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Abstract

Data mining for patterns and knowledge discovery in multivariate datasets are very impor-
tant processes and tasks to help analysts understand the dataset, describe the dataset, and
predict unknown data values. However, conventional computer-supported data mining
approaches often limit the user from getting involved in themining process and perform-
ing interactions during the pattern discovery. Besides, without the visual representation
of the extracted knowledge, the analysts can have difficultyexplaining and understanding
the patterns. Therefore, instead of directly applying automatic data mining techniques, it
is necessary to develop appropriate techniques and visualization systems that allow users
to interactively perform knowledge discovery, visually examine the patterns, adjust the
parameters, and discover more interesting patterns based on their requirements.

In the dissertation, I will discuss different proposed visualization systems to assist
analysts in mining patterns and discovering knowledge in multivariate datasets, including
the design, implementation, and the evaluation. Three types of different patterns are
proposed and discussed, including trends, clusters of subgroups, and local patterns. For
trend discovery, the parameter space is visualized to allowthe user to visually examine the
space and find where good linear patterns exist. For cluster discovery, the user is able to
interactively set the query range on a target attribute, andretrieve all the sub-regions that
satisfy the user’s requirements. The sub-regions that satisfy the same query and are near
each other are grouped and aggregated to form clusters. For local pattern discovery, the
patterns for the local sub-region with a focal point and its neighbors are computationally
extracted and visually represented. To discover interesting local neighbors, the extracted
local patterns are integrated and visually shown to the analysts. Evaluations of the three
visualization systems using formal user studies are also performed and discussed.
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Chapter 1

Introduction

1.1 Motivation

Knowledge discovery in multivariate databases is “the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in data” [26]. The
patterns are generally sub-regions or subsets of data points that meet user requirements
or satisfy user demands. We use the term “nuggets” to represent discoveries and patterns,
which could be clusters, trends, outliers, and other types of sub-regions or subsets that are
of interest to users.

Data mining is an important step of the knowledge discovery process, which con-
sists of particular mining algorithms to extract and detecthidden patterns in the data.
Nowadays, many computational data mining techniques have been proposed, and these
techniques become more and more automated, however, user intervention and human un-
derstanding are still required to discover novel knowledge. This is true, especially when
seeking the answers to some complex analysis questions. In those situations, analysts
often integrate their expert knowledge, common sense, intuitions into the data mining
process [52]. However, in many cases, conventional automated data mining techniques
are often treated as “black-box” systems, which only allow very limited or no user inter-
ventions. The limitation of pure automated data mining techniques without visualizations
has been discussed in [52].

Moreover, in many cases, the discovered patterns and modelsonly make sense and
are explainable when it can be visually represented and examined by the analysts. A vi-
sualization system that allows analysts to interactively explore the mined patterns, being
aware of the relationships between data space and pattern space, is potentially quite pow-
erful. Seeking a more accurate and meaningful pattern, it ismore desirable if the users
are able to interactively refine and adjust the patterns, based on the users’ task and do-
main knowledge. However, this goal is difficult to achieve ifthe mining process and the
extracted patterns are not explicit to the analysts. The potential advantages of visual data
mining tools compared to classical data mining tools are discussed in [52] and [19].

In recent years, visualization has been widely used in many data mining process. It
can be used to help the analysts explore and navigate the complicated data structures, re-

1



veal hidden patterns, and convey the results of data mining [19] [66]. The aim of visual
data exploration and mining is to involve the human in the data mining process. Through
this, human analysts can apply their perceptual abilities during the analysis, thus gaining
a more comprehensive understanding of the mining process and mining results. As dis-
cussed in [46], with visual data exploration, the data can bepresented in some visual un-
derstanding manner, which allows the user to better understand the data, form hypotheses,
draw and verify conclusions, as well as perform interactions with the data directly. Keim
[45] also argued that visualization techniques are substantially useful for exploratory data
analysis and could potentially be very helpful for inspecting large databases, especially in
the case where little prior knowledge about the data can be applied.

Visualization can help analysts use visual perception to reveal hidden patterns. The
major benefit of visual data exploration is that the users canbe directly incorporated in
the data mining process. Furthermore, visual analytics canprovide an representative and
interactive environment, which combines the human’s mental cognitive capabilities and
computers’ computing abilities. This can improve both the speed and accuracy when
identifying hidden data patterns. The goal of visual data mining, as detailed in [10], is to
help analysts establish in-depth insight of the data, to discover novel and useful knowledge
from the data, and to acquire a better understanding of the data.

Keim [44] elaborated on the methodology of visual data mining. They pointed out that
using visual data exploration has benefits for users, as theycan often explore data more
efficiently and obtain better results. Visual data exploration is particularly useful when
mining tasks are hard to be done solely by automatic algorithms. In addition, as described
in [46], another advantage of using visual data explorationtechniques is that users could
be more confident about their discovered patterns. These advantages promote a high
demand of combining visual exploration techniques and automatic exploration techniques
together. A variety of visual data exploration and visual data mining techniques were
discussed in [20].

In this dissertation, I discussed three novel visualization systems that facilitate vi-
sually and computationally discovering and extracting patterns in multivariate datasets.
The extracted patterns can be visually represented for better understanding. The users
should be able to interactively adjust the pattern based on the user’s task. Visualization
systems that integrate the mining process are proposed: from pattern extraction to pattern
representation; from pattern examination to pattern refinement.

I list several requirements and desirable features for a visual mining system:

• Understandability requirement: conventional computer-supported data mining
approaches tend to extract complex and incomprehensible patterns, such as a poly-
nomial regression line, a neural network, or an arbitrarily-shaped sub-region in high
dimensional space. These models can be directly used to solve a classification or
a prediction task. However, without an explicit representation and human under-
standing, the results are hard to explain and analyze, especially when the output
conflicts with domain knowledge or common-sense. The advantages and disadvan-
tages of the model are hidden from the user, which may mean theuser can only
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passively perform the mining process and accept the mining results without too
much critique.

• Visual representation: An effective visualization technique can strongly assistthe
analysts in discovering hidden patterns and understandingthe data mining results.
In most cases, the patterns cannot be directly shown and a particular visualization
technique should be designed. For example, in XmdvTool, thehierarchical cluster
tree and structure based brush [27] provide a good representation of the clustering
results. The designed visual representation should clearly reveal the underlying
data structures and convey the extracted patterns using visual components, such as
color and line width.

• Refineable and adjustable:When the extracted patterns are not explicit and vi-
sually examinable by the users, they can only generate a new model via adjusting
the parameters. However, in most cases, a direct adjustmenton the model structure
is desirable, for example, removing a branch of a tree structure or changing the
coefficient of a regression line.

• Connection between pattern and data: The relationship between the pattern
space and data space should be clearly presented to the analysts. For example,
given a regression model, the user needs to know how well the data points fit the
model and which points are the outliers. When the users interactively examine dif-
ferent sub-parts of the model, the data points that fit or correspond to this sub-part
should be highlighted.

• Solve complex real-world application problems:For analysts, data mining tech-
niques and data mining results are considered as a toolbox for solving the real-world
problems or answering task-related questions. An example would be that given a
classification model, e.g., a classification tree for classifying the paper acceptance
results, the users try to figure out why a certain paper is classified as rejected and
how to change the attribute values to make it classified as accepted. This example
shows that a data mining pattern cannot be directly used to answer users’ guiding
questions, except when human intuition and knowledge are involved in the data
mining process and pattern exploration.

1.2 Research Goals

In this section, I introduce three topics as my dissertationresearch goals. Each topic is one
type of pattern in multivariate datasets that assists usersto understand multi-dimensional
phenomena, build models for datasets, and predict target attribute values and class types.
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1.2.1 Linear Trend Patterns

The first challenge is to discover and extract linear patterns from a multivariate dataset.
Linear trends are one of the most common patterns and linear regression techniques are
widely used to mine these patterns. However, the automatic regression procedure and
results pose several problems:

• Lack of efficiency: When discovering trends in a large dataset, users are oftenonly
concerned with a subset of the data that matches a given pattern, so only these
data should be used for the computation procedure rather than the whole dataset.
Furthermore, locating a good estimation of the trend as an initial input for the re-
gression analysis could expedite the convergence, especially for high dimensional
datasets.

• Lack of accuracy: Computational results are often not as accurate as the userex-
pects because users are unable to apply their own domain knowledge and perceptual
ability during and after discovering models. User-driven modelling and tuning may
be required. For example, an extracted linear trend for a dataset with outliers usu-
ally tries to cover all the data points, which means it is not an accurate estimation
for inliers.

• Parameter setting problem: Most model estimation techniques require users to
specify parameters, such as the minimum percentage of data points the model in-
cludes, maximum error tolerance and iteration count. Theseare often particular to
a concrete dataset, application, and task, but users often don’t know conceptually
how to set them.

• Multiple model problem: If multiple phenomena coexist in the same dataset, many
analytic techniques will extract poor models. This is because the computer-based
methods try to extract a single model to fit the whole dataset,while in this case, dif-
ferent models for different subsets of data points should beextracted. For example,
if the linear trends for males and females are different and coexist in the dataset,
a single linear trend doesn’t explain the dataset very well.This problem can be
solved based on the user’s domain knowledge and visual exploration of the dataset.

As part of my dissertation, I developed a system focusing on these problems found
in automatic regression techniques. Specifically, I designed a visual interface to allow
users to navigate in the model space to discover multiple coexisting linear trends, extract
subsets of data fitting a trend, and adjust the computationalresult visually. The user
will be able to select and tune arbitrary high-dimensional linear patterns in a direct and
intuitive manner. I designed a sampled model space measurement map that helps users
quickly locate interesting exploration areas. While navigating in the model space, the
related views that provide metrics for the current selectedtrend, along with the status
of data space, are dynamically displayed and changed, whichgives users an accurate
estimation to evaluate how well the subset of data fits the trend. The details of this system
and the assessing of the technology are discussed in Chapter3.
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1.2.2 Subgroup Patterns

The second difficulty is to discover interesting subgroups in terms of a target attribute
and users’ requirements from a multivariate dataset. Subgroup discovery is a method
to discover interesting subgroups of individuals from a multivariate dataset. Subgroups
can be described by relations between independent variables and a dependent variable.
An interestingness measure, such as a statistical significance value, is also specified to
indicate whether the subgroups are of certain interest. Subgroup discovery is used for
understanding the relations between a target variable and aset of independent variables.

The subgroup discovery process poses several compelling challenges:

• Dynamically submit queries: since analysts may not know in advance what kind of
interesting features the query results have, they may have to repeatedly re-submit
queries and explore the results in multiple passes. This makes the mining process
tedious and less efficient.

• Mining results examination problem: without visual support, users can only exam-
ine the mining results in text or tables. This makes it very hard to understand the
relationships among different subgroups and how they are distributed in the feature
space. A visual representation of the pattern space showingthe distribution and
relationships among patterns is preferable.

• Compact representation for visualization: the mining results are often reported as
a set of unrelated subgroups. This kind of mining result is not compact because for
the adjacent subgroups, they should be aggregated and clustered when they are of
the same interesting type. One benefit could be that an aggregate representation is
more compact, which provides the users a smaller report listfor easy examination.
Another benefit could be that the compact representation canbe more efficiently
stored in a file and loaded in computer memory.

• Relationships between patterns and individuals: without a visualization of the min-
ing results, users cannot build connections between the patterns and the individuals
when they explore the mining results. This means that they can only explore the
mining result in the form of each subgroup, while they cannotunderstand the dis-
tribution or the structure of the underlying data points.

Focusing on these challenges, our main goal is to design a visual interface allowing
users to interactively submit subgroup mining queries for discovering interesting patterns.
I proposed and designed a novel pattern extraction and visualization system, called the
Nugget Browser, that takes advantage of both data mining methods and interactive visual
exploration. Specifically, our system can accept mining queries dynamically, extract a set
of hyper-box shaped regions calledNuggetsfor easy understandability and visualization,
and allow users to navigate in multiple views for exploring the query results. While
navigating in the spaces, users can specify which level of abstraction they prefer to view.
Meanwhile, the linkages between the entities in different levels and the corresponding
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data points in the data space are highlighted. Details and evaluation of this novel system
are in Chapter 4.

1.2.3 Local Patterns

The third challenge is to discover and extract interesting local patterns via sensitivity
analysis. Sensitivity analysis is the study of the variation of the output of a model as
the input of the model changes. Analysts can also discover which input parameters are
significant for influencing the output variable. Although many visual analytics systems
for sensitivity analysis follow this local analysis method, there are few that allow analysts
to explore the local pattern in a pointwise manner, i.e., therelationship between a focal
point and its neighbors is generally not visually conveyed.This pointwise exploration is
helpful when a user wants to understand the relationship between the focal point and its
neighbors, such as the distances and directions.

We seek to propose a novel pointwise local pattern visual exploration method that can
be used for sensitivity analysis and, as a general exploration method, for studying any
local patterns of multidimensional data. The primary contributions of this work include:

• A pointwise exploration environment: The users should be able to explore a multi-
variate dataset from apointwiseperspective view. This exploration can assist users
in understanding the vicinity of a focal point and reveals the relationships between
the focal point and its neighbors.

• A visualization approach for sensitivity analysis: Sensitivity analysis is one im-
portant local analysis method, thus is well suited for our pointwise exploration.
The designed local pattern exploration view indicates the relationships between the
focal point and its neighbors, and whether the relationshipconforms to the local
pattern or not. This helps the user find potentially interesting neighbors around the
focal point, and thus acts as a recommendation system.

• Adjustable sensitivity: The system should allows users to interactively adjust the
sensitivity coefficients, which gives users flexibility to customize their local patterns
based on their domain knowledge and goals.

Focusing on these requirements, our main goal is to design a visual interface allowing
users to perform pointwise visualization and exploration for visual multivariate analysis.
Generally, any local pattern extracted using the neighborhood around a focal point can
be explored in a pointwise manner using our system. In particular, we focus on model
construction and sensitivity analysis, where each local pattern is extracted based on a
regression model and the relationships between the focal point and its neighbors. Using
this system, analysts are able to explore the sensitivity information at individual data
points. The layout strategy of local patterns can reveal which neighbors are of potential
interest. During exploration, analysts can interactivelychange the local pattern, i.e., the
derivative coefficients, to perform sensitivity analysis based on different requirements.
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Following the idea of subgroup mining, we employ a statistical method to assign
each local pattern an outlier factor, so that users can quickly identify anomalous local
patterns that deviate from the global pattern. Users can also compare the local pattern
with the global pattern both visually and statistically. Weintegrated the local pattern into
the original attribute space using color mapping and jittering to reveal the distribution of
the partial derivatives. I evaluated the effectiveness of our system based on a real-world
dataset and performed a formal user study to better evaluatethe effectiveness of the whole
framework. Details and evaluation are discussed in Chapterin Section 5.

1.3 Organization of this Dissertation

The following chapters of this dissertation are organized as follows: Chapter 2 proposes
related work of visual data mining and visual analytics. Chapter 3 presents a parame-
ter space visualization system that allows users to discover linear patterns in multivariate
datasets. Chapter 3 describes a visual subgroup mining system, called Nugget Browser,
to support users in discovering interesting subgroups withstatistical significance in mul-
tivariate datasets. Chapter 3 discusses a pointwise local pattern exploration system that
assists users in understanding the relationship between the selected focal point and its
neighbors, as well as in performing sensitivity analysis. Chapter 6 concludes with a sum-
mary and the contributions of this dissertation, as well as potential directions for future
research.
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Chapter 2

Related Work

In this chapter, I will give an overview of visual data miningand introduce related works.

2.1 Visual Data Mining Problem

Data Mining (DM) is commonly defined as “the extraction of patterns or models from
data, usually as part of a more general process of extractinghigh-level, potentially useful
knowledge, from low-level data”, known as Knowledge Discovery in Databases (KDD)
[25], [26]. Data visualization and visual data explorationbecome more and more impor-
tant in the KDD process. Analysts use data mining systems to construct their hypotheses
about data sets, which rely heavily on data exploration and data understanding. With
interactive navigation of multivariate datasets and queryresources,Visual data mining
tools allow the analysts to quickly examine their hypotheses, especially for answering the
“what if” questions.

The termVisual Data Miningwas introduced over a decade ago. The understanding
of this term varies for different research groups. “Visual data mining is to help a user
to get a feeling for the data, to detect interesting knowledge, and to gain a deep visual
understanding of the data set” [10]. Niggemann[51] viewed visual data mining as visual
presentation of the data, which is similar to how humans process data presentation. In
particular, to understand the data information, humans typically construct a mental model
which captures only a gist of the data. A data visualization that is similar to the mental
model can reveal hidden information in the data. Ankerst [2]mentioned that visualiza-
tion works as a visual representation of the data. and moreover emphasized the relation
between visualization and the data mining and knowledge discovery (KDD) process. He
defined visual data mining as “a step in the KDD process that utilizes visualization as a
communication channel between the computer and the user to produce novel and inter-
pretable patterns.” Ankerst [2] discussed three differentapproaches to visual data mining.
Two of them involve the visualization of intermediate or final mining results, while the
third one, rather than directly being used for showing the results of the algorithm, involves
interactive manipulation of the visual representation of the data.
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The above definitions consider that visual data mining is strongly related to the human
visual understanding and human cognition. They respectively highlight the importance
of the three aspects of visual data mining: (a) data mining tasks; (b) visualization for
representation; and (c) data mining process. Overall, integrating the visualization into
data mining techniques helps convey mining results in a moreunderstandable manner,
deepen the end users’ understanding about how mining techniques work, and manipulate
the mining results with human knowledge.

