RF-PHATE inspired by geometry-regularized autoencoders (GRAE) [115]. In the pa-

per, the authors use a learned manifold embedding as a regularization term added to the

reconstruction loss of a standard autoencoder.

An autoencoder (AE) is a type of artificial neural network often used for dimensionality

reduction. Autoencoders take an input, X, and learn an encoder function to compress

the input into a lower dimensional space while simultaneously learning a decoder function

to map the lower-dimensional embedding to the original input space. That is, defining

an encoder function fe(X), a decoder function fd(Z), and a loss or objective function
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L(fe, fd) = Lrecon(X, fd(fe(X)), the vanilla autoencoder seeks to minimize L(fe, fd) via

stochastic gradient descent or a variant thereof, where Lrecon is the reconstruction loss

(e.g., MSE).

Given a learned geometric embedding, G, GRAE defines the autoencoder’s loss function

as Lg(fe, fd) = Lrecon(X, fd(fe(X)) + λLgeom(fe(X), G). Here, Lgeom prevents fe from

learning a latent space that differs drastically from the provided manifold, and the parameter

λ determines the level at which the manifold is used to encode X. The purpose of GRAE

is to provide a manifold learning approach that is both extendable (i.e. able to generate

embedding coordinates for previously unseen points) and invertible (the original points

may be constructed via the decoder). We seek to use the regularized autoencoder as an

out-of-sample extension, seeking a good approximation for the RF-PHATE embedding.

To incorporate the random forest’s learning, we adapt the geometry-regularized au-

toencoder’s structure to reconstruct random forest proximities instead of the original points.

Using a trained random forest, we can easily extend proximities to previously unseen data.

The proximity measures from the new points to the original training data provide a starting

point to extend the embedding while incorporating the random forest’s learning.

To extend RF-PHATE to a set XE , a random forest is first trained on M = {(X ,Y)} =

{(x1, y1), (x2, y2), · · · (xN , yN )} from which the proximities, P, are extracted. An initial

RF-PHATE embedding is generated from these proximities following the steps described in

Section 6.5. An autoencoder is then trained to reconstruct the proximities with the RF-

PHATE embedding as regularization in the geometry-regularized loss function Lg to use the

intrinsic manifold structure to guide the autoencoder’s learning. We attempted adaptations

to GRAE in order to better preserve the random forest’s learning in the AE.

Here we briefly describe our variations of the GRAE algorithm. The first variation

adds a linear layer for regression to the bottleneck layer. In addition to the reconstruction,

the model attempts to predict the random forest proximities directly from the bottleneck

layer. The second approach takes the RF proximities as the initial input and attempts to

reconstruct the original data. We call this architecture PROXLAYER. The final approach
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reconstructs the RF proximities and uses proximity-based landmarks from the training set;

we call this architecture RFPROXCON (random forest proximity reconstruction). We find

this architecture provides the truest RF-PHATE embeddings and describe the model in

more detail below.

Let xE ∈ XE . For each x ∈ X , we construct a set of proximities {p(xE ,x)}x∈X using

the trained random forest. We find that the use of proximities in the reconstruction provides

an embedding truer to the original RF-PHATE embedding, as measured by using Mantel’s

test [114]. However, for large training sets, it is impractical to reconstruct the full set of

proximities {p(xE ,x)}x∈X . To combat this, we provide use a proximity-based landmark

construction to select observations to which we construct the proximities.

We wish to select landmarks that are good representatives of each class. Since the

proximities define a measure of similarity, we select the observations with the highest av-

erage within-class proximity values. We thus only need to reconstruct a proximity vector

of length Nlandmark when training the autoencoder. Not only does this approach speed up

training time, but the proximity-based landmarks provide more stereotypical class repre-

sentations, further denoising the learned embedding. We provide Figure 6.6 to demonstrate

RFPROXCON architecture.

Figure 6.7 shows an example comparing a 2D RF-PHATE embedding using 20% of

the MNIST handwritten digit training dataset (12,000 observations) and extending to the

remaining 80%. Here we used 1,200 landmarks (10%) for the proximity reconstruction. The

landmarks show typical examples from each of the 10-digit classes. The extended embedding

(on the out-of-sample 80%) takes the same basic form as the original embedding formed by

the 20% sample. The neural network is able to interpolate areas where no existing points

lay in the original embedding.

