1,673 research outputs found

    Clutter-Based Dimension Reordering in Multi-Dimensional Data Visualization

    Get PDF
    Visual clutter denotes a disordered collection of graphical entities in information visualization. It can obscure the structure present in the data. Even in a small dataset, visual clutter makes it hard for the viewer to find patterns, relationships and structure. In this thesis, I study visual clutter with four distinct visualization techniques, and present the concept and framework of Clutter-Based Dimension Reordering (CBDR). Dimension order is an attribute that can significantly affect a visualization\u27s expressiveness. By varying the dimension order in a display, it is possible to reduce clutter without reducing data content or modifying the data in any way. Clutter reduction is a display-dependent task. In this thesis, I apply the CBDR framework to four different visualization techniques. For each display technique, I determine what constitutes clutter in terms of display properties, then design a metric to measure visual clutter in this display. Finally I search for an order that minimizes the clutter in a display. Different algorithms for the searching process are discussed in this thesis as well. In order to gather users\u27 responses toward the clutter measures used in the Clutter-Based Dimension Reordering process and validate the usefulness of CBDR, I also conducted an evaluation with two groups of users. The study result proves that users find our approach to be helpful for visually exploring datasets. The users also had many comments and suggestions for the CBDR approach as well as for visual clutter reduction in general. The content and result of the user study are included in this thesis

    Document Collection Visualization and Clustering Using An Atom Metaphor for Display and Interaction

    Get PDF
    Visual Data Mining have proven to be of high value in exploratory data analysis and data mining because it provides an intuitive feedback on data analysis and support decision-making activities. Several visualization techniques have been developed for cluster discovery such as Grand Tour, HD-Eye, Star Coordinates, etc. They are very useful tool which are visualized in 2D or 3D; however, they have not simple for users who are not trained. This thesis proposes a new approach to build a 3D clustering visualization system for document clustering by using k-mean algorithm. A cluster will be represented by a neutron (centroid) and electrons (documents) which will keep a distance with neutron by force. Our approach employs quantified domain knowledge and explorative observation as prediction to map high dimensional data onto 3D space for revealing the relationship among documents. User can perform an intuitive visual assessment of the consistency of the cluster structure

    Uncertainty-Aware Principal Component Analysis

    Full text link
    We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach

    VR BioViewer - A new interactive-visual model to represent medical information

    Full text link
    Virtual reality (VR) techniques to understand and obtain conclusions of data in an easy way are being used by the scientific community. However, these techniques are not used frequently for analyzing large amounts of data in life sciences, particularly in genomics, due to the high complexity of data (curse of dimensionality). Nevertheless, new approaches that allow to bring out the real important data characteristics, arise the possibility of constructing VR spaces to visually understand the intrinsic nature of data. It is well known the benefits of representing high dimensional data in tridimensional spaces by means of dimensionality reduction and transformation techniques, complemented with a strong component of interaction methods. Thus, a novel framework, designed for helping to visualize and interact with data about diseases, is presented. In this paper, the framework is applied to the Van't Veer breast cancer dataset is used, while oncologists from La Paz Hospital (Madrid) are interacting with the obtained results. That is to say a first attempt to generate a visually tangible model of breast cancer disease in order to support the experience of oncologists is presented

    A visual method for high-dimensional data cluster exploration

    Full text link
    Visualization is helpful for clustering high dimensional data. The goals of visualization in data mining are exploration, confirmation and presentation of the clustering results. However, the most of visual techniques developed for cluster analysis are primarily focused on cluster presentation rather than cluster exploration. Several techniques have been proposed to explore cluster information by visualization, but most of them depend heavily on the individual user's experience. Inevitably, this incurs subjectivity and randomness in the clustering process. In this paper, we employ the statistical features of datasets as predictions to estimate the number of clusters by a visual technique called HOV3. This approach mitigates the problem of the randomness and subjectivity of the user during the process of cluster exploration by other visual techniques. As a result, our approach provides an effective visual method for cluster exploration. © 2009 Springer-Verlag Berlin Heidelberg

    Visually Mining Interesting Patterns in Multivariate Datasets

    Get PDF
    Data mining for patterns and knowledge discovery in multivariate datasets are very important processes and tasks to help analysts understand the dataset, describe the dataset, and predict unknown data values. However, conventional computer-supported data mining approaches often limit the user from getting involved in the mining process and performing interactions during the pattern discovery. Besides, without the visual representation of the extracted knowledge, the analysts can have difficulty explaining and understanding the patterns. Therefore, instead of directly applying automatic data mining techniques, it is necessary to develop appropriate techniques and visualization systems that allow users to interactively perform knowledge discovery, visually examine the patterns, adjust the parameters, and discover more interesting patterns based on their requirements. In the dissertation, I will discuss different proposed visualization systems to assist analysts in mining patterns and discovering knowledge in multivariate datasets, including the design, implementation, and the evaluation. Three types of different patterns are proposed and discussed, including trends, clusters of subgroups, and local patterns. For trend discovery, the parameter space is visualized to allow the user to visually examine the space and find where good linear patterns exist. For cluster discovery, the user is able to interactively set the query range on a target attribute, and retrieve all the sub-regions that satisfy the user\u27s requirements. The sub-regions that satisfy the same query and are neareach other are grouped and aggregated to form clusters. For local pattern discovery, the patterns for the local sub-region with a focal point and its neighbors are computationally extracted and visually represented. To discover interesting local neighbors, the extracted local patterns are integrated and visually shown to the analysts. Evaluations of the three visualization systems using formal user studies are also performed and discussed
    • …
    corecore