2.2 Visual Data Mining Process

A visual data mining process proposed in [58] is illustratedin Fig. 2.1. The analyst
interacts with each step of the pipeline, shown as the bi-directional arrows that connect
the analyst and different mining steps. These links indicate that the human analyst plays
an important role in the mining process and can be involved ineach step. Indicated by
thicker bi-directional arrows, data mining algorithms canalso be applied to the data in
some steps: (a) before any visualization has been carried out, and (b) after interacting
with the visualization.

Figure 2.1: Visual data mining as a human-centerd interactive analytical and discovery
process [58].

As discussed before, the visual data mining process relies heavily on visualization and
interactions. The success of the process depends on the broadness of the collection of vi-
sualization techniques. In Fig. 2.1 the “Collection of Visualization Techniques” are com-
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posed of graphical representations, each of which has some user interaction techniques
used for operating with the representation . For instance, in [17], two visual representa-
tions were successfully applied to fraud detection in telecommunication data. Keim [43]
emphasized further the importance of interactivity of the visual representation, as well as
its link to information visualization.

2.3 Visual Data Exploration for Mining

Many application domains have shown examples where parallel coordinates and scat-
terplots can be used for exploring the multivariate data. For larger datasets, some user
interactions are also incorporated in these techniques, such as selecting and filtering. In-
selberg [38] discussed that parallel coordinates transforms the search for relations among
different attributes into a 2-D pattern recognition problem. It is also argued that effective
user interactions can also be provided for supporting this knowledge discovery process.

The application of a statistical graphics package called XGobi has been described
in [59]. They found that visual data mining techniques can becombined together with
computational neural modeling, which is a very effective way to detect structures in the
neuroanatomical data. This visual data mining tool is used to verify the main hypothesis
that neuromorphology shapes neurophysiology. They also discussed that with the fea-
ture of brush tour strategy and linked brushing in scatterplots and dotplots, XGobi have
been proven as a very successful tool to reveal the hidden structure in their morphology
data. As a result, correlation of electrophysiological behavior and certain morphometric
parameters are identified and verified.

Hoffman et al. [36] described a case study of using data exploration techniques to
classify DNA sequences. Several visual multivariate visualization and data exploration
techniques, such as RadViz, Parallel Coordinates, and Sammon Plots [57], have been
used to validate and attempt to discover new methods for distinguishing coding DNA se-
quences from non-coding DNA sequences. Cvek et al. [18] applied visual analytic tech-
niques for mining yeast functional genomics datasets. Theydemonstrated the application
of both supervised and unsupervised machine learning to microarray data. Additionally,
they presented new techniques that can be used to facilitateclustering comparisons using
visual and analytical approaches. They showed that Parallel Coordinates, Circle Seg-
ments [5], and RadViz can help gain insight into the data. [28] and [54] also discussed
how visual analytic tools can be applied to Bioinformatics,which indicated that this do-
main poses many challenges and more and more researchers resort to visual data mining
when tackling these challenges.

Recognition of complex dependencies and correlations between variables is also an
important issue in data mining. Berchtold et al. [11] proposed a visualization technique
called Independence Diagrams, aiming at reveal dependencies among variables. They
first divided each variable into ranges. As a result, for eachpair of attributes, the com-
bination of these ranges can form a two-dimensional grid. For each cell of this grid, the
number of data items in it are stored. The grids are visualized via scaling each attribute
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axis. They mapped the the proportional to the total number ofdata items within that range
to the width; and the density of data items in it is mapped to brightness. The authors
stated that, with this visual representation, independence diagrams can provide quanti-
tative measures of the interaction between two variables. In addition, it allows formal
reasoning about issues such as statistical significance. The limitation for this technique is
that for each time, only pairs of attributes can be displayedand analyzed.

Classification is another basic task for pattern recognition in data analysis. Dy and
Brodley [23] introduced a technique called Visual-FSSEM (Visual Feature Subset Selec-
tion using Expectation-Maximization Clustering). This method incorporated visualiza-
tion techniques, clustering, and user inter- action to guide the feature subset search by
end users. They chose to display the data and clusterings as 2-D scatterplots projected
to the 2-D space using linear discriminant analysis. Visual-FSSEM allowed the users to
select any subset of features as a starting point, search forward or backward, and visual-
ize the results of the EM clustering, which enables a deeper understanding of the data.
In [39], a geometrically motivated classifier is presented and applied, with both training
and testing stages, to 3 real datasets. Their implementation allowed the user to select a
subset of the available variables and restrict the rule generation to these variables. They
stated that the visual aspects can be used for displaying theresult as well as exploring the
salient features of the distribution of data brought out by the classifier. They tested their
classifier on three classification benchmark datasets, and showed very good results as far
as test error rates are concerned.

2.4 Visualization of Mining Models

Visualization can also be used to convey the results of mining tasks, which enhances user
understanding and user interpretation.

Association rule mining is an important data mining task, which reveals correlations
among data items and attribute values. However, understanding the results is not always
simple. This is because the mining results are often quite larger than can be handled
by humans. Besides, the extracted rules are not generally self-explanatory. Hofmann
et al. [37] proposed a method, called Double Decker plots, tovisualize the contingency
tables to assist the analysts in understanding the underlying structures of association rules.
The authors stated that this gives a deeper understanding onthe nature of the correlation
between the left-hand side of the rule and the right-hand side. An interactive use of these
plots are also discussed, which helps the user to understandthe relationship between
related association rules, for example, for rule sets with acommon right-hand side.

Another similar visual representation of multivariate contingency tables is called Mo-
saic Plots [33]. A mosaic plot is divided into rectangles. The area of each rectangle
is proportional to the the number of data items in a cell, i.e., the proportions of the Y
variable in each level of the X variable. The arrangement of the rectangles, and how the
cells are splitted are determined by both the construction algorithm, as well as the user
requirement. The plots reveal the interaction effects between the two variables.
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A commercial DM tool called Mineset was introduced by Brunk et al [14]. In in-
tegrated database access, analytical data mining, and datavisualization into one system
to support exploratory data analysis and visualization of mining results. It provided 3D
visualization capabilities for displaying high-dimensional data with geographical and hi-
erarchical information. This tool can help identify potentially interesting models of the
data using analytical mining algorithms.

Another important data mining results are classifiers that can be used for classification
tasks. Some visualization techniques are proposed to support the user’s understanding
on the classifiers and manipulate the results. For example, Becker et al. [9] discussed
a system called Evidence Visualizer to display the structure of Simple Bayes Models, a
decision tree model classifier. This system allowed users toperform interactions, examine
specific tree node values, display probabilities of selected items, and ask what if questions
during exploration. The reasons for the choices of different visualization techniques, such
as pies and bars, are also discussed in detail. Kohavi et al. [47] described a visualization
mechanism that are implemented in MineSet to display the decision table classifier. Some
interactions were provided for exploration of the classifier, such as clicking to show the
next pair of attributes, providing drill-downs to the area of interest.

Han and Cercone [32] emphasized human-machine interactionand visualization dur-
ing the entire KDD process. They pointed out that with the human participation in the
discovery process, the user can easily provide the system with heuristics and domain
knowledge, as well as specify parameters required by the algorithms. They described an
interactive system, called CViz, aiming at visualizing theprocess of classification rule
induction. The CViz system uses parallel coordinates technique to visualize the original
data and the discretized data. The discovered rules are alsovisualized as rule polygons
(strips) on the parallel coordinates system. The rule accuracy and rule quality were coded
by coloring to render the rule polygons. User interaction was supported to allow focusing
on subsets of interesting rules. For example, CViz allows user to specify a class label to
view all rules that have this class label as the decision value. The users can also use three
sliders to hide uninteresting rules: two to set the rule accuracy threshold and one to set
quality threshold.

The Self-Organizing Map (SOM) [61] is a neural network algorithm that is based on
unsupervised learning. The goal of SOM is to transform an arbitrary dimensional pattern
into a one or two dimensional discrete map, which reveals some underlying structure of
the data. SOM involves some adaptive learning process, by which the outputs become
self-organised in a topologically ordered fashion. In [62], it is discussed that SOM is
a widely used algorithm, and it has led to many applications in diverse domains. The
authors also argued that SOM can be integrated with different visualization techniques to
enhance users’ interpretation.
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2.5 Integrating Visualizations into Analytical Processes

Wong [90] argued: “rather than using visual data exploration and analytical mining algo-
rithms as separate tools, a stronger DM strategy would be to tightly couple the visualiza-
tions and analytical processes into one DM tool”. Many mining techniques incorporate a
variety of mathematical steps, where user intervention is required. However, some min-
ing techniques are fairly complex, and visualization playsan important role to support
the decision making in the interventions. Standing on this point, the role of a Visual Data
Mining technique is considered beyond the traditional belief, that the technique solely
participates in some phases of an analytical mining processfor exploiting data. Rather,
the technique should be viewed as a DM algorithm with visualization as the major role.

A work by Hinneburg et al. is another example that shows the tight coupling of visu-
alization into a mining technique [35]. They proposed an approach to effectively cluster
high-dimensional data. The approach was established basedon combining OptiGrid, an
advanced clustering method, and visualization methods to support an interactive cluster-
ing procedure. The approach worked in a recursive manner. Specifically, in each step,
if certain conditions are met, the actual data set is partitioned into several subsets. Next,
for those subsets which contain at least one cluster, the approach deals with them recur-
sively, where a new partitioning might take place. The approach chooses a number of
separators in regions with minimal point density, and then uses those separators to define
a multidimensional grid. For a subset, the recursion stops when no good separators can be
found. The difficulty in the approach lies in two aspects: choosing the contracting projec-
tions and specifying the separators for constructing the multidimensional grid. These two
operations have no way to be done fully automatically due to the diverse cluster charac-
teristics in different data sets. The authors resorted to visualization. They developed new
techniques that represent the important features of a largenumber of projections, through
which a user can identify the most interesting projections and select the best separators.
In this way, the approach improves the effectiveness of the clustering process.

Hellerstein et al. [34] focused on utilizing visualizationto improve user control in the
process of data discovery. A typical KDD process consists ofseveral steps and require-
ments, as well as a sequence of user input for submitting queries and adjusting parameters,
which are specific to different algorithms. Some examples are the distance threshold for
density based clustering, support and confidence for association rule mining, and the per-
centage of training sets for classification. For these continuous user input, visualization
can help ease the process. For example, in a time-consuming task, dynamically setting
parameters in real time is a highly desirable ability. Statically setting parameters at the
beginning of the process could possibly work less efficiently, as whether the settings are
reasonable cannot be known until the end of the process.

Ankerst et al. [4], [3] targeted to the problem that the usersare unable to be involved
in the middle of a running algorithm. The problem is discussed in a classification task
that the users cannot get intermediate results. For most current classification algorithms,
users have very limited control to guide and interact with the algorithms. They have no
other choices aside from running the algorithm with some pre-set, yet typically hard to
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be estimated, parameter values. The users must wait for the final results to tell whether
they should have tried some other values. Towards this problem, the authors presented
an approach to interactively construct a classifier decision tree. The approach exploits a
large amount of visualization for the data set, as well as forthe decision tree. Through
the enhanced user involvement, the user also gains the benefit of acquiring more insight
about the data, during the process of interactive tree construction.

Another similar work is proposed in [65], which emphasized interactive machine
learning that involves users in generating the classifier themselves. This allows the users
to integrate their background knowledge into the modeling stage and decision tree build-
ing process. The authors argued that with the support of a simple two-dimensional vi-
sual interface, even common users (not domain experts) can still often construct good
classifiers after very little practice. Furthermore, this interactive classifiers construction
approach allows users who are familiar with the data to effectively apply their domain
knowledge. Some limitations about the approach are also discussed, for example, the
manual classifier construction is not likely to be successful for large datasets with large
number of attributes to interact with.

Ribarsky et al. [53] propose a mining approach,“discovery visualization”. Unlike the
other DM tools, the approach emphasizes user interaction and centers on the users. It uses
4D (time dependent) visual display and interaction to a large degree. In order to smooth
the user experience, the approach pays a great amount of attention on organizing data, as
it facilitates graphical representation, as well as rapid and accurate selection via the visu-
alization. In particular, they present a fast clustering algorithm, that works together with
their approach. The algorithm provides users the ability toexplore data during continuous
adjustment and based on the feedback obtained from the interaction with the visualiza-
tion. In addition, the algorithm performs fast clustering with the scalability to very large
data sets. It also looks beyond direct spatial clustering and completes the task based on
the distribution of other variables. As the first step, the algorithm uses an initial binsort
to process the data and maintain them into a more manageable size. Initially, the entire
(binsorted) data space is viewed as one big cluster. Next, the data set is divided in a
iterative manner, until either a user-specified number of clusters have been formed or it
makes no sense to perform further division. This approach enables a quick display for
a general overview of the data distribution. The user can select regions of interest and
perform further exploration.

My research is strongly related to the visual mining ideas, such as exploration for
mining and visually knowledge representation. The main goal of my three visual discov-
ery systems is to assist analysts in visually exploring the data space, pattern space, and
subgroups to extract and detect certain interesting modelsor data instances. For example,
users are able to explore the parameter space using a linear selection panel to discover
strong linear trends, which is discussed in Chapter 3. For each discovered pattern, I de-
sign a visual technique, such as a layout strategy of local neighbors discussed in Chapter
5, to help users understand and interpret the extracted knowledge. I also borrow the idea
of integrating visualization into mining processes. For example, for the subgroup mining
problem mention in Chapter 4, it is difficult to automatically specify the target share range
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and subgroup partitioning strategy because of the diverse dataset characteristics. The sys-
tem allows users to dynamically adjust the cut-point positions for binning, and that target
share range for different mining tasks they address.
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Chapter 3

Patterns for Linear Trend Discovery

In this chapter, I present a novel visual system that allows analysts to perform the linear
model discovery task visually and interactively. This workhas been published in VAST
2009 [30].

3.1 Introduction

Discovering and extracting useful insights in a dataset arebasic tasks in data analysis. The
insights may include clusters, classifications, trends, outliers and so on. Among these,
linear trends are one of the most common features of interest. For example, when users
attempt to build a model to represent how horsepowerx0 and engine sizex1 influence the
retail pricey for predicting the price for a given car, a simple estimated linear trend model
(y = k0x0 + k1x1 + b) could be helpful and revealing. Many computational approaches
for constructing linear models have been developed, such aslinear regression [21] and
response surface analysis [13]. However, the procedure andresults are not always useful
for the following reasons:

• Lack of efficiency: When discovering trends in a large dataset, users are oftenonly
concerned with a subset of the data that matches a given pattern, so only these
data should be used for the computation procedure rather than the whole dataset.
Furthermore, locating a good estimation of the trend as an initial input for the re-
gression analysis could expedite the convergence, especially for high dimensional
datasets.

• Lack of accuracy: Computational results are often not as accurate as the userex-
pects because users are unable to apply their own domain knowledge and perceptual
ability during and after discovering models. User-driven modeling and tuning may
be required.

• Parameter setting problem: Most model estimation techniques require users to
specify parameters, such as the minimum percentage of data points the model in-
cludes, maximum error tolerance and iteration count. Theseare often particular to
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Figure 3.1: A dataset with a simple linear
trend: y = 3x1 − 4x2 is displayed with
parallel coordinates. The axes from left
to right are y,x1 andx2 respectively.

Figure 3.2: A dataset with two linear
trends:y = 3x1−4x2 andy = 4x2−3x1

is displayed with a scatterplot matrix.

a concrete dataset, application, and task, but users often don’t know conceptually
how to set them.

• Multiple model problem: If multiple phenomena coexist in the same dataset, many
analytic techniques will extract poor models.

Locating patterns in a multivariate dataset via visualization techniques is very chal-
lenging. Parallel coordinates [40] is a widely used approach for revealing high-dimensional
geometry and analyzing multivariate datasets. However, parallel coordinates often per-
forms poorly when used to discover linear trends. In Figure 3.1, a simple three dimen-
sional linear trend is visualized in parallel coordinates.The trend is hardly visible even
though no outliers are involved. Scatterplot matrices, on the other hand, can intuitively
reveal linear correlations between two variables. However, if the linear trend involves
more than two dimensions, it is very difficult to directly recognize the trend. When two
or more models coexist in the data (Figure 3.2), scatterplotmatrices tend to fail to differ-
entiate them.

Given a multivariate dataset, one question is how to visualize the model space for
users to discern whether there are clear linear trends or not. If there are, is there a single
trend or multiple trends? Are the variables strongly linearly correlated or they just spread
loosely in a large space between two linear hyperplane boundaries? How can we visually
locate the trend efficiently and measure the trend accurately? How can we adjust arbi-
trarily the computational model estimation result based onuser knowledge? Can users
identify outliers and exclude them to extract the subset of data that fits the trend with a
user indicated tolerance? How can we partition the dataset into different subsets fitting
different linear trends?

We seek to develop a system focusing on these questions. Specifically, we have de-
signed a visual interface allowing users to navigate in the model space to discover multiple
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coexisting linear trends, extract subsets of data fitting a trend, and adjust the computa-
tional result visually. The user is able to select and tune arbitrary high-dimensional linear
patterns in a direct and intuitive manner. We provide a sampled model space measurement
map that helps users quickly locate interesting exploration areas. While navigating in the
model space, the related views that provide metrics for the current selected trend, along
with the status of data space, are dynamically displayed andchanged, which gives users
an accurate estimation to evaluate how well the subset of data fits the trend.

The primary contributions of this research include:

• A novel linear model space environment: It supports users in selecting and tuning
any linear trend pattern in model space. Linear patterns of interest can be discovered
via interactions that tune the pattern hyperplane positionand orientation.