To assess the different architectures, we compare the neural network embeddings on a

test set to those generated using the full RF-PHATE algorithm. Mantel’s test allows us to

compute the correlations between matrices, in this case, between the matrices of pair-wise

distances of the constructed embeddings. We aggregated results using our four architectures
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Fig. 6.6: The RF-PHATE autoencoder-based extension, RFPROXCON. The autoencoder recon-
structs the proximity landmarks selected as those observations which have the highest within-class
proximity mean. The bottleneck layer is regularized by the RF-PHATE embedding at the time of
training. Once trained, the embedding may be extended to previously unseen observations.
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Fig. 6.7: A representation of the RF-PHATE geometry-regularized autoencoder embedding. Here we
used a small subset (20%) of the MNIST training dataset to construct the RF-PHATE embeddings
for the regularization of the autoencoder. Of these, 10% were selected as prototypical landmarks
based on the highest average within-class proximity values. The center plot shows the embedding
extended to the remaining 80% of the data, while the right plot shows the landmark points used for
the proximity reconstruction.

across 212 datasets, five λ values (1, 10, 100, 1,000, and 10,000) and five repetitions each.

We split each dataset into 70% training data and 30% test data. We trained each neural

network using the training data and generated embeddings using each network and the full

RF-PHATE algorithm. The Mantel test was used to compare the pairwise distances between

the neural network test embeddings and the RF-PHATE test embeddings. We found that

reconstructing the proximities using proximity-based landmarks in RFPROXCON provided

the most consistent results. See the summarized results in Figure 6.8.

6.9 Conclusion

The majority of dimensionality reduction algorithms, including manifold learning ap-

proaches, are unsupervised, making no use of auxiliary class information. Existing su-

pervised manifold learning algorithms form dissimilarity measures conditional upon class

labels which distorts the intrinsic data manifold, inducing exaggerated class separation and

producing asymmetric affinities. In this chapter, we formed a random-forest-based super-

vised manifold learning algorithm directly incorporating geometry- and accuracy-preserving

2Most of these datasets come from the UCI repository [51], including Banknote, Breast Cancer, Car,
Diabetes, Ecoli, Glass, Heart Disease, Hill Valley, Ionosphere, Iris, Liver, Optdigits, Parkinson’s, RNA-Seq,
Seeds, Tic-Tac-Toe, Waveform, and Wine. Additional datasets include a Raman spectra cellular dataset
used in [37], a version of the Titanic dataset from Kaggle, and an artificial tree dataset from [17].
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Fig. 6.8: The aggregated Mantel test results across 21 datasets, 5 λ values (1, 10, 100, 1,000,
10,000) and five repetitions each. The Mantel test was applied to the pairwise distances generated
using both the neural network embedding and the full RF-PHATE algorithm applied to a test set.
Higher correlations are associated with better distance preservation in the embedding. We compared
the original GRAE network using the RF-PHATE embedding for regularization, GRAE with an
additional regression head used to predict the proximity values (GRAEW/ REG), an adaptation that
takes the proximities as inputs (PROXLAYER), and RFPROXCON, which reconstructs landmark
proximities. Each was trained for 100 epochs in each experiment. Here, RFPROXCON provides the
best and most consistent results.

random forest proximities (RF-GAP proximities [16]) to form an information geometry in-

spired by PHATE [17], calling our approach RF-PHATE. RF-PHATE outperforms existing

supervised and unsupervised dimensionality reduction methods in preserving the variable

importance structure relative to the supervised task. Additionally, RF-PHATE is relatively

robust to noise and requires little to no parameter tuning to produce visually meaningful

results. Via a neural network, we are able to extend this embedding to new points without

rerunning the full algorithm, making RF-PHATE scaleable to larger datasets.



CHAPTER 7

CONCLUSION AND FUTURE WORK

This dissertation is comprised of two broad topics, random forest proximities and su-

pervised dimensional reduction. In Chapter 2 we discussed the reasons why random forests

remain relevant in modern machine learning where neural networks generally make head-

line appearances. We provided the background necessary to understand random forest

proximities, their construction, applications, and how they encode information in super-

vised learning. Previously defined proximities (described in the writeup as the “original”

and “oob” proximities) provide an intuitive way of transcribing a random forest’s learning

as pairwise affinities, but cannot directly explain the random forest’s prediction. For this

reason, we concluded that such proximities do not truly reflect the forest’s learning. As a

consequence, applications using these proximities do not mirror the decision space of the

forest, although they are constructed via this decision space.

In light of this, we developed a random forest proximity measure (RF-GAP proximities)

which does encode the voting points of the random forest and may be used to reconstruct

the forest’s predictions (see Chapter 3). The importance of this fact is not to show we may

circumvent the forest to make predictions, the random forest provides many more benefits

to the user in addition to prediction and pair-wise affinities are more costly to store than

the forest, instead, this affirms that applications making use of RF-GAP proximities better

represent the random forest.