• A novel visualization approach for examining the selected trend: We project color-
coded data points onto a perpendicular hyperplane for usersto decide whether this
model is a good fit, as well as clearly differentiating outliers. Color conveys the
degree to which the data fits the model. A corresponding histogram is also provided,
displaying the distribution relative to the trend center.

• A sampled measurement map to visualize the distribution in model space: This
sampled map helps users narrow down their exploration area in the model space.
Multiple hot-spots indicate that multiple linear trends coexist in the datasets. Two
modes with unambiguous color-coding scheme help users conveniently conduct
their navigation tasks. Two color-space interactions are provided to highlight areas
of interest.

• Linear trend dataset extraction and management: We present a line graph trend
tolerance selection for users to decide the tolerance (maximum distance error toler-
ance from a point to the regression line) for the current model. Users can refine the
model using a computational modeling technique after finding a subset of linearly
correlated data points. We also allow the user to extract andsave data subsets to
facilitate further adjustment and examination of their discovery.

3.2 Introduction and System Components

3.2.1 Linear Trend Nugget Definition

We define anuggetas a pattern within a dataset that can be used for reasoning and decision
making [67]. A linear trend inn-dimensional space can be represented as(w,X)−b = 0,
whereXi ∈ Rn denotes a combination of independent variable vectorxi (xi ∈ Rn−1) and
a dependent target valuey (y ∈ R). Herew andb are respectively a coefficient vector and
a constant value(w ∈ Rn, b ∈ R). The data points located on this hyperplane construct
the center of the trend. A data pointx that fits the trend should satisfy the constraint
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|(w, x)− b| < ε

Considering that noise could exist in all variables (not just the dependent variable), it may
be appropriate to use the Euclidean distance from the regression hyperplane in place of
the vertical distance error used above [48]. We define alinear trend nugget(LTN) as a
subset of the data near the trend center, whose distance fromthe model hyperplane is less
than a certain thresholdE:

LTN(X) = {x| |(w, x)− b|
‖w‖ < E}

HereE is the maximum distance error, which we calltolerance, for a point to be
classified as within the trend. If the distance from a data point to the linear trend hyper-
plane is less thanE, it is covered and thus should be included in this nugget. Otherwise
it is considered as an outlier or a point that does not fit this trend very well. The two
hyperplanes whose offsets from the trend equalE and−E construct the boundaries of
this trend. The goal of our approach is to help users conveniently discover a “good” linear
model, denoted by a small tolerance and, at the same time, covering a high percentage of
the data points.

As the range of the values in the coefficient vector could be very large and even in-
finite, we transform this linear equation into a normal form to make‖w‖ = 1 and then
represent this vector asSn, a unit vector in hypersphere coordinates [50] as describedin
[22]:

w0 = cos(θ1)

w1 = sin(θ1) cos(θ2)

· · ·
wn−2 = sin(θ1) · · · sin(θn−2) cos(θn−1)

wn−1 = sin(θ1) · · · sin(θn−2) sin(θn−1)

Now our multivariate linear expression can be expressed as:

y cos(θ1) + x1 sin(θ1) cos(θ2) + · · ·+

xn−2 sin(θ1) sin(θ2) · · · sin(θn−2) cos(θn−1)+

xn−1 sin(θ1) sin(θ2) · · · sin(θn−2) sin(θn−1) = r

The last angleθn−1 has a range of2π and the others have a range ofπ. The range
of r, the constant value denoting the distance from the origin tothe trend hyperplane, is
(0,

√
n) after normalizing all dimensions.

An arbitrary linear trend can now be represented by a single data point(θ1, θ2, · · · , θn−1, r)
in the model parameter space. Users can select and adjust anylinear pattern in data space
by clicking and tuning a point in the model space.

19



3.2.2 System Overview

We now briefly introduce the system components and views. Theoverall interface is
depicted in Figures 3.3 and 3.4. The user starts from a data space view displayed with
a scatterplot matrix. To explore in the linear model space, the user first indicates the
dependent variable and independent variables via clickingseveral plots in one row. The
clicked plots are marked by blue margins; clicking the selected plot again undoes the
selection. The selected row is the dependent variable and the columns clicked indicate
the independent variables. After the user finishes selecting the dependent and independent
variables, he/she clicks the “model space” button to show and navigate in the model space.
The points in the data space scatterplot matrix are now colored based on their distance to
the currently selected linear trend and dynamically changewhen the user tunes the trend
in the model space. As shown in Figure 3.3, the selected dependent variable is “Dealer
Cost” and the two independent variables are “Hp” and “Weight”. The points are color-
coded based on the currently selected trend; dark red means near the center and lighter
red means further from the center, while blue means the points do not fit the trend. Figure
3.4 is the screen shot of the model space view. Each view in themodel space is labeled
indicating the components, as described in the following sections.

Figure 3.3: The Data Space interface overview.
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Figure 3.4: The Model Space interface overview.

3.2.3 Linear Trend Selection Panel

We employ Parallel Coordinates (PC), a common visualization method for displaying
multivariate datasets [40], for users to select and adjust any linear trend pattern. Each
poly-line, representing a single point, describes a lineartrend in data space. PC was cho-
sen for its ability to display multiple trends at the same time, along with the metrics for
each trend. For example, average residual and outlier percentage are easily mapped to
poly-line attributes, such as line color and line width. Users can add new trends, delete
trends and select trends via buttons in the model space interaction control panel. Users can
drag up and down in each dimension axis to adjust parameter values. During dragging, the
poly-line attributes (color and width) dynamically change, providing users easy compre-
hension of pattern metrics. The parameter value of the current axis is highlighted beside
the cursor. This direct selection and exploration allows users to intuitively tune linear pat-
terns in model space, sensing the distance from hyperplane to origin as well as the orienta-
tions rotated from the axes. Because the parameters in hypersphere coordinates can be dif-
ficult to interpret, the familiar formula in the form ofy = k0x0+k1x1+· · ·+kn−1xn−1+b
is calculated and displayed in the interface. In Figure 3.5,three linear trends for a 3-D
dataset are displayed. The percentage of data each trend covers (with the same model
tolerance) is mapped to the line width and the average residual is mapped to color (dark
brown means a large value and light yellow means small).
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Figure 3.5: The Model Space Pattern Selection Panel.

3.2.4 Views for Linear Trend Measurement

When the user tunes a trend in model space, it is necessary to provide detailed information
in data space related to the currently selected trend. Basedon this the user can differentiate
datasets having linear trends from non-linear trends or without any clear trends, as well as
discover a good model during tuning. We provide users three related views for discovering
trends and deciding the proper model parameters.

Line Graph: Model Tolerance vs. Percent Coverage

For any multi-dimensional linear trend, there is a positivecorrelation between the tol-
erance of the model (the distance between the trend hyperplane and the furthest point
considered belonging to the trend) and the percentage of data points this model covers:
the larger the model tolerance is, the higher the percentageit covers. There is a trade-off
between these two values, because users generally search for models with small tolerance
that cover a high percentage of the data. The users expect to find the answer to the follow-
ing two questions when deciding the model tolerance and percentage it covers: (a) If the
model tolerance is decreased, will it lose a large amount of the data? (b) If this trend is
expected to cover a greater percentage of the data, will it significantly increase the model
tolerance?

To answer these questions, we introduce an interactive linegraph for the currently
selected model. Model Tolerance vs. Percent Coverage is provided for users to evaluate
this model and choose the best model tolerance. It is clear that the line graph curve always
goes from(0, 0) to (1, 1), after normalizing. This line graph also indicates whetherthis
model is a good fit or not. If this curve passes the region near the (0, 1) point, there is
a strong linear trend existing in the dataset, with a small tolerance and covering a high
percentage of the data. This interactive graph also provides a selection function for the
model tolerance. The user can drag the point position (marked as a red filled circle in
Figure 3.6) along the curve to enlarge or decrease the tolerance to include more or fewer
points.

Figure 3.6 shows an example of how to use this view to discovera good model. The
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line graph for a linear trend with about 10 percent outliers is shown. The red point on the
curve indicates the current status of model tolerance and percentage. From the curve of
the line graph, it is easy to confirm that when dragging the point starting from(0, 0) and
moving towards(1, 1), the model tolerance increases slowly as the percentage increases,
meaning that a strong linear trend exists. After moving across 0.90 percent, the model
tolerance increases dramatically while the included pointpercentage hardly increases,
indicating that the enlarged model tolerance is mostly picking up outliers. So for this
dataset, the user could claim that a strong trend is discovered covering 90 percent of
the data points because the model tolerance is very small (0.07). The corresponding
Orthogonal Projection Plane view and Histogram view showing the distribution of data
points are displayed in Figure 3.7 and Figure 3.8 (describednext).

Projection on the Orthogonal Plane

Given an n-dimensional dataset and an n-dimensional lineartrend hyperplane, if the user
wants to know whether the dataset fits the plane (the distancefrom points to the hyper-
plane is nearly 0), a direct visual approach is to project each data point onto an orthogonal
hyperplane and observe whether the result is nearly a straight line.

In particular, we project each high-dimensional data pointto a 2-dimensional space
and display it in the form of a scatterplot, similar to the Grand Tour [6]. Two projection
vectors are required: the first vectorv0 is the normal vector of the trend plane, i.e. the unit
vectorw described before; the second vectorv1, which is orthogonal tov0, can be formed
similar tov0, simply by settingθ1 = θ1 + π/2. The positions of data points in the scat-
terplot are generated by the dot products between the data points and the two projection
vectors, denoting the distance from the points to the trend hyperplane and another or-
thogonal plane, respectively. This view presents the position of each point based on their
distance to the current trend, which provides users not onlya detailed distribution view
based on the current trend, but also the capability of discovering the relative positions of
ouliers. Figure 3.7 shows the projection plane. The two bluevertical lines denote the two
model boundaries. Data points are color-coded based on their distance to the trend center
(not displayed). The red points are data points covered by this trend; darker red means
near the center and lighter red means further from the center. The blue points are data that
are outliers or ones that do not fit this trend very well.

Linear Distribution Histogram

The histogram view displays the distribution of data pointsbased on their distance to the
current model. As shown in Figure 3.8, the middle red line represents the trend center;
the right half represents the points above the trend hyperplane, and the left half are those
below the trend hyperplane. Users can set the number of bins;the data points included
in the trend are partitioned into that number of bins based ontheir distance to the trend
center. The two blue lines represent the boundary hyperplanes. The trend covered bars are
red and color-coded according to their distance. The color-mapping scheme is the same
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Figure 3.6: The Line Graph of Model
Tolerance vs. Percent Coverage.

Figure 3.7: The Orthogonal Projection
Plane.

as the projection plane view so the user can easily compare these two views. The two
blue bars represent the data outside the trend; the right baris for the data whose position
is beyond the upper boundary and the left bar is for the data whose position is beyond the
lower boundary.

Figure 3.8: The Histogram View.

3.2.5 Nugget Refinement and Management

After finding a good model covering a larger number of data points, the analyst can use a
refinement function to tune the model using a computational technique. We employ Least
Median Squares [55], a robust regression technique, to compute the regression line based
only on the points covered in the current trend, so it is more efficient than basing it on
the whole dataset and more accurate because the outliers arenot considered. Figure 3.9
shows the user-discovered trend before refinement and Figure 3.10 shows the refinement
results.

A linear trend nugget is a subset of data points that lie within trend boundaries. As-
suming the user has discovered a trend within several dimensions, it is useful to save it to
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Figure 3.9: The Projection Plane view
before refinement.

Figure 3.10: The Projection Plane view
after refinement.

a file and reload it to examine, adjust and distribute it to other users. After the users find
a strong trend, they can extract the points in the trend by saving it as a nugget file. This
model selection method is similar to brushing techniques and provides a convenient way
for users to identify and exclude outliers that deviate fromthe trend. This data selection
technique is also useful if multiple phenomena are present in the dataset, since the user
can save and manage them separately.

3.3 Navigation in Model Space and Linear Trend Model
Discovery

3.3.1 Sampled Measurement Map Construction

Even with the metrics of a linear pattern mapped to the poly-line attributes and with the
related views for single model measurement mentioned in Section 3.2.2, the user may still
feel challenged when searching for good linear trends by tuning the parameter space val-
ues, due to the large search area associated with multiple data dimensions. We introduce
a sampled model space measurement map for users to view the high dimensional model
measurement distribution and navigate in the model space directly and efficiently. The
basic idea is that we sample some points in the model space andcalculate the measure-
ments for each point (linear pattern), so the user can tune the patterns starting from good
parameter sets.

This map is constructed via the following three steps:
(a) We first partition each parameter space variable into several bins. The bin number

could be specified by the users. The points in model space located in the center of each
combination of bins are selected as sample patterns and the metrics are calculated for
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model measuring.
(b) Then we eliminate the patterns with low measurement values and project a high

dimensional sampled pattern set to a series of two dimensional pairs. Specifically, for
each paired bin position in two dimensions, only the largestmeasurement (assume larger
measurement values denote better models) with the same bin position of these two dimen-
sions is kept as the map value. For example, the bottom left bin in one plot corresponds
to the two first bin positions in that dimensional pair, say, bin position 1 for dimensioni
and bin position 1 for dimensionj (the bin number starts from 1). The map value for this
position of this dimension pair is selected as the largest measurement in all the sampled
patterns whose bin position in theith dimension and thejth dimension are both 1.

(c) The map values are color-coded based on the metrics. All the pairwise measure-
ment maps are displayed in a matrix view. The initial parameter values are set at the
center of the bin with the best measurement, i.e. the minimumtolerance or the maximum
percent coverage when fixing the other, which generally provides a good linear pattern
for users to start tuning.

The complexity of construction isPrP1P2 · · ·Pn−1N , whereN is the size of the
dataset;Pr is the number of partitions forr andPi is the number of partitions forθi. The
number of partitions for each dimension is defined by users.

Two alternative modes are associated with this view, fixed percent coverage and fixed
model tolerance, corresponding to the two measurements forthe trends. As mentioned
before, the user could change the model tolerance and coverage together in the line graph
view. For the first mode, with model tolerance as the measurement, each bin on the
map represents a model tolerance with a user-indicated fixedcoverage. When the user
changes the percentage, this map is dynamically re-calculated and changed (Figure 3.11).
For each pairwise bin position in the two dimensional pair, the minimum model tolerance
is selected as map value and mapped to color. In this mode, thepercentage of points
the user wants to include in the trend is designated and userscan search for the smallest
model tolerances.

The second mode is similar to the first one (Figure 3.12). The difference is we change
the measurement to coverage, with a user-indicated fixed model tolerance. This mode is
designed for users to specify the maximum model tolerance and search for models that
cover a high percentage of points.

For the two modes of measurement map, we use two unambiguous color-coding
schemes: (a) model tolerance is mapped from dark red to lightpink, with dark red mean-
ing small model tolerance; (b) the coverage is mapped to color from yellow to blue, with
blue meaning large coverage.

When the user moves the cursor over each bin, the map value is shown. The bin in
which the current model resides is highlighted by a colored boundary. The parameter
values are dynamically changed to the bin center, with the largest measurement value
as mentioned before, when the user clicks or drags to a certain bin position. This map
indicates roughly where good models can be found before tuning the model in the parallel
coordinates view. Figure 3.12 shows the coverage distribution map in a 3 dimensional
linear trend display. Users can easily find interesting hot spots and drag or click the
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Figure 3.11: The Measurement Map:
mode is “fix coverage”.

Figure 3.12: The Measurement Map:
mode is “fix model tolerance”.

current selected bin into a dark blue area.

3.3.2 Color Space Interactions

It is common that several bins with similar values of interest are shown at the same time
in the sampled map near the local maximum, making it hard to locate the best settings.
To solve this problem, we provide two interactions in color space.

• Scale the map value to employ the whole color range. Because the values are nor-
malized to(0, 1) and then mapped to color, it is possible that all map values are
in a small range; for example, all the coverage values in the map might be located
in (0.7, 1) for a very large tolerance in the second mode. In other words,the color
map range is not fully used. We allow the user to scale the value range to(0, 1) to
use the whole color map.

• Color map base-point adjustment. For the sampled measurement map, the user is
only concerned with the high metric values, so a “filter” function to map values less
than a threshold to 0 is useful for users to locate the local maximum. In particular,
we provide a function for users to change the color map base-point as the threshold.
After filtering out the uninteresting areas with low metrics, users can more easily
find the positions of good models.

The color space interactions are illustrated from Figures 3.18 to 3.21 and described in
Section 3.4.
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Figure 3.13: The first hot spot is selected
representing the first linear trend.

Figure 3.14: The data points that fit the
first trend are highlighted in red color.

Figure 3.15: The second hot spot is se-
lected representing another linear trend.

Figure 3.16: The data points that fit the
second trend are highlighted in red color.
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3.3.3 Multiple Coexisting Trends Discovery

This map is also designed to reveal when multiple linear trends coexist in the dataset,
which is very hard to find without visualization. Figure 3.2 shows an example where two
linear trends,y = 3x1 − 4x2 andy = 3x2 − 4x1 coexist in the three dimension dataset
mentioned earlier. Each trend has 50 percent of the data points. When the user fixes the
percentage at 0.50, there are clearly two separate hot spot regions indicating two linear
trends coexist. Figure 3.13 shows two different hot spots inthe sampled map with one
of them selected (colored bin). The corresponding subset ofdata that fit this trend are
colored as shown in Figure 3.14. Red means the point fits the model and blue means it
doesn’t. The other trend and fitting data are shown in Figure 3.15 and 3.16.

Figure 3.17: Traffic dataset data space view (scatterplot matrix).

3.4 Case Study

In this section, we discuss case studies showing how to discover single or multiple linear
trends and construct models for real datasets. The dataset was obtained from the Mn/DOT
Traveler Information [49], that collects traffic data on thefreeway system throughout the
Twin Cities Metro area. Each data point is the traffic information collected by detectors
every 30 seconds. The information includes the following variables:

(a) Volume: the number of vehicles passing the detector during the 30 second sample
period. (b)Occupancy: the percentage of time during the 30 second sample period that
the detector sensed a vehicle. (c)Speed: the average speed of all vehicles passing the
detector during the 30 second sample period.

We collected the traffic information for a whole day and addedanother variable based
on the index order to represent the time stamp. Figure 3.17 shows the dataset displayed
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Figure 3.18: The measurement map with the
original color range.

Figure 3.19: After full use of the color map.

Figure 3.20: Adjust the color map base point
to 0.46.

Figure 3.21: Adjust the color map base
point to 0.11.
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in a scatterplot matrix. Assume a user wants to analyze the correlations between de-
pendent variable occupancy and independent variables speed and volume and construct
linear models for these three variables. The aim of this study is to analyze how the average
speed and vehicle numbers interactively influence the occupancy. The result is helpful for
detecting anomalies, dealing with missing data points and predicting traffic conditions,
which can be used for traffic surveillance and control.

If the user wants to build a single linear model to explain thecorrelations, the first
step is to select the view mode and adjust the point on the linegraph view to indicate the
model tolerance or coverage. Here we use the first mode to discover a model and indicate
85 percent of the data to be covered by the trend, and then search for models with small
tolerances.

For further analysis, users can navigate in the sampled measurement map and model
selection panel alternately to observe the orthogonal projection plane and histogram to
decide whether the current model is a good estimation. To narrow down the search area,
the user explores first in the sampled measurement map to click a bin with a good es-
timation of the model parameters. Notice that the user is only concerned with dark red
bins indicating a small tolerance; the user could interact with the color space to fully use
the color map and then adjust the color map base-point until the uninteresting areas are
eliminated and only red areas remain.

Figures 3.18 to 3.21 show the manipulation details for locating the local maximum
value in the sampled measurement map. Figure 3.18 shows the map with the original
color range and Figure 3.19 shows the map after fuller use of the color range. Figures
3.20 and 3.21 show the process of adjusting the base point from 0.86 to 0.46 and then
0.11 (shown in the color bar legend). If the map value (tolerance) is larger than this base
point, then it will be set to 1 and then mapped to color. From Figure 3.22, the user can
easily locate the approximate position of good models and then tune them in the model
selection panel.

Figure 3.22 shows the model metric views for the trend in the bin center (model tol-
erance is 0.07); its corresponding data space view is shown in Figure 3.23. Figure 3.24
shows the adjusted model that fits the data better (model tolerance is 0.05) via tuning the
parameter values in the parallel coordinate view; Figure 3.25 displays the data space view.

After refining the model, a good linear estimation for the three variables is con-
structed: a trend with small tolerance (0.05) covering morethan 85 percent of the data
points (y = −0.29x0 + 1.4x1 + 25.3, y: Occupancy,x0: Speed,x1: Volume). From
the linear equation, we notice that occupancy is negativelycorrelated with car speed and
positively correlated with volume. This three dimensionallinear trend plane could also be
observed after projection to a two dimensional plane in the data space view displayed by
scatterplot matrices. From this we conclude that the more vehicles and the lower speed
of the vehicles, the higher percentage of time the detector sensed vehicles, which is fairly
intuitive.

Can we use this model to estimate occupancy when we know the speed and vehicle
numbers? When we look at the data space view in which the data points are colored
according to their distance to the trend, we found this modelestimates occupancy well
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Figure 3.22: The model space view: a
discovered linear trend in a bin center.

Figure 3.23: The corresponding data
space view.

Figure 3.24: The model space view: a
better linear trend after user adjustment
and computational refinement.

Figure 3.25: The corresponding data
space view.
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for most of the data points, except the data collected at noonand night. Therefore, a
single linear trend could not fit all the data points well, except by increasing the model
tolerance to a larger value.

If users want to explain the phenomenon by a single linear trend, the slope of the
trend line of occupancy vs. speed does not change for different volume numbers (only the
intercept changes). If users want to construct a more complex model with several trends
to estimate the occupancy more accurately, multiple lineartrends considering different
levels of volume can be discovered.

For multiple trend modeling, each trend is not required to cover a large percentage
of data points. Conversely, each trend needs to be a strong linear trend represented by
a very small tolerance. Therefore, we chose the second mode,i.e. fixed tolerance, and
adjust the tolerance to a very small value and then explore inmodel space as mentioned
before. Notice that the value of volume is a discrete number,so it is easy to observe
from the Orthogonal Projection Plane view that each subset of data with the same volume
value is nearly a straight line in three-dimensional space and the lines are nearly parallel
(Fig. 3.32). Thus we adjust the parameter values until each subset of data with a similar
volume value aligns to the trend center (Figure 3.32). Adjust the first parameter value
(the distance from the hyperplane to the origin) from zero tomaximum to extract the data
points with different volume values (3 different levels: low volume, median volume and
high volume, colored by purple, yellow and red respectively). We can observe from the
data space view that different subsets of data reveal different linear trends in the plot of
speed vs. occupancy.

We then select two dimensional correlation with occupancy as the dependent variable
and speed as the independent variable. We color-code the third dependent variablevolume
with three levels in the orthogonal projection plane view and adjust the parameters to
fit different subsets of data with different levels of volume. Figure 3.26 to 3.31 show
the three subsets of data fit to different discovered linear trends after refinement in the
orthogonal projection plane view and data space view. We canobserve from the data
space view that as the number of vehicles passing the detector changes, the trend for
speed and occupancy alters: the more vehicles passing through, the higher the trend line
is and, also the steeper the slope of the trend line. If the volume and speed are known for
estimating the occupancy, the user can classify the volume into three bins: low, medium
and high, and use different trend lines of speed vs. occupancy to estimate the occupancy
value.

How can one explain this model with multiple linear trends for different volumes? If it
is ensured that when the detector senses a vehicle, there is only a single car (without any
overlapping) passing the detector, then the occupancy is mainly influenced by volume
(also influenced a little by speed, but not significantly whenvolume number changes);
it is also clear that low volume indicates low occupancy, which is demonstrated by the
lower and less steep trend for speed vs. occupancy when volume is low. But sometimes,
especially when volume is large, several vehicles pass the detector together: consider that
when two overlapping vehicles pass the detector together, the volume increases but oc-
cupancy doesn’t. As the volume increases, the occupancy increases, and meanwhile, the
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Figure 3.26: Trend fit the data points
with low volume.

Figure 3.27: Data Space view. The two
dimensional trend isy = −0.11x+ 13.8
(y: Occupancy,x: speed).

Figure 3.28: Trend fit the data points
with medium volume.

Figure 3.29: Data Space view. The two
dimensional trend isy = −0.17x+ 29.7
(y: Occupancy,x: speed).

Figure 3.30: Trend fit the data points
with high volume.

Figure 3.31: Data Space view. The two
dimensional trend isy = −0.38x+ 60.2
(y: Occupancy,x: speed).
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Figure 3.32: The Orthogonal Projection Plane view after adjusting so that data points
with similar volume align to the linear trend center. Color coding: purple points are low
volume; yellow points are median volume; red points are highvolume.

degree of vehicle overlapping increases. When the volume islarge, meaning that several
vehicles pass the detector together with overlapping, the occupancy is not as predictable
just based on volume as it is when volume is small. This suggests the average speed
will be more helpful for estimating occupancy. A steeper andhigher trend for speed vs.
occupancy when volume is large means that occupancy dependsmore on speed than on
volume.

3.5 User Study

In this section, we discuss user studies for evaluating the effectiveness of the visual rep-
resentations of the parameter space and the user-involved model selection. The user task
is to identify linear patterns in multivariate datasets.

The main hypothesis for conducting the user studies is that when outliers exist in
a dataset, the linear trend extracted by computational techniques will skew to outliers,
which is not a good fit for the inliers, i.e., the data points that are generated from the dom-
inant trend. In this situation, our system can better reveallinear patterns in a multivariate
dataset.

To test this hypothesis, two datasets are generated. Each dataset is created using
one underlying linear model with a certain randomly added error. Ideally, I would use
a real dataset to evaluate the system. However, for real datasets, it is difficult to know
the underlying model that generates the population. Therefore, I decided to use synthetic
datasets, which is mainly because the underlying model coefficients are pre-defined, thus
easier to compare the similarity between the extracted model and the underlying model.
For the two datasets, one is easier (dataset A) and the secondone is harder (dataset B): the
easier one is smaller, has 2 independent variables, and has lower percentage of outliers;
while the harder one is larger, has 3 independent variables,and has higher percentage
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of outliers. Each user is asked to explore both datasets using our system and report the
linear models they discovered. To remove the learning effect, the subjects explore the two
datasets with a random order. There are two responses. The first one is the time users
spend on exploring in the model space to discover linear patterns. The second one is a
linear trend expression found using our system. The linear trends discovered using our
system are expected to be more similar to the real underlyingmodel.

There were in total 17 subjects performed this user study. After signing a consent
form and given an explanation of the purpose and tasks of thisuser study, each subject
performed the exploration as follows. They first roughly located a good model in the sam-
pled measurement map. The color space interaction can assist them in easily identifying
the potential interesting dark regions. After roughly selecting a good trend in the mea-
surement map, they would further refine the model in the modelselection panel. During
the adjusting of the trend, they could view the projection plane to know what the relation-
ship between the currently selected trend and the data points is, as well as whether the
model is a good fit for the data. This refinement consists of twosteps: the first one is to
adjust theθ values to rotate the trend until the data points lie in a thin vertical position,
meaning that the trend is in parallel with the data points. The second step is to adjust the
coefficientR value until the data points are in dark red, meaning that the selected linear
trend overlaps and fits the data. Notice that the data points mentioned before are only the
instances that are generated from the trend, which doesn’t include the random outliers.
Lastly, the subjects should report the final linear trend expression they found, as well as
the time they spent on exploring in the parameter space.

We first compare the means of squared errors (MSE) for these two datasets. For
dataset A, the squared error that linear regression was 1.555; while the mean value of
MSE for subjects was 1.752. Since a lower MSE value means better, when considering
this metric, linear regression produced better results. Wefound a similar result for dataset
B: the error from linear regression was 1.149, and the subjects got 1.22 (mean value).
The reason why the subjects got worse results is that linear regression always gets the
linear trend that minimizes MSE. However, this minimized MSE also takes the randomly
distributed outliers into consideration. In this case, theextracted linear model is distorted
by the outliers, which means it is not a good fit for the inliers.

We then compared the user detected model with the real underlying model. Each
linear trend can be viewed as a single instance in the model space. Since these synthetic
datasets are generated from pre-defined models, we can use the Euclidean distance to
the real model as the metric, which is better to measure the goodness of the model. For
dataset A, the Euclidean distance for the linear regressionis 1.33, while the mean value
of this metric that the subjects got is 0.64. The smaller value means the subjects got a
more similar trend to the real model. The one sample t-test shows that we can reject
the null hypothesis that linear regression is better than the user-driven method (p-value
is 0.01). For dataset B, we also got similar results: the linear regression error was 0.785
and the mean value of this metric that the subjects got was 0.68. Although the p-value
(0.086) suggests that the difference is not as significant asappeared in dataset A at the
significance level of 0.05, the subjects still got a better result, compared to the linear
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regression method. From these user study results, we showedthat without detecting and
removing outliers in the datasets, the linear regression technique extract linear models
that are influenced by noise, which is not a good fit for the dominant trend. The proposed
model space visualization can better help the users detect outliers and extract a better
model. We will discuss later the challenge of using automatic techniques to detect and
remove outliers before extracting linear models.

The user study result shows that for the higher attribute space, the subjects did not
perform as good as they did in the lower dimensional space. Figure 3.33 shows the com-
parison of the time the subjects spent on those two datasets.A paired t-test indicates
that the subjects spent significantly more time on the harderdataset (the one with more
independent variables). The p-value is lower then 0.001. The reason why the subjects
spent more time and detected a less accurate result is mainlybecause for more indepen-
dent variables, they have a larger model space to explore, aswell as there were more
parameters to adjust. These results indicated that the system doesn’t scale very well as
the dimensionality increases. This limitation also appeared during the sampling in the
model space: for 6 independent variables and each variable is sampled at 4 positions, the
whole sampling process took more the 5 minutes to finish. Thisis because the number of
sampling points is exponential to the number of dimensions.We also infer that for more
than 6 coefficients, it would be very difficult for the users totune on each axis until they
find a strong linear trend. Here are some potential improvements to solve this issue. One
is to allow the users to specify a sub-region in the parameterspace that is interesting to
them and re-sample in this sub-region with a higher samplingrate. Another improvement
could be to allow the users to interactively and progressively mark and highlight outliers,
and later extract linear trends using only inliers with computational techniques.

Figure 3.33: The comparison of the time the subjects spent onthe two dataset: simple
means dataset A and hard means dataset B.

We also examined the relationship between the time the subjects spent and the error
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they made. Figure 3.34 shows the scatterplot for these two values. Each point is the
response of a single subject. It is clear that except for someoutliers, subjects who spent
a fairly long time also got more accurate results. For most subjects, there is a negative
correlation between these two responses. This means that ifthe subjects have patience and
would like to spend more time to explore in the model space, they tend to get better linear
models with lower errors. Based on this result, we may infer that after being trained and
using this system for a long time to get familiar with the system, the users can get better
linear models with less time, compared to the novice users. This needs to be verified in a
future longitudinal user study.

Figure 3.34: The scatterplot for time and error. Each point is one subject. A negative
correlation can be seen for these two responses.

Since automatic techniques can also detect outliers for these datasets, a linear regres-
sion can be performed after removing the outliers. Using this method, the extracted linear
pattern could be better, compared to without removing outliers. However, since the num-
ber of outliers is unknown, the users have to go through the procedure: first try to remove
a certain number of outliers; then observe the resulting model. After several of such tri-
als, the users can finally identify a reasonable number of outliers, and extract the linear
model for the dataset. Also, since most outlier techniques require the users to specify
some parameter settings, the users have to try different parameter settings to get a set
that meets this requirement. In order to understand how the users perform this parameter
setting task, we invited a subject to extract linear patterns after removing outliers in the
dataset. He used Weka to detect outliers using the k-NN method. This method requires
two parameters: a radius distance and the number of neighbours. Without knowing the
percentage of outliers, he had to try several percentages ofoutliers: from 0 percent to 15
percent. In this study he used dataset B to detect a linear trend. The subject tried more
than 20 parameter settings and spent more than 40 minutes to find a set of parameter set-
tings that can result in a reasonable percentage of outliers. For each parameter setting, the
subject removed the resulting outliers and created a new data set merely using the inliers.
Therefore, a set of new datasets were created, and for each ofwhich, he then extracted lin-
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ear pattern using the regression technique and recorded theerrors. Since removing more
data points generally results in a smaller error rate, he decided to try different percentage
values from smaller to larger, until he thought the error didn’t decrease dramatically. It
costed him over 20 minutes to generate new datasets and extract linear patterns for them.
The final model he used is the one resulting from removing 5 percent as outliers. The
error using this model is 0.536, which is better than the the mean error using our system.
However, as discussed before, the whole process required more than one hour. Compared
to our system, on which the subjects spent less than 2 minuteson each dataset, the tra-
ditional method appears to be a very time consuming and tedious task. Also, without
visual exploration of the dataset, the subject cannot understand the extracted model, i.e.,
the relationship between the linear trend and the dataset, such as how well the trend fits
the data and what is the appropriate tolerance to reject the points as outliers.

Another user study we performed is to evaluate whether our system can assist ana-
lysts in discovering linear patterns when multiple linear trends coexist in one multivariate
dataset. When multiple linear patterns exist in the dataset, using one linear trend to fit the
data tends to give a poor result. However, if the analysts cannotice this and use multiple
trends to fit the data, better results can be achieved. Since the number of trends is the key
thing to decide, the major challenge here is to identify the number of trends in the dataset.
We wanted to examine whether analysts can identify the correct number of trends when
a small number of trends exist. If they can tell this, they canfurther use our system to
separate different trends, or use other computational techniques to extract multiple trends.
To test this, 6 datasets were generated. Each dataset was generated using zero, one, or two
linear models. The 6 datasets were randomly partitioned into two groups. Each subject
explored one group of datasets and report how many linear trends they discovered for each
dataset. Which group was assigned to the subjects was also randomized. The result shows
that the accuracy is more the 0.9. This means that using our system to visually explore
the data can largely assist the analysts in understanding datasets and accurately estimate
the number of linear phenomena. The average time spent in exploring each dataset by the
subjects was 29 seconds.

3.6 Conclusion

In this chapter, we described a novel model space visualization technique to support users
in discovering linear trends among multiple variables. Using this system, analysts can
discover linear patterns and extract subsets of the data that fit the trend well by navigating
in the model space and building connections between model space and data space visually.
The case studies show how our system can be used effectively to reveal single and multiple
linear trends and to build explanation models for multivariate datasets. We performed user
studies to evaluate the effectiveness of the user-driven linear trend discovery when outliers
and multiple trend exists in the datasets. We also compared the visual and computational
methods for extracting linear patterns when outliers exist. The results shows that the
system can better assist the users in discovering outliers and multiple trends.
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Chapter 4

Nugget Browser: Visual Subgroup
Mining and Statistical Significance
Discovery in Multivariate Dataset

In this chapter, I present a novel pattern extraction and visualization system, called the
Nugget Browser, that takes advantage of both data mining methods and interactive visual
exploration. This work was published in IV 2011 [31].