We showed that RF-GAP proximities outperform other forest-based affinities in data

imputation, demonstrated their utility in detecting outliers, and can be used to visualize

relationships between observations and their variables which are important to their classi-

fication (via MDS) See Chapter 4. In regards to RF proximities, we:

• Defined a new RF proximity (RF-GAP) which preserves the RF-learned data geometry
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• Proved that RF-GAP proximities perfectly reconstruct RF predictions when used as

weights in a NN predictor. This was also verified empirically.

• Showed that RF-GAP proximities improve data imputation when compared to exist-

ing proximities

• Provided evidence to suggest RF-GAP improves common proximity-based applica-

tions, including imputation, visualization, and outlier detection

• Wrote an R package to develop and compare random forest proximities (see work at

https://github.com/KevinMoonLab/RF-GAP)

Although visualization via MDS provides some insight to the random forest’s learn-

ing, directly encoding low-dimensional embeddings this way is less beneficial for larger and

more complex datasets. In these situations, manifold learning approaches have been proven

useful. While most manifold learning approaches are unsupervised, we discussed variations

that incorporate class labels in various similarity measures in Chapter 6. These super-

vised manifold learning adaptations disrupt the intrinsic data manifold, or at best encode

different, class-based manifold structures.

Instead of artificially disrupting the manifold structure based on class, we proposed to

learn a supervised manifold that naturally encompasses supervision variable importance via

random forest proximities, using RF-GAP proximities in conjunction with diffusion-based

manifold learning. This supervised dimensionality reduction approach is a diffusion process

following visually-optimizing advances from PHATE [17] and is thus called RF-PHATE. We

showed that RF-PHATE preserves variable importance in low dimensions better than any

other compared supervised or unsupervised dimensionality reduction approach. Addition-

ally, we demonstrated its utility as a visual aid in understanding a dataset’s structure and

spatially relevant features. In summary, the primary results in Chapter 6 consisted of:

• Constructing a novel approach to supervised dimensionality reduction based on dif-

fusion and random forest proximities, called RF-PHATE.

https://github.com/KevinMoonLab/RF-GAP
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• Defining a new method for quantifying the fit of low-dimensional embeddings in a

supervised context.

• Demonstrating the utility of RF-PHATE in exploratory analysis.

• Providing an out-of-sample approach to embed new points using a proximity-reconstructing

autoencoder.

In addition to their use in RF-PHATE and the above-described applications, RF-GAP

proximities may benefit other applications as well. We describe a few items for future work

regarding these proximities in Section 7.1.

7.1 Future Works

Many datasets suffer from unbalanced class labels. In extreme examples, where a par-

ticular class is very uncommon, a classification algorithm can attain near-perfect predictive

accuracy by always predicting the dominant class. One method to overcome this issue is to

downsample the majority class. However, this is often not feasible especially when data is

limited. Another approach is to artificially upsample classes with fewer observations. Syn-

thetic minority over-sampling technique (SMOTE) [116] is a randomized k-NN-approach

method for upsampling.

RF proximities can be used for this problem by randomly selecting same-class obser-

vations and using proximities to weight the feature variables to simulate a new observation.

Although we have not yet extensively explored this approach, Figure 7.1b provides a com-

pelling example that RF upsampling may provide meaningful samples. Here we provide

the pair-wise variable plot of the Iris dataset along with that of 1000 RF-GAP-generated

artificial samples. The class-based, variable distributions appear to be similar to those of

the original dataset.

Multi-modal learning involves collecting and analyzing related data from different

spaces. For example, RNA-sequencing data may be collected alongside clinical data re-

lated to diseased persons. Both of these feature spaces are related to the same individual or

class of individuals, but the features themselves are different and somehow incompatible to
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(a) Pairwise variable plot of the iris dataset.
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(b) 1000 artificial points created using proximity-weighted sampling.

Fig. 7.1: A comparison of the pairwise variable plot of the Iris dataset with that of the upsampled
dataset. Here 1000 samples were generated using RF-GAP proximities as weights.
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Fig. 7.2: A depiction of the combining of spectral features with those of images via random forest
proximities.

directly join together in a tabular format. In such cases, information relative to the super-

vised task from each domain must be extracted separately and is often done so via neural

networks (see [117] for a survey), but random forest proximities have also been used in some

contexts [13, 14]. The proximities are used to form a space in which training features rele-

vant to both views are combined, either by addition or linear combination. Since RF-GAP

proximities preserve random forest learning, they may prove useful in concatenating learned

features to improve classification or other tasks. Figure 7.2 provides a symbolic example of

combining proximities to join spectral features with images.

Random forest proximities may be supplied in any machine learning method which

makes use of pairwise distances or similarities. They naturally encode variable importance

relevant for supervised models without artificially disrupting the underlying data structure.

We will continue to seek applications fitting these supervised similarities and hope to find

additional benefits of RF-GAP proximities.
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