4.1 Introduction

Subgroup discovery [7] is a method to discover interesting subgroups of individuals, such
as “the subgroup of students who study in small public high schools who are significantly
more likely to be accepted by the top 10 universities than students in the overall popula-
tion”. Subgroups are described by relations between independent (explaining) variables
and a dependent (target) variable, as well as a certain interestingness measure. There are
many application areas of subgroup discovery. For example,the extracted subgroups can
be used for exploration and description, as well as understanding the relations between a
target variable and a set of independent variables. Each subgroup or a set of subgroups
is a pattern, i.e., a sub-region in the independent space. Detailed examination of such
regions can be useful to improve understanding of the process that results in the pattern.

The subgroup discovery process poses many challenges:

• First, since the analysts may not know in advance what kind ofinteresting features
the data contains, they may have to repeatedly re-submit queries and explore the re-
sults in multiple passes. For example, when the user submitsa mining query, they
need to specify the target attribute range of interest, suchas the top 10 universities
mentioned before. However, for different datasets and different application scenar-
ios, the number of the top universities may be different, so they might have to try
several times to find an appropriate range. This makes the mining process tedious
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and inefficient. Thus, we need an interactive mining processthat allows analysts to
submit queries dynamically and explore the results in an interactive manner.

• Second, without visual support, users can only examine the mining results in text
or tables. This makes it very hard to understand the relationships among different
subgroups and how they are distributed in the feature space.Besides, when the user
explores the mining results, the results are often in a descriptive or abstracted form,
such as summaries of the sub-regions. However, the examination of the instances
in the region is also very important for understanding the data point distribution.
Thus, without a visualization of the mining results, users cannot build connections
between the patterns and the instances.

• Finally, adjacent subgroups should be aggregated and clustered when they are of the
same interesting type. For example, given there are two subgroups of students, both
of which have significantly higher acceptance rates than thepopulation, and they are
adjacent to each other in one independent attribute, such asthe groups with medium
and high income. Then the two subgroups should be aggregated, and reported or
treated as a whole subgroup. One benefit is that this aggregate representation is
more compact, which provides users a smaller report list foreasy examination.
Another benefit is that the compact representation can be more efficiently stored
in a file and loaded in computer memory. However, the clustered mining results
generally tend to be multi-dimensional arbitrary-shaped regions, which are difficult
to understand, report and visualize. Therefore, conveyingthe pattern in a compact,
easily understandable, and visualizable form is desirable.

Focusing on these challenges, our main goal was to design a visual interface allowing
users to interactively submit subgroup mining queries for discovering interesting patterns.
Specifically, our system can accept mining queries dynamically, extract a set of hyper-box
shaped regions calledNuggetsfor easy understandability and visualization, and allow
users to navigate in multiple views for exploring the query results. While navigating in
the spaces, users can specify which level of abstraction they prefer to view. Meanwhile,
the linkages between the entities in different levels and the corresponding data points in
the data space are highlighted.

The primary contributions of this work include:

• A novel subgroup mining system: we design a visual subgroup mining system
where users can conduct a closed loop analysis involving both subgroup discovery
and visual analysis into one coherent process.

• An understandable knowledge representation: we propose a strategy for represent-
ing the mining results in an understandable form. In addition to storage benefits,
this representation is easy for analysts to understand, andcan be directly displayed
using common multivariate visualization approaches.
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• A 4-level structure model: we designed a layered model that allows users to ex-
plore the data space at different levels of abstraction: instances, cells, nuggets, and
clusters.

• Visual representation for the nugget space: for each level,we design a view in
which users are able to explore and select items to visualize. The connections
between the adjacent layers are shown based on the user’s cursor position.

• We implemented the above techniques in an integrated systemcalledNugget Browser
in XmdvTool [64], a freeware multivariate data visualization tool.

• Case studies suggest that our visualization techniques areeffective in discovering
patterns in multivariate datasets.

• We performed user studies to evaluate the visual representations of the mining re-
sults.

4.2 Visual Subgroup Mining and a Proposed 4-Level Model

In this section, we introduce the subgroup discovery problem and the mining process.
As mentioned in Sec. 4.1, a subgroup discovery problem can bedefined in three main
features: subgroup description, a target variable, and an interestingness measure function.

A subgroup in a multivariate dataset is described as a sub-region in the independent
attribute space, i.e., range selections on domains of independent variables. For exam-
ple, “male Ph.D. students in a computer science department whose age is large (larger
than 25)” is a subgroup with constraints in the 4 independentattribute space, i.e.,gender,
degree program, departmentandage. The sub-groups can be initialized by partitioning
the independent attribute space. Given a multivariate dataset, pre-processing partitions
the data space into small cells by binning each independent variable into several adjacent
subranges, such as low, medium and high ranges. The number ofbins for each dimension
is defined by users. Users can select bin numbers initially based on the cardinality or ap-
plication domain of the datasets, and then change the bin number according to the mining
result, such as the number of empty and low density cells. Each cell is a description of
one subgroup element.

For the target attribute, based on the application and the cardinality, it can be contin-
uous or discrete. The quality functions are different for these two target attribute types.

As a standard quality function, Nugget Browser uses the classical binomial test to
verify if the target share is significantly different in a subgroup. The z-score is calculated
as:

p− p0
√

p0(1− p0)

√
n

√

N

N − n
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This z-score quality function compares the target group share in the sub-group (p) with
the share in its complementary subset.n andN are subgroup size and total population
size.p0 is the level of target share in the total population and(p−p0) means the difference
between the target shares. For continuous target variablesmean patterns, the quality
function is similar, using mean and variance instead of sharep andp0(1− p0).

Users can submit queries on the target attribute to specify target range or a significant
level to measure the interestingness of each group. The subgroups with high quality mea-
sures are query results, i.e., discovered patterns. Users can visually explore the extracted
patterns and furthermore, can adjust the previous query andperform a new loop of query
processing.

Intuitively, we use color to represent the mining result in the cell level. The cells
(subgroups) are colored gray if their quality measure doesn’t satisfy the significance level
(usually 0.05). If the z-score is larger than zero and the p-value is less than 0.05, the cells
are colored red. This means that the target attribute share or the average target attribute
value are significantly larger than the population. Similarly, for the cells whose z-score
is less than zero and the p-value is less than 0.05, the cells are colored blue. This means
that the target attribute share or the average target attribute value are significantly lower
than the population. In this work, we use different colors torepresent different subgroup
types.

A direct way to report the mining results is to return all the colored cells. Notice that
the number of cells is exponential in the number of independent attributes. The query
result can be very large, which makes it hard for the user to explore and understand.
Specifically, a large set of unrelated cells may not be desired, because:

• Users may only care about large homogeneous regions (subgroups of the same type)
rather than a set of unrelated cells.

• Users may want to know how many connected regions there are and what the sizes
are.

• The result should be in a compact form for ease of understanding.

Towards these goals, we computationally extract two higherlevel abstractions of the
mining result, i.e., the nugget level and the cluster level.

In the cluster level, we aggregate neighbor cells of the sametype to form a cluster
i.e., a connected region (Fig. 4.1 (a)). The clustering results can be used to answer
questions such as how many connected regions there are and what the sizes (number of
instances or cells) are. There are two benefits for the resultin the cluster level besides to
ease exploration. The first one is that the number of clusterscan reveal the distribution
of the mining result, such as a single continuous large cluster or a set of discontinuous
small clusters scattered in the space. This can assist usersto better understand how the
independent attributes influence the target share. Second,since the subgroups of the
same type are generally treated as a whole set, the same treatment can be applied to
all individuals in one cluster rather than each single cell.Since users might be only
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concerned with the large clusters, we can further filter out the small clusters, based on a
user-specified threshold. This idea of clustering cells is similar to grid-based clustering
and more benefits are discussed in[63, 1]. The difference is that we cluster the cells of
the same type in terms of their interestingness based on the significance level for a target
attribute, while most of the grid-based clustering techniques only consider the densities
of each cell.

Although there are some benefits to representing the mining result at the cluster level,
the largest problem is that the clusters are generally arbitrarily-shaped sub-regions in
multi-dimensional space. This makes it very difficult for the users to understand the shape
of a cluster and visually represent a cluster. To deal with these problems, we propose an-
other level between the cell level and the cluster level, i.e., the nugget level. Specifically,
we aggregate neighbor cells to form larger block-structured hyper-boxes for compact rep-
resentation and easier perception. This aggregation of a set of adjacent cells is called a
nugget. A nugget can be unambiguously specified and compactly stored by two cells, i.e.,
a starting cell and an ending cell, which are two corners of the corresponding hyper-box.
A nugget has two important properties:irreducibility andmaximality.

• irreducibility: any sub-region (subset) of a nugget, also in the cell form, is still of
the user’s interest and meets the interestingness measure function requirement.

• maximality: a nugget cannot be extended in any direction in any dimension to col-
lect more cells to form a larger one.

The concepts of irreducibility and maximality were proposed by [8]. We extend this
idea to a multi-dimensional space to generate a set of largest hyper-rectangular regions
that satisfy the query.

Figure 4.1: The 4-level layered Model. User can explore the data space in different levels
in the nugget space.
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The proposed 4-level structure model is shown Fig. 4.1. As shown in Fig. 4.1 (a),
assume that the whole feature space is two dimensional (the gray plane) and the target
dimension values (binary) are represented as the point color. In this example, assume the
blue and red points are from two classes, e.g., USA cars and Japanese cars. Assume the
user’s query is requesting to find the subgroups where the target share (origin is USA)
of the cars are significantly higher or lower than the population. To answer this, we first
color the cells based on z-score: color the cell blue (red) ifthe percentage of cars from
USA is significantly higher (lower) than the whole of the population. The partitioning and
coloring results are shown in Fig. 4.1 (c). A gray cell means no significance is detected
or are empty cells.

4.3 Nugget Extraction

In this section, we describe our proposed nugget representation and extraction method.
Assume there areD dimensions in the feature space. As mentioned before, each dimen-
sion is partitioned into several bins. Assume there areBk bins for dimensionk. The cut
points for dimensionk areCk,1 (min) < Ck,2 < · · · < Ck,Bk+1 (max). HereCk,j means
the value of thejth cut point in dimensionk, assuming the first cut point is the minimum
in this dimension. For any cellx, we assign an index (entry) based on its value position
in each dimension: [Ix,1, Ix,2, · · · , Ix,D] (1 ≤ Ix,k ≤ Bk, for 1 ≤ k ≤ D). For example,
if the first dimension value lies between the minimum and the second cut point, i.e.,C1,1

≤ v < C1,2, the index value of the first dimension of this instance is 1.
Definitions and the nugget extraction algorithm are introduced below:
Sort all cells: we define a cellca asahead ofanother cellcb if for a dimensionk,

Ica,k < Icb,k, and for the previous indices, they are all the same, i.e.,Ica,t = Icb,t for 1 ≤
t < k. We sort all the cells according to this order. We call the sorted listCellList. Some
positions could be missing if the cell with that index is empty.

Of the same type: two cells areof the same typeif they both satisfy the same query.
This means they have the same color.

Previous cell: ca is theprevious cellof cell cb in dimensionk if Ica,k = Icb,k - 1, and
for the other indexes, they are the same, i.e.,Ica,k = Icb,k for 1 ≤ j ≤ D andj 6= k. So
usually one cell hasD previous cellsin terms of all the dimensions.

Between two cells: cell cx is betweenca andcb if for each dimension, the index ofcx
is larger than or equal toca, and smaller than or equal tocb, i.e.,Ica,k ≤ Icx,k ≤ Icb,k, for 1
≤ k ≤ D. If cell cx is betweenca andcb, it meanscx is covered by the hyper-box whose
two corners areca andcb. Note that here ‘between’ does not mean the location inCellList.

Reachable: cell cb is reachablefrom ca if a) ca andcb are of the same type, and b) all
the cellsbetweenthese two cells are of the same type asca andcb. If cb is reachableby
ca, then that means the hyper-box, takingca andcb as corners, is colored uniformly.

Algorithm Description: To find all the nuggets, for each cellcx, we fill a list of cells,
calledreachList. If cell cy is in thereachListof cx, that meanscy is reachable fromcx.
We fill this list from an empty list for each cell in the order inCellList. This is because
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when filling thereachListfor cell cx, we have finished the lists of theD (maybe fewer)
previous cellsof cx. Due to the property ofirreducibility, we only examine the cells in
the list of previous cellsfor filling the list for the current cell. After getting the union
of all the reachLists of all thepreviouscells, we check each cell in the unioned list and
delete unreachable cells. For this purging process, again only the previous cells’reachList
require access. In order to fulfill themaximalityproperty, those surviving cells, which can
reach the current cell, have to be removed from thereachlistsof the previous cells. The
area between cellcx andcy (a cell in thereachlistsof cx) is a nugget.

The time cost for extracting all nugget is determined by the number of interesting
cells. The number of all cells is independent of the data sizeand exponential to the di-
mensionality, given a fixed constant bin partition number for all dimensions. This means
our system scales well as the data size increased and does notscale well as the dimen-
sionality increases. However, due to the fact that most of the cells are not interesting
(not colored), we can infer that the number of interesting cells for forming nuggets and
clusters is low, which can lower down the time of extracting nuggets. To show this, we
used our system to extract nuggets for two datasets with higher dimensionality. The first
dataset has 13 dimensions and 73 nuggets were extracted in total; The second dataset has
30 dimensions and 18 nuggets were extracted in total. For both datasets, the time for
extracting all nuggets cost less than 1 seconds, which indicated that this proposed nugget
extraction process can handle datasets with high dimensionality.

4.4 Nugget Browser System

In this section, we introduce the system components, views,and the interactions.

4.4.1 Data Space

We employ Parallel Coordinates (PC), a common visualization method for multivariate
datasets [40], to visualize the data points and nuggets. In parallel coordinates, each data
point is drawn as a poly-line and each nugget is drawn as a colored translucent band (Fig.
4.6), whose boundaries indicate the values of the lower range (starting cell) and upper
range (ending cell) for each dimension. The color blue and red indicate the sign of the
z-score and darker color means higher significance is discovered for the subgroup. The
color strategy is obtained from Color Brewer [16], using diverging color schema (7 bins).
We provide interactions in the nugget navigation space viewso that the users can select
which data points to view in the cell, nugget and cluster level. The last dimension (axis)
is the target attribute that guides the user in submitting queries and changing the target
share ranges. The query ranges are shown during adjustment (vertical colored bars on the
last axis). To assist the user in filtering out uninterestingnuggets, a brush interaction is
provided. The user can submit a certain query range in the independent variable space
and all the nuggets that don’t fully fall in the query range will be hidden in the nugget
view. An example of a query is to select all the subgroups within a certain age range.
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4.4.2 Nugget Space

In the nugget space view, three coordinated views, i.e., cluster view, nugget view, and cell
view, are shown in different 2D planes (Fig. 4.7). The linkages show the connections
between adjacent views [15].

Cluster View. In the cluster view (Fig. 4.7 left), we employ a small “thumbnail”
of a parallel coordinate view to represent each cluster. Thesize of each thumbnail is
proportional to the number of instances each cluster contains, so that large clusters attract
the user’s attention. When the user moves the cursor onto a cluster, the parallel coordinate
icon is enlarged and the connections are shown from this cluster to all the nuggets in the
nugget view that comprise this cluster. Meanwhile, the corresponding instances are shown
in the data space view.

Since the clusters consist of the data points in a high-dimensional space, to preserve
the high-dimensional distances among the clusters we employ an MDS layout [12] to
reveal latent patterns. The question is how to measure the similarity of two clusters. A
commonly used and relatively accurate method for measuringthe distance between two
groups of instances is to average all the Euclidean distances of each instance pair from
different groups. The problem is that for large clusters, the computational cost is high. We
therefore calculate the distance in a upper level of the proposed 4-level model, i.e., using
the average Euclidean distances between all cell pairs. As aresult, the cost reduces as it
depends on the number of cells, which is much smaller. The cell distance is calculated as
the Euclidean distance between two cell centroids.

Nugget View. As mentioned before, each nugget is a hyper-rectangular shape. A
single star glyph with a band, as proposed in [68], can thus beused to represent a nugget
(Fig. 4.7 middle). The star glyph lines show the center of thenugget, and the band fades
from the center to the boundaries. Similar to the cluster view, connections between the
nugget view and the cell view are displayed according to the user’s cursor position. The
corresponding data points are also highlighted.

We again use an MDS layout for the nugget view, but the distance metrics are cal-
culated differently from the cluster view. This is because any two nuggets could overlap
in space, thus an instance could be covered by multiple nuggets. To reveal the distance
between two nuggets, we designed two different distance measurements: one for overlap-
ping nuggets and one for non-overlapping nuggets.

When the two nuggets have common cells, the distance metric indicates how much
they overlap:

Dis(NuggetA, NuggetB) =
|A|+ |B| − 2|A ∩ B|

|A|+ |B|
Here|A| means the number of cells that clusterA includes. When the two cells have

a very small overlapping area, i.e., almost non-overlap, the distance is near 1. When the
two cells almost fully overlap on each other, the distance isnear 0.

When the two nuggets do not have any common cells, we use the Manhattan distance
as the measurement. For each dimension, the distance is measured by using a grid as a
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single unit, called thegrid distance. For example, the grid distance for dimensionk is
0 if on that dimension the two nuggets’ boundaries meet without any gaps, or the two
nuggets have overlapping bins (note that two nuggets may notoverlap in space, but may
overlap in certain dimensions). The grid distance of dimension k is 1 if there is a one-bin
gap between the two nuggets on that dimension. The distance in any dimension is the cell
distance+1 indicating how many steps they are away from each other:

Dis(NuggetA, NuggetB) =
D
∑

k=1

(GridDistancek(A,B) + 1)

Note that the minimal distance is 1 for two non-overlapping nuggets, which is also
the maximal distance for two overlapping nuggets. Hence in the MDS layout view, the
nuggets in a cluster will tend to stay together to help revealpatterns.

For both of the cluster view and the nugget view, we use MDS as the layout strategy, so
the time cost for constructing the two views is mainly determined by the MDS algorithm.
Here we give the time cost of two datasets for constructing this view to show how our
system scales as the number of nuggets increases. For the first dataset with 69 clusters
and 86 nuggets, it took 5 seconds to create this view; and for the second dataset with 123
clusters and 248 nuggets, it took 155 seconds to creating this view. This indicated that
as the number of clusters and nuggets increase, our system doesn’t scale very well. To
address this limitation, implementing a faster algorithm of MDS layout can be a future
work.

Cell View. In the cell view (Fig. 4.7 right), each cell is represented asa square. The
cell colors are consistent with the colors in other views. The cell is highlighted when the
user is hovering the cursor on it. Meanwhile, all the data points in this cell are shown
in the data space view. The curves indicating connections between the cell level and the
nugget level are also shown for the cells the cursor points to. Instead of a single curve,
multiple ones are shown as a cell could be included in multiple nuggets.

4.5 Case Study

In this section, we discuss a case study showing the effectiveness of our system. The
dataset was obtained from the UCI Machine Learning Repository called “the Mammo-
graphic Mass Dataset” [60]. Mammography is the most effective method for breast can-
cer screening. The dataset size is 961 (830 after removing instances with missing values).
5 independent attributes, such as theageof the patient and thedensityof the mass, are
extracted and the target attribute isSeverity(benign or malignant). There are two main
goals for analyzing the dataset. The first one is to understand how the independent at-
tributes influence the target attribute. This can assist thedoctors in finding the important
attributes impacting the diagnosis results. The second goal is to discover the subgroups
where the benign (malignant) rate is significantly higher orlower than the population.
For a future diagnosis, if a patient is discovered in those groups, more attention should be
paid or some conclusion about the diagnosis result could be drawn.
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To show the difficulty of finding how the independent attributes influence the target
attribute using common multivariate data visualization techniques and interactions, we
first display the dataset using Parallel Coordinates in XmdvTool. As shown in figure 4.2
and 4.3, the highlighted instances are selected using the brush technique (range query)
on the target attribute. Figure 4.2 shows the query result onall the benign instances (red
color poly-lines) and figure 4.3 shows the query result on allthe malignant instances. The
pink area shows the bounding box of all the instances in the query. It can be observed
that for each query, the instances cover almost the whole attribute ranges and all different
values in different dimensions. This shows the common visualization technique, even
with interactive range queries, can hardly reveal the relationship between the independent
attributes and the target attribute.

Figure 4.2: Brushed benign instances Figure 4.3: Brushed malignant instances

We then show the insufficiency of the traditional subgroup mining technique without
visualization in providing compact and easily understandable mining results. We per-
formed the mining as follows. The target share value is benign in the target attribute.
This query examines the subgroups with significantly higherbenign rate and significantly
lower benign rate. Note that significantly lower benign ratedoes not necessarily mean
significantly higher malignant rate, which can be examined by specifying another mining
query that takes share value as malignant in the target attribute. The whole independent
attribute space is portioned by binning each attribute. Specifically, for the attribute whose
cardinality is smaller than 7, the bin number is the same as the cardinality, such asden-
sity. For the attributeage(numerical attribute), the bin number is set to 7. We chose 7
because for lower values, the patterns are very similar, butless clear, while higher number
of bins results in a lower number of instances in each group, which reduces the reliability
of significance due to the small sample size. After the binning, the whole dataset is par-
titioned into a set of subgroups. Each subgroup consists of agroup of individuals whose
attribute values are similar or the same in all dimensions. Each subgroup is examined
using the p-value and z-score of the statistical test as the interestingness measure. Parts
of the mining results are shown in Figure 4.4 as a table. The star means the description of
each subgroup in each dimension. 18 subgroups have the benign rate significantly larger
than the population. It is clear that without visualization, analysts cannot understand how
the subgroups are distributed in the space and the relationships between the subgroups.
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Also, for some subgroups, such as number 12, 13, and 14, they are adjacent to each other
and can be reported as a single group for a compact representation.

Figure 4.4: The mining results are represented in a table before aggregating neighbor
subgroups.

From the previous discussions, we can observe several difficulties:

• it is hard to understand how the independent attributes influence the target attribute
using common visualization techniques.

• it is hard to understand the distribution of the subgroups

• the mining results are not reported in a compact knowledge representation form.

Next we will show how to use the Nugget Browser system to better solve the subgroup
mining problem. Figure 4.5 shows the higher level, i.e., thenugget level representation
of the mining result in a table form. 8 nuggets are reported ina more compact manner,
compared to the result of traditional subgroup mining, i.e., a list of subgroups. Figure
4.6 shows all the nuggets (translucent bands) extracted in the data space view. Color blue
means a significantly higher benign rate and color red means asignificantly lower benign
rate. It is very clear that subgroups with high benign rates can be differentiated from the
low benign rate subgroups in most of the dimensions, which indicates that the independent
attributes have a strong impact on the target attribute. However, this influence can hardly
be discovered in traditional multivariate data visualization techniques, even with range
queries. Specifically, the high benign rate subgroups have lower values for attributesBI-
RADS, Age, ShapeandMargin, compared to the low benign rate subgroups. Most of the
subgroups with significance discovered haveDensityvalue 3 (means low). More details
of how the independent attributes influence the target attribute will be discussed later.
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Figure 4.5: The mining results are represented in a table after aggregating neighbour
subgroups.

Figure 4.6: The data space view shows all the nuggets as the translucent bands. The right-
most dimension is the target attribute. The blue vertical region on the target dimension
indicates the target range of the subgroup mining query.

Although the nugget representation, shown in Figure 4.5, ismore compact than the
cell representation, without the visual representation, the users still have difficulties un-
derstanding the distribution of the nuggets and building connections between the pattern
and the instances. To better understand the mining results and further explore them, the
analysts can open the nugget space view (Figure 4.7). Based on the distribution in the
nugget view and the cluster view, the high benign rate cluster and the low benign rate
cluster are separated from each other in the attribute space, indicating that the the target
attribute is influenced by the independent attributes. We can also discover that a large
red cluster and a large blue cluster are extracted. It is shown that the higher benign rate
regions and low benign rate regions are continuous in the independent attribute space.
More discoveries found during the exploration in the nuggetspace are as follows:
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Figure 4.7: The nugget space view shows the mining result in 3level of abstractions. The
connecting curves indicate the connection between adjacent levels.

1. For the low benign rate subgroups, there are two outliers outside the main cluster.
By hovering the cursor and selecting on the two outliers, we can discover what causes the
two outliers to differ from the main cluster: theShapevalues of the main cluster (red)
are 3 and 4, while the two outliers haveShapevalue 1. When showing these two outlier
subgroup instances in the data space view, we can observe that no instances are benign
and the group sizes are small. Thus, the doctors can considerthat they are not typical and
ignore these two outlier subgroups during analysis.

2. The shape value 4 is more important for the low benign rate.This can be discovered
when displaying all the instances in the red cluster: the shape values are either 3 (means
lobular) or 4 (means irregular), while for the value 4 , higher significance is found, which
can be recognized by a darker color.

3. For lower age patients, higher benign rate tend to be discovered. This can be
verified by distribution of the interesting subgroups: no higher benign rate groups are in
age bin 6 and 7; no lower benign rage groups are in age bin 1 and 2.

4. Attribute BI-RADShas a negative effect for higher benign rate, i.e., lowerBI-
RADSvalues tend to have higher benign rate. This can be discovered according to the
distribution of subgroups with significance on this attribute. For the higher benign rate
subgroups most of them haveBI-RADSvalue 4. For low benign rate subgroup: most
of them haveBI-RADSvalue 5. The analysts can understand this trend better if they
know the meaning of this attribute: each instance has an associated BI-RADS assessment.
The lowest value means definitely benign and highest value means highly suggestive of
malignancy.
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4.6 User Study

In this section, we discuss a user study for evaluating the effectiveness of the visual rep-
resentations of the nugget space. The hypothesis is that compared to the current existing
work using a table representation, the designed nugget viewthat uses shape and layout
can better help the users understand the subgroup mining results and quickly identify pat-
terns in it. The patterns could be outliers, clusters, and overlapped subgroups. To show
that simple multivariate visualization techniques cannotreveal the pattern very well, we
implemented scatterplot matrices for comparison. Anothergoal of this user study is to
evaluate the proposed 3-level knowledge representation. We compared the nugget view
and the cluster view, in terms of their abilities of prediction. For this task, the subjects
were provided with the nugget view, or the cluster view, as well as a set of instances. They
were asked to build a correlation between the subgroups and the instances.

We invited students as the subjects (18 in total) to participate in the user study. The
subjects were asked to answer 11 questions based on different visual presentations of the
subgroups. The subjects answered the questions based on screen-copied figures which
were printed out on paper. Note that any single question about the subgroup mining re-
sults could be answered based on different visual representation methods, such as the
designed nugget representation or the table representation. Subjects were randomly as-
signed a visual representation method to answer a given question. Take the evaluation of
the representation of the two levels (nugget level and cluster level) for example. We de-
signed two questions (questionQa and questionQb) to compare the representation of the
two levels. We generated two groups of questions, groupGA and groupGB, as follows.
Each question group had both questionsQa andQb. In groupGA, questionQa would be
answered based on the nugget level representation, while questionQb would be answered
based on the cluster level representation. In groupGB, the questions are the same, but we
exchanged the visual representations: questionQa was represented using the cluster level
and questionQb was represented using the nugget level. In the study, we randomly as-
signed half of the subjects to question groupGA and the other half to question groupGB.
Similarly, we generated three groups of questions to evaluate the three representations of
the subgroup mining result: table representation, scatterplot matrix representation, and
the nugget representation.

Before the study, the subjects signed a consent form. Then each subject was shown a
brief explanation of the study using examples and sample questions, such as which dataset
we used and how to read the figures. The subjects finished the study by answering several
questions. One type of question was the identification task,i.e., identify and highlight the
specified pattern, such as clusters and outliers. This type of questions is used to evaluate
the visual representation of the subgroup mining result. The other type of question was
the prediction task, i.e., for a given instance, determine which subgroup it belongs to.
This type of questions was used to evaluate the nugget representation in different levels.
We recorded the time each subject spent on each question for further analysis.

Figure 4.8 uses error bars with a 0.95 confidence interval to show the accuracy for
the three knowledge representations of the subgroup miningresults. We found that the
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scatterplot data representation and the table representation were very similar in terms
of accuracy. It is clear that the proposed nugget representation is better than both the
scatterplot and table representation, though no statistical significance is detected.

Figure 4.8: The comparison of accuracy for different miningresult representation types.

We also examined time spent on each representation, which are shown in Figure 4.9.
Similarly, the nugget representation is better than the other two types of knowledge repre-
sentations. The difference between the nugget representation and the scatterplot matrix is
significant (p-value=0.014). To conclude, we found the visual representation of the sub-
group mining result using the proposed nugget method is better than the tabular method
and scatterplot matrix method, in both accuracy and time.

Lastly, we compared the two different levels of nugget representations. Figure 4.10
compares the accuracy for these two levels, and Figure 4.11 compares the time spent for
these two levels. It is shown that the two representations have their own advantages: the
nugget representation costs less time for the prediction task, while the cluster level can
provide higher accuracy. A possible explanation is that thecluster view uses the parallel
coordinates thumbnail representation, which may cause overlapping when a cluster has
many instances. This explains why the subjects spent more time on this task when using
the cluster view. The accuracy for the nugget view is not as good as the cluster view. This
is because compared to the star glyph, a parallel coordinaterepresentation is relatively
easier to make a comparison, as a trend is shown. Since no statistical difference is de-
tected, the conclusion is that there is no difference in the two methods in terms of their
prediction abilities.
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Figure 4.9: The comparison of time for different mining result representation types.

Figure 4.10: The comparison of accuracy for different levels.
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Figure 4.11: The comparison of time for different levels.

Conclusions

In this chapter, we described a visual subgroup mining system, called theNugget Browser,
to support users in discovering important patterns in multivariate datasets. We proposed a
4-level layered model that allows users to explore the mining result in different levels of
abstraction. The nugget level mining results are represented as regular hyper-box shaped
regions, which can be easily understood, visualized, as well as compactly stored. The
layout strategies help users understand the relationshipsamong extracted patterns. In-
teractions are supported in multiple related nugget space views to help analysts navigate
and explore. The case studies show how our system can be used to reveal patterns and
solve real life application problems. The user study shows that the proposed visual repre-
sentation can better help the analysts understand the subgroup mining results, as well as
quickly identify specified patterns.
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Chapter 5

Local Pattern and Anomaly Detection

In this chapter, I introduce a novel visualization system that allows analysts to perform
multivariate analysis in a pointwise manner and examine anomaly patterns in multivariate
datasets. This system is designed for one type of local analysis, i.e., sensitivity analysis.
I evaluated the system with formal user studies and expert studies. There are two main
goals when using this system to explore a multivariate dataset:

• examine a multivariate dataset from a single focal point. The relationships between
neighbors and the focal point are visually represented.

• discover anomalous local patterns, i.e., outliers that aredifferent from the global
pattern. Each detected anomalous local pattern can be viewed as anuggetthat can
be managed using this system.

5.1 Introduction

5.1.1 Sensitivity Analysis

A local pattern can be viewed as a pattern that is extracted only from the subset of data
points within a small region around a focal point. There are many multivariate analysis
techniques that follow the idea of local analysis, and one ofthem is sensitivity analysis.
Sensitivity analysis is the study of the variation of the output of a model as the input
of the model changes [56]. When we study the correlation between a target (response)
variableY and a set of independent variables{X1,X2, . . ., Xn}, sensitivity analysis can
tell analysts the change rate ofY asXi varies. Analysts can also discover which input
parameters are significant for influencing the output variable. Sensitivity analysis has
been widely applied for understanding multivariate behavior and model construction for
analyzing quantitative relationships among variables [56]. For example, it can be applied
to car engine designs: fuel consumption is dependent on the relationships among the
design choices, such as fuel injection timing, as well as operation-varied conditions, such
as engine speed [42]. The analysis results are important in helping engineers tune the
parameters in designing an engine.
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Sensitivity analysis is essential for decision making, system understanding, as well as
model constructing. Numerous approaches have been proposed to calculate the sensitivity
coefficients. I focus on differential analysis, where sensitivities are defined as the partial
derivatives of a target variable with respect to a set of independent variables.

5.1.2 Motivations for Pointwise Exploration

Although many visual analytics systems for sensitivity analysis follow this local analysis
method, there are few that allow analysts to explore the local pattern in a pointwise man-
ner, i.e., the relationship between a focal point and its neighbors is generally not visually
conveyed. The key idea behind this research is analogous to the street view in a Google
map [29], where the user can stand in a position in the global map to browse the neighbors
and understand its vicinity, i.e., the local patterns.

This pointwise exploration is helpful when a user wants to understand the relationship
between the focal point and its neighbors, such as the distances and directions. The
analysis result can assist analysts in understanding whichneighbors do not conform to the
local pattern. This discovery can be used to detect local anomalies and find potentially
interesting neighbors.

To better understand the usefulness of pointwise sensitivity analysis, I discuss an ap-
plication scenario for selecting an apartment near a campus. The target variable is the
price and the independent variables are several apartment attributes that influence the
target, such as room size, bedroom number, distance to campus, and so on. The local
sensitivity analysis can tell users (students) how the price is influenced by an indepen-
dent variable, either positively or negatively, as well as which variables are important for
choosing an apartment. However, users often cannot easily decide which apartment is
worth renting. Given a particular apartment or the one in which they currently reside, it is
not always clear whether there are any better choices compared to this one. Specifically,
can the student pay a little more to get a much better apartment, or find a similar one
that is much cheaper. Finally, if users have domain knowledge or certain requirements,
they should be able to use this to change this apartment finding task. For example, if
the students know that distance is much more important for their choices, i.e., they pre-
fer a closer one rather than a bigger one (assume both choicesincrease costs the same
amount), they should increase the influencing factor for distance, or similarly decrease
the influencing factor of size.

We seek to develop a system focusing on the challenges that mentioned in the apart-
ment finding problem. In this chapter, I present a novel pointwise local pattern visual
exploration method that can be used for sensitivity analysis and, as a general exploration
method, for studying any local patterns of multidimensional data. Specifically, this sys-
tem allows users to interactively select any single data instance for browsing the local
patterns. Each instance is assigned a factor using statistical means to reveal outliers that
do not conform to the global distribution. In the local pattern view, the layout strategy
reveals the relationships between the focal point and its neighbors, in terms of the sensi-
tivity weighting factors. Users can interactively change the sensitivity information, i.e.,
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the partial derivative coefficients, based on their requirements. Users can also compare
the local pattern with the global pattern both visually and statistically.

The primary contributions of this system include:

• A novel pointwise exploration environment: It supports users in browsing a multi-
variate dataset from apointwiseperspective view. This exploration assists users in
understanding the vicinity of a focal point and reveals the relationships between the
focal point and its neighbors.

• A novel visualization approach for sensitivity analysis: Sensitivity analysis is one
important local analysis method, thus is well suited for ourpointwise exploration.
The designed local pattern exploration view indicates the relationships between the
focal point and its neighbors, and whether the relationshipconforms to the local
pattern or not. This helps the user find potentially interesting neighbors around the
focal point, and thus acts as a recommendation system.

• Adjustable sensitivity: The system allows users to interactively adjust the sensitivity
coefficients, which gives users flexibility to customize their local patterns based on
their domain knowledge and goals.

• System evaluation using real-world dataset: I evaluated the effectiveness of our
system based on a real-world dataset and performed a formal user study to better
evaluate the effectiveness of the whole framework.

5.2 Local Pattern Extraction

5.2.1 Types of Local Patterns

There are many types of local patterns that can be used for sensitivity analysis and other
local analysis. I list some of them in the following:

• the model coefficients: one way to calculate the sensitivities is to use the partial
derivative values. For a local linear regression model, thecoefficients for each
independent variable are one of type local pattern. The sizeof this pattern is the
number of independent variables.

• the residual values: for each neighbor, the residual describes how well it fit the
local model, i.e., the difference between the estimated value and observed value.
The size of this pattern is the neighbor count.

• the angle between the connecting vectors, i.e., a vector from the focal point and
a neighbor, as well as a certain orientation, such as the normvector of the linear
regression hyper-plane, or a positive direction of a dimension. I use this information
as the local pattern and it will be discussed later in Section5.2.
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5.2.2 Neighbor Definition

A local pattern in a multivariate dataset means a single datapoint and its vicinity, i.e., a
set of data items in a sub-region. The data point can be viewedas a focal pointF , which
could be an existing data item in the dataset or any user-specified position. The data items
within the range are considered neighbors.

The notion of locality can be defined by the user’s requirement. Generally, two differ-
ent types of ‘locality’ are considered:

• Hyper-sphere: The definition of a Hyper-spherical local neighborhood with respect
to F is a subset of points within a hyper-sphere takingF as the center. This set
of normalized n-dimensional points is denoted asV , with |F − v| ≤ r (v ∈ V ).
|F −v| means the distance measure (Euclidean distance) between the focal pointF
and the pointv. r is a user-defined radius to control the degree of locality. Note that
the normalization means different weights will be assignedwhen calculating the
Euclideandistance of the two data points. Usually all the dimensions are normal-
ized between zero and one; however, in some cases, a weight can be assigned based
on the model coefficients or any user-specified values. This neighbor definition is
widely used in many multivariate analysis methods such as density based clustering
[24]. Another way to define neighbors is to specify a numberk, and for a specific
point, thek nearest data points are its neighbors. In this case, the local region is
also a sphere shaped area.

• Hyper-box: The definition of a Hyper-box local neighborhood with respect to F
is a subset of points within a Hyper-box takingF as the center. This set of n-
dimensional pointsv satisfy|Fk − vk| ≤ rk, whereFk is the value of dimensionk
of F andrk is the range of the hyper-box for dimensionk. For a box-shaped area,
the user can specify the box size on each dimension. This gives users flexibility
to define the neighborhood based on different applications and requirements. For
example, for categorical independent attributes, such as the country of origin or
manufacturer of a car, the coefficients of the sensitivity analysis are meaningless,
since the attribute values are not ordinal. However, for differentorigins or man-
ufacturers, the coefficients may be different and it is useful to comparethem. In
this case, the user can specify the box size on the categorical attributes so that the
cars of the same origin and manufacturer are neighbors. Thissystem allows users
to perform this neighborhood definition in a parallel coordinate view by dragging
and resizing a box-shaped region.

5.2.3 Calculating Local Patterns for Sensitivity Analysis

As mentioned earlier, there are many ways to compute the sensitivity of one dependent
variable with respect to an independent variable. In this work, I follow a variational
approach, where the sensitivity can be calculated by the partial derivative of one variable
with respect to another. The derivative of a target variable, y, as the independent variable,
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x, changes is approximated as∂y/∂x. The relationship is geometrically interpreted as a
local slope of the function of y(x). Since we do not know the closed form of the function
y(x) between variables in the general case, we approximate the partial derivatives using
linear regression. The regression analysis is performed indifferent neighborhoods around
each point. A tangent hyperplane for each focus point is calculated based on its neighbors
using linear regression. This linear function represents how the independent variables
influence the target variable, considering a constant localchanging rate for all independent
variables. Also, the representation enables the model to predict the target value given the
independent variables, as well as to assess the error between the predicted value and the
observed value. In a sense, analysts assume that the local neighbors fit this trend since the
sum of the square errors to the regression line is minimized.

Generally speaking, any local information that can assist analysts in performing lo-
cal pattern analysis can be extracted and visually represented for examination, such as
neighbor count, distances to neighbors, and orientation toneighbors. In this research, in
particular, I focus on the orientations from the focus pointto the neighbors. I choose this
pattern for two reasons. First, this pattern tells users therelationships between the focus
point and its neighbors, i.e., the directions to move from the focus point to its neigh-
bors. Second, and more importantly, since our system is designed for sensitivity analysis
and we extract a linear regression model, this direction reveals whether the relationship
conforms with the local trend or not, which can assist analysts in performing sensitivity
analysis in this neighborhood region.

Similar to the street view in Google Map, when a user stands ata single point (the
focal point) to examine the neighborhood, the orientationsto the neighbors tell users
which direction they should move from the standing point (the origin) to reach each of
the neighbors. In the map coordinate system, this directionis usually described using an
angle between a standard direction vector, such as north, and a connecting vector, from
the focal point to a neighbor point. In our system, to assist users in performing sensitivity
analysis, we take the normal vector of the regression hyperplane as the standard direction.
Since there are two normal vectors of one plane, without any loss of generality, we take
the one directed to the negative side of the target variable as the standard normal direction.
For each neighbor of the focal point, we calculate an angleθ between the normal vector
of the regression hyperplane and the connecting vector between the focal point and that
neighbor, as shown in Figure 5.1.Cos(θ) is the dot product of the two unit vectors.

To remove the unit differences among the different attributes, we assign a weight,
using the regression coefficient, for each independent attribute, so that the changing rates
are the same between each independent variable and the target variable. This step can be
considered a normalization. After the normalization, the slopes of the linear trend are all
π/4 in all dimensions, and the angleθ is between 0 andπ. The direction of the normal
vector is orthogonal to the local gradient, taking the focalpoint as the starting position.
Therefore, the angleθ for one neighbor represents whether the relationship between the
focal point and this neighbor conforms with the local lineartrend or not. The expectation
of this angle isπ/2, assuming all the local points fit the extracted linear modelvery well.
If the angle isπ/2, it means that the vector from the focal point to this neighbor is the
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same as the local trend (the blue point in Fig. 5.1). If the angle is less thanπ/2 (the green
point in Fig. 5.1), it indicates that the neighbor’s target attribute value is smaller than the
estimate using the extracted model. Note that when we say thepredicted value, we do not
mean it is the predicted value using the local regression plane (the solid red line in Fig.
5.1). Since we care about the relationships between the focus point and its neighbors,
the predicted value is based on the regression plane that is moved to the focal point in
parallel (the dotted red line in Fig. 5.1). In contrast, if the angle is larger thanπ/2 (the
yellow point in Fig. 5.1), it means that the neighbor’s target attribute value is larger than
the estimate, taking the origin as the focal point.

Figure 5.1: The extracted local pattern.

To sum up, in this system, the extracted local pattern for a single point is a vectorV ,
in which each value is an angle introduced as before. The sizeof V is the same as the
neighbor count.

5.2.4 Anomaly Detection

Our system allows users to detect anomalous local patterns that deviate from others. In
general, we follow the idea of subgroup discovery mentionedin Chapter 4 to identify
interesting subgroups from the dataset.

Since each local pattern is extracted from a small subset, i.e., neighbors of a single
data point, we can take each local pattern as a subgroup. Thussubgroup discovery can
be applied to discover the local patterns of certain specialsignificance, such as the ones
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different from the others, i.e. anomalies. The word “anomalous” implies that there is
something basic to which each subgroup can be compared, i.e., there is some notion of
‘background’ or ‘expected’ pattern. For example, the directions (angles) to the neigh-
bors mentioned before are expected to beπ/2. We know this is because the analysts
have knowledge of regression analysis. In general, however, users do not have this prior
knowledge.

As a general solution, I assume each subgroup (a local pattern) is one extracted sam-
ple. All the samples could be integrated as a population to simulate the underlying model
that generates the individuals. I use the term “global pattern” to represent the integrated
pattern. Each local pattern is compared with this global oneto decide whether it is differ-
ent from it. To better understand this idea, I give an examplefor searching for anomalous
patterns on a map. In this example, the extracted pattern is the percentage of water cov-
erage around each sample position, and the goal is to detect anomalous areas in terms of
this pattern. Since we assume users do not know the expected pattern, we integrate all the
local patterns (percentages of water coverage) together and use a statistical test to detect
anomalies. It is not hard to understand that for a map of mainland, areas near lakes and
shores are anomalies; for a map of the ocean, islands are anomalies.

As a statistical method, the significance value of each localpattern is evaluated by a
quality function. I use the same quality function mentionedin Chapter 4. Although this is
a general way to detect anomalies, visual exploration on each single pattern is still often
needed. This is because this approach is based on the assumption that the population
is normally distributed, which does not always hold for all applications. In the system,
I support users examining each local pattern and comparing it with the global one both
statistically and visually.

5.3 System Introduction

In this section, we introduce the proposed local pattern exploration method and our sys-
tem design. In our system, we provide 5 different coordinated views to assist users in
exploring the local patterns.

5.3.1 Global Space Exploration

Theglobal viewis designed to give users a global sense of the whole dataset.Basically,
any multivariate data visualization techniques, such as scatterplot matrices, parallel co-
ordinates, pixel oriented techniques, or glyphs, can be used to display and explore the
data globally. Of these methods, only glyphs show each data point individually as an
entity. We use a star glyph because the analyst can easily specify which individual data
point he/she wants to examine, thus leading to a easy exploration of the local pattern of
that data point. A major drawback for the glyph display method is the scalability issue.
When the data size is very large, each glyph is very small and it is difficult to recognize
and specify a single data item. A solution is to use brushing and filtering techniques to
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hide uninteresting local patterns to save the display space. Another solution is clustering
similar local patterns and displaying different clusters in separate views.

To assist analysts in discovering anomalous local patterns, i.e., a subgroup of neigh-
bor data points that are different from the global pattern, we encode the statistical results
using color. As shown in Fig. 5.2, gray color means there is nosignificant difference be-
tween the sample and the population in a significance level (p-value is larger than 0.05),
suggesting the local pattern is not an anomaly. Red and blue colors mean that a significant
difference is detected (p-value is less than 0.05). Red means the z-score is less than zero
(the critical value is -1.96 for 0.05 level), which means thelocal pattern has significantly
lower mean value than that of the global pattern. Similarly,blue means the z-score is
larger than zero (the critical value is 1.96 for 0.05 level),indicating a higher mean value
compared to the global pattern. We use a diverging color strategy for two colors from
Color Brewer [16]; this strategy is also used in the local pattern view for comparative
neighber representation. The darker the red and blue colorsare, the higher the signifi-
cance is (i.e., a smaller p-value is obtained). When users examine each individual local
pattern, red and blue items are generally of users’ interests. Though we use 0.05 as default
significant level, if users only want to focus on the data items that are extremely different
from the global pattern, they can change the significant level to a smaller value, such as
0.01 or 0.001, to reduce the number of anomalous local patterns, i.e., red and blue star
glyphs.

Figure 5.2: The global display using star glyphs (902 records from the diamond dataset).
The color represents whether the data item is an anomalous local pattern or not. The filled
star glyphs are selected local pattern neighbors.

When the user moves the cursor onto a single data item, its neighbors and the item
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itself are highlighted using larger filled glyphs to draw theuser’s attention. Meanwhile,
the basic statistical information is shown in the bottom bar, such as neighbor count, mean
value, z-score, and p-value.

5.3.2 Local Pattern Examination

During the interactive exploration in the global view, whenthe user moves the cursor
onto a data item, another view displaying all its neighbors and the selected point are
drawn, called thelocal pattern view. The main purpose for this view is to illustrate the
relationships between the focal point and all its neighbors. As a general solution, assume
that the focal point is placed in the center of this view; all the neighbors’ positions should
be designated to reflect their relationships, according to different types of extracted local
patterns and the users’ requirements.

In particular, in our system, the focal point is shown in the center of the display using
a star glyph, which allows the user to easily recognize the connection between the local
pattern view and the global view. The two cross lines (vertical and horizontal) passing the
center create four quadrants, using the focal point as the origin. As a layout strategy, we
map the difference in target values between a neighbor and the focal point as Y, meaning
for each neighbor, if its target value is higher than the focal point’s target value, it is
located in the upper half. Contrariwise, if the target valueis lower than the focal point,
it is located in the lower half. The higher the absolute difference is, the further away the
neighbor is placed. This layout strategy tells users where to find an interesting neighbor
when the goal is to discover a neighbor with different targetattribute values, such as
looking for a more/less expensive apartment.

As discussed before, the local pattern in this chapter is theorientation angleθ. The
angle is mapped to X in this view. The angle of the focal point is π/2, assuming the
direction conforms with the local trend. When the angle between a connecting vector and
the normal vector of the local trend is less thanπ/2, the corresponding neighbor is placed
in the left half of the view. Ifθ is smaller (larger) thanπ/2 it means the neighbor’s target
value is smaller (larger) than the estimate. The user can usethis piece of information to
discover interesting neighbors. For instance, taking the example of the apartment finding
problem, given a focal apartment, the students should have more interest in the neighbor
apartments shown on the left side, as those neighbors are detected by our system as having
lower prices than predicted comparing with the focal point.

For each neighbor, we support two display methods. The first one is the original
value display, which means that for each neighbor, the attribute values in the original
dataset are shown. In this case, we again use the star glyphs to represent each neighbor,
so that users can connect this view with the global view (Fig.5.4). The second display
method is a comparative display (Fig. 5.5), in which the focal point is the base line,
represented asm dashes, wherem is the number of attributes. For each neighbor, there are
m bars corresponding to itsm attributes, where a upward (downward) bar for an attribute
indicates that the neighbor’s value in that dimension is higher (lower) than that of the
focal point. This piece of information is also redundantly represented using colors: blue
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means higher and red means lower. The larger the difference is, the darker the color is.
Note that the height of a bar represents the difference between the neighbor and the focal
point in the normalized space, so that when the relationshipbetween the neighbor and the
focal point conforms with the local trend, the sum of the bar heights of the independent
attributes are the same as the bar height of the target for that neighbor.

In terms of the scalability for the comparative display, both the number of neighbors
and the number of dimensions can result in visual clutter andoverlapping. For example,
Figure 5.3 shows the local pattern view with a large number ofneighbors (332 neighbors
in total). One simple solution for a fair number of neighborsis to allow users to inter-
actively change a scale factor to reduce the size of each dataitem. A data item will be
enlarged to its original size when the user moves the cursor onto it. Another solution is
to reduce the number of the displayed neighbors: the users could specify a small number
of k, and only the most closetk neighbors or the most interestingk neighbors, based on a
certain interestingness function, are displayed in this view. We can also apply a clustering
technique to reduce the number of displayed neighbors. Thatmeans we can cluster to
group nearby similar neighbors. After that, each displayedneighbor is a visual represen-
tation of a set of similar neighbors. Some interactions can be integrated allowing further
exploration of a specified group of similar neighbors, or allowing the user to adjust the
level of cluster tree for displaying. When there is a large number of attributes, a dimen-
sion reduction or selection technique could be applied before analysis. For example, the
attributes with lower influencing factors can be removed forreducing visual clutter.

Figure 5.3: The local pattern view with a large number of neighbors (332 neighbors),
which results in visual clutter.

The local regression line in an equation form is shown in the bottom bar to assist
the analyst in performing sensitivity analysis. For the interactions in this view, when the
user moves the cursor on the focal point or one of the neighbors, the data item ID and
its attribute values are displayed next to it (in the form of ID[attribute 1, attribute 2, ...,
attribute n]). The user can click any data point to show or hide the attribute values.
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Figure 5.4: Neighbor representa-
tion using original values.

Figure 5.5: Neighbor representa-
tion using comparative values.

5.3.3 Compare the Local Pattern with the Global Pattern

The colors of each data point in the global view represents the statistical test results, i.e.,
an outlier factor indicates how likely the local subgroup isdifferent from others. However,
knowing the statistical test results is often insufficient.For example, some insignificant
results may also be interesting due to a large deviation. Therefore, a visual comparison
of the local with the global is still needed. To allow the userto compare the local pattern
with the global pattern both statistically and visually, weprovide users acomparison
view, showing the global distribution (directions to neighbors) using a histogram. The
mean values and confidence intervals for both the global and local pattern are also shown
in the bottom (Figure 5.6). The use of this view is shown in thecase study section.

5.3.4 Adjusting the Local Pattern

The local partial derivative values reflect how the independent variables influence the tar-
get variable in the local area. However, the derivative values may not necessarily meet the
user’s expectations and requirements when they want to find interesting neighbors. For
instance, assume that the students wants to move to another apartment from the current
one and are willing to increase their payments, e.g., they would be willing to pay around
$100 more for one more bedroom, or pay $100 more for moving a mile closer to the cam-
pus. In this case, one more bedroom is the same as 1 mile closer, in terms of influencing
ability on the target. For different users, the requirements are likely different. Students
with cars may prefer larger apartment, while ones without cars prefer a closer apartment.
In the first case they would like to increase the influencing factor of size on price, while
in the second case, they would like to increase the influencing factor of distance. It means
that different users have different ways to define “better” when they want to find “better”
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Figure 5.6: The comparison view. The two pink bars in the bottom represent the confi-
dence interval of global pattern (upper) and selected localpattern (lower).

neighbors around the focal point.
In our system, we provide users alocal pattern adjusting view, using parallel coor-

dinates (Fig. 5.7). The partial derivatives are drawn as a poly-line. The user can inter-
actively change the coefficient values, i.e., the slopes of the trend line, by dragging the
poly-line on each axis. During the adjustment, the local pattern view is also dynamically
changed to reflect the new relationships among the focal point and its neighbors in the new
“environment”, i.e., using the new trend. This is because wecalculate the relationships
among the focal point and its neighbors based on the normal vector of the hyperplane.
Since we define the standard direction using the normal vector, we can understand this
tuning as equivalent to changing the definition of north in a map.

Figures 5.8 and 5.9 show the local pattern view before and after changing the coef-
ficients. The dataset is a car sales dataset (from the SPSS sample datasets). For easier
understanding, only two independent attributes are considered: horsepower and MPG.
The target is the price of the car. The goal is to compare a neighbor car, whose ID is 68
(the upper one with attribute values) with the focal one (ID is 72). It is shown that locally
horsepower influences the price positively. Before adjusting, this neighbor is in the right
hand side, which means a worse deal since the price is higher than estimated. We can
recognize this by the comparative display of the neighbor; the sum of the height of the
independent attribute bars is less than the target bar height (a lower bar for horsepower
than the bar for price), which means the price is higher than estimated. After changing
the weight (coefficient) of horsepower to a higher value, this neighbor become a better
deal (in the left side). This is because the customer considers horsepower as an important
attribute. After changing, the sum of the bar heights for independent attributes increases
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Figure 5.7: The local pattern adjusting view. The poly-linerepresents the adjustable
coefficients.

and exceeds the target bar height. This example shows users can customize and change
the coefficients according to their priorities.

5.3.5 Integrate the Local Pattern into the Global Space View

Generally, a local pattern is a value or a vector for a single focal point. Thus, the local
pattern vector can be treated the same as the attribute values in the original data space.
Assume there aren independent attributes and 1 target attribute, we can create n new
dimensions taking the derivative values as derived dimensions and integrate them into
the original attributes, thus resulting in a new dataset with 2n + 1 dimensions. Any
multivariate data visualization technique can be used to display this new dataset, such as
scatterplot matricies and parallel coordinates. This visualization enables users to discover
the relationships among the derived dimensions and the original dimensions.

Fig. 5.10 shows an example of theintegrated view. In this example, each data point
is a child’s basic body information: age, gender, height andweight. The age range is
between 5 and 11. We use weight as the target and the goal is to discover for children
of different ages and genders, how height influences weight.The neighbors are defined
as children with the same age and gender, and similar height and weight. The figure
shows the distribution of the derivatives (∂weight/∂height) in the original space (age
and gender). The derivative values are color-coded (darkercolor means higher value) and
the points are jittered to avoid overlaps. We can discover that the derivatives increase as
age increases. Analysts can also compare the derivatives for different genders to answer
questions, such as for 8-years-old children, which gender has larger derivative values (the
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Figure 5.8: The local pattern view
before adjusting the horsepower co-
efficient. The neighbor (ID 68) is a
worse deal.

Figure 5.9: The local pattern view
after adjusting the horsepower co-
efficient. The neighbor (ID 68) be-
came a better deal.

answer is female).

5.4 Case Study

In this section, we discuss case studies to evaluate our approach and show the effective-
ness of our system. The dataset is a diamond dataset obtainedfrom an online jewelry
store [41]. Each data item is one diamond. The target attribute isprice. There are 4 dif-
ferent independent attributes that influence the price of a diamond:weight(carat), color,
clarity andcut. The goal is to assist customers in choosing a diamond. The discovery can
also tell the retailer whether the price of a certain diamondis set appropriately. We use a
subset of the diamonds with a certain price range ($5000 - $8000), since we assume that
customers have a budget range for shopping, rather than caring about the whole dataset.
The whole dataset has 13298 data items and the subset has 903 data items.

The main computational bottleneck is in the calculations involved in finding neigh-
bors, which would be performed in aO(n2) time cost without any index data structure,
assuming the data size isn. After the neighbors for each data item are found, the least
square linear regression cost isO(Km2), whereK is the average neighbor count andm
is the dimension number. During the exploration of each local pattern, there is no compu-
tational cost since the neighbor index is already created. Another cost in our system is in
the local pattern adjusting period, which isO(k) (k is the neighbor count of the examined
focal point). On a 3 Ghz dual core desktop PC with 4 GB of RAM andan ATI Radeon
X1550 graphics card, we ran our system both for the whole dataset and the subset of the
diamond dataset (neighbor range is defined as 0.1 of the entire range of each attribute).
For the subset, the time for finding neighbors and regressioncalculating took less than 2
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Figure 5.10: The view for integrating derivatives into global space. The jittered points
with different colors indicate the coefficient of∂height/∂weight. As age increases, the
coefficient increases. For the same age, the coefficient values are different for different
genders.

seconds. For the whole dataset, the time required is about 6 minutes. The huge difference
is mainly due to the quadratic time complexity for finding neighbors. For both datasets,
the exploration of local patterns, as well as local pattern adjustment, can be performed
and updated in real time.

5.4.1 Where are the Good Deals

For easier understanding, we start from a single independent attributeweight. The user
of our system can achieve this by defining an appropriate neighborhood: two diamonds
are neighbors when they have similarweightandprice, as well as they are of the same
color, clarity andcut. The extracted local pattern is the orientations to the neighbors. Fig.
5.2 shows the global star glyph display. The color indicateswhether the diamond is an
anomalous one. To examine the global distribution, the usercan open the comparison
view (Fig. 5.6). The global distribution is similar with a normal distribution, except there
are two peaks on each side. We will show later this is due to some anomalies, i.e., some
diamonds whose prices are not set appropriately. The mean ofthe distribution is about
π/2, which is the same as we discussed before, assuming the neighbors fit the local linear
trend .

To understand the normal and abnormal data items in detail, we show three local
pattern views for gray, red, and blue data points. Figure 5.11 shows the local pattern view
of a gray data point. All the neighors of this data point are inthe center of the view (x
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position), indicating that the directions to the neighborsare all aboutπ/2. This means that
all the data points in the local area fit the regression hyperplane, which is very common in
the dataset. We can also recognize this local fitting by the comparative representation of
all neighbors: the height of the first bar (weight) is almost the same as the height of the last
bar (price). This indicates the price difference, between the focal point and one neighbor,
is proportional to the weight difference. To assist the analyst in performing the sensitivity
analysis, i.e., what is the change rate of the target as an independent attribute value varies,
we show the local regression model in the bottom bar. It is shown that in this local area, as
the weight increases, the price increases, which means a positive influencing factor. The
changing rate of price is $55, as the weight increases 0.01 carat. The influencing factors
of the other independent attributes are all 0, since all neighbors have the same values.

Figure 5.11: The local pattern view of a gray data item. The orientation from the focal
point to all its neighbors areπ/2, which is common in the dataset.

Figure 5.12 shows the local pattern view for a diamond that isblue in Figure 5.2,
suggesting that it is an anomaly and the test result shows themean of this local pattern
is significantly higher than the global pattern. The user cansee that all the neighbors are
in the right half of the view. This means that for each neighbor, the direction is larger
thanπ/2. From the discussion before, we know that when the directionis larger thanπ/2
for a certain neighbor, it means the target variable is higher than estimated, assuming the
local regression plane passes through the focal point. In particular, the local sensitivity
shows that as weight increases 0.01 carat, the price increases $118. However, the price
of the local neighbors are higher than estimated considering this changing trend. Take
the upper diamond for example. The upper half means a higher target value based on our
local pattern layout strategy. We can see that for this neighbor, the weight is 0.01 carat
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higher than the focal point, while the price is $450 higher than the focal point, which is a
larger changing rate, compared with the local trend. The user can also read this from the
comparative representation of this neighbor: a higher and darker bar for price than the bar
for weight, which means the price change rate is higher than weight. This tells users that
this neighbor is a worse deal compared with the focal point. Similarly, we can consider
another neighbor whose price is lower than the focal point, i.e., in the bottom half of the
display (the nearest one to the focal point). The neighbor’sweight is 0.02 lower than the
focal point. If this neighbor fits the local trend, the price would be $118*2=$236 lower
than the focal diamond. However, the price is only $120 lowerthan the focal diamond,
which also means this neighbor is not a good deal compared with the focal diamond.
The user can also read this through the comparative representation of this neighbor: a
much darker and lower bar for weight than the bar for price. From these discussions, we
know that for blue diamonds, generally most of neighbors arein the right half side of the
view, which means there are worse deal compared with this one. Thus, the blue diamonds
should be preferable for the customers.

Figure 5.12: The local pattern view of a blue data item. The orientations from the focal
point to most of its neighbors are larger thanπ/2, which means the neighbors’ target
values are higher than estimated. In other words, the focal point is a “good deal”.

Finally, we give an example of a diamond mapped to red in Fig. 5.2. Similar with the
discussion for blue diamonds, a red diamond means there are many better deals compared
with this one. Fig. 5.13 shows the local pattern view of a red diamond. It is shown that
locally as the weight increases 0.01 carat, the price increases $332. The two neighbors
(with attribute values) are better than this one. For the upper neighbor, the weight is the
same as the focal point, while the price is $570 lower than thefocal point (a downward
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red bar). For the lower neighbor, the weight is higher than the focal point, while the price
is $150 lower than the focal diamond. For the focal diamond, the neighbors in the left half
are better recommendations. Since there are many blue and red diamonds (anomalies),
the distribution of the global pattern has two peaks in each side. From the retailer side,
it should consider decreasing the prices of the red diamondsand increasing the prices of
blue diamonds.

Figure 5.13: The local pattern view of a red data item. The orientations from the focal
point to most of its neighbors are lower thanπ/2, which means the neighbors’ target
values are lower than estimated. In other words, the focal point is a “bad deal”.

This method of discovering good and bad deals in this datasetis also suitable for more
than one independent attribute. We choose only one independent attribute just because it
is easy to verify whether the diamonds are worth buying.

5.4.2 Display the Local Pattern in the Global View

It is shown that for different local patterns (subsets of neighbors), the price increases
differently as the weight increases. This means the coefficients (∂price/∂weight) are
different in the whole space. It is useful to give users a global sense in terms of how
the sensitivity derivatives are distributed in the original space. To assist users in better
understanding this, we use the whole dataset rather than a subset of a certain range. Fig.
5.14 shows a scatterplot view of the dataset. We use color to represent the derivative
values: dark blue means high and dark orange means low. The color strategy is again
diverging. The points are jittered to reduce overlapping.
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Figure 5.14: The coefficients of∂price/∂weight are color-mapped and displayed in a
scatterplot matrix of original attribute space.
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Figure 5.15: The local pat-
tern view before tuning the
coefficients. One neighbor
(ID 533) has highercolor
and the other neighbor (ID
561) has higherclarity.

Figure 5.16: The local pat-
tern view after increasing
the coefficient ofcolor and
decreasing the coefficient
of clarity. The neighbor
with highercolor became a
“good” deal.

Figure 5.17: The local pat-
tern view after decreasing
the coefficient ofcolor and
increasing the coefficient
of clarity. The neighbor
with higherclarity became
a “good” deal.

Users can discover that the derivatives are pretty consistent for diamonds of the same
color, clarity and cut. This means that for different subsetof neighbors, although their
weights and prices are of different ranges, the influencing factors of weight on price are
very similar. Another discovery is that as color, clarity and cut increase, the derivatives
generally increase (from dark orange to dark blue). This means that for diamonds of
higher quality, the weight is more important for price, i.e., the price is very sensitive with
changing weight for the subspace of higher color, clarity and cut. As customers, when
they notice that, they could consider changing their choices based on this discovery. For
the blue region, they can consider choosing a diamond of lower weight, since it will save
them a lot of money. In contrast, for the orange region, they can consider choosing a
diamond of higher weight, since it won’t increase their costs too much. We can also
notice that in the upper right of the plot of clarity vs. color, there is a dark orange block
in the blue area. A possible explanation for this divergencefrom the main pattern is that
there are not enough diamonds in this region, whose color andclarity values are both very
high. The low price variance results in low coefficient values.

5.4.3 Customize the Local Pattern

Given budget limits, customers have to find a trade-off when considering the diamond
attributes. Although the extracted sensitivity coefficients reflect locally how the price is
influenced by the diamond attributes, when customers are selecting a diamond, they have
their own attribute priorities. It means that they have to sacrifice the unimportant attributes
(decrease the values) to reach the higher configurations on their preferred attributes. For
example, some customers may prefer higher weight diamonds (larger ones), while not
caring too much about the clarity; and some may prefer highercut (more shininess),
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while not caring too much about the color. In different cases, customers have their own
ways to define the meaning of “good”. Thus the customers should be able to customize
the model (sensitivity coefficients) and find good diamonds in different cases.

We show an example to illustrate how customers can customizetheir requirements.
Assume that a customer has decided the weight and cut of the selection, and is struggling
with higher color or higher clarity. In this case, the neighborhood is defined as diamonds
of the same weight and cut. For color and clarity, the neighborhood region covers three
levels of each, indicating lower, current, and higher values. Fig. 5.15 shows the local
pattern view of a preferable diamond before adjusting the coefficients. The two neighbors,
shown with attribute values, are two alternative options compared with the focal one. Both
of them are more expensive than the focal one: one has higher (better) color and one has
higher (better) clarity. Before tuning the coefficients, none of them are better deals (in the
left half). If the customer knows that she prefers higher color (clarity), she can accordingly
increase the coefficient for color (clarity) and/or decrease that for clarity (color). Fig.
5.16 and Fig. 5.17 show the local pattern views after adjusting the coefficients. In Fig.
5.16, the coefficient for color is increased and the coefficient for clarity is decreased.
It is clear that the neighbor with high color became a good deal. These two neighbors
can be easily differentiated and the customer can tell whichone is worth purchasing in
this circumstance. A similar result is shown in Fig. 5.16. Inthis case, the coefficient
for clarity is increased and the coefficient for color is decreased. We can discover that
the two neighbors shift in the opposite directions comparedwith Fig. 5.16. According
to this example, we can see that customers can define “good” when selecting a diamond.
Generally speaking, for any other type of local patterns, users can customize the definition
of “interestingness” and the system is able to provide usersdifferent recommendations of
neighbors.

5.5 User Study

In this section, we discuss a user study for evaluating the effectiveness of the visual repre-
sentations of the local pattern. We focused on two visual factors: different types of glyph
representations and different layout strategies. To remove the interaction effects among
the two factors, we evaluate the two factors independently.

For the glyph type, our goal was to examine the effectivenessof the comparative
display, i.e., using upward and downward bars to represent the relationship between the
focal point and its neighbors. To compare with other methods, we implemented two
other types of commonly used glyph representations: profileglyphs (Figure 5.18) and
star glyphs (Figure 5.19). To make the comparison fair, we also integrated the same
color strategy into these two glyph types. Our hypothesis was that the comparative glyph
method better reveals the relationships between the selected focal point and its neighbors.
A sample question was “Compared to the focal diamond, how many neighbors have both
lower color and lower clarity?”

For the layout strategy, our goal was to examine the effectiveness of the local pattern
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Figure 5.18: The profile glyph display.

Figure 5.19: The star glyph display.
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view layout, namely, placing the selected focal point in thecenter and placing the neigh-
bors in the four quadrants according to the interestingness(such as diamond price). For
comparison, we implemented a scatterplot display that mapsthe attribute values to the x
and y locations. The focal point was differentiated by both size and color. Our hypothesis
was that the centered layout can better help analysts locateinteresting neighbors. A sam-
ple question was “How many more dollars are needed to buy a diamond with both higher
color and higher clarity?” The dataset we used is the same as the dataset mentioned in the
case study which had 4 independent attributes and 1 target.

We invited students to be the subjects (21 in total) in the user study. The subjects
were asked to answer 8 questions about local patterns based on visual representations. In
this user study, we didn’t ask the subjects to use our system because the main goal was
to evaluate the local pattern design method. In Section 5.6,we describe in detail how a
user explored a dataset using our system. The subjects answered the questions based on
screen-copied figures printed out on paper. Note that any single question could be an-
swered based on different visual representation methods ofthe same local pattern, such
as different glyph types or different layout strategies. Subjects were randomly assigned
a visual representation method to answer a given question. Take the evaluation of the
layout strategy for example. We designed two questions (questionQa and questionQb)
to compare the two layout methods. We generated two groups ofquestions, groupGA

and groupGB, as follows. Each question group had both questionsQa andQb. In group
GA, questionQa would be answered based on the designed local pattern layoutstrategy,
while questionQb would be answered based on the scatterplot layout. In groupGB, the
questions are the same, but we exchanged the layout strategies: questionQa was repre-
sented using the scatterplot and questionQb was represented using our local pattern layout
method. In the study, we randomly assigned half of the subjects to question groupGA and
the other half to question groupGB. Similarly, we generated three groups of questions to
evaluate the glyph types because there are three different glyph representations.

Before the study, the subjects signed a consent form. Then each subject was shown a
brief explanation of the study using examples and sample questions, such as which dataset
we used and how to read the figures. The subjects finished the study by answering several
questions. We recorded the time each subject spent on each question for further analysis.

Figure 5.20 uses error bars with a 0.95 confidence interval toshow the accuracy for the
three glyph types. We found that the comparative glyph and the profile glyph were very
similar in terms of accuracy. It is clear that both the comparative glyph and the profile
glyph are much better than the star glyph: the p-values are 0.017 and 0.023, respectively.

We also examined the time spent for each glyph type and the result are shown in Figure
5.21. Similarly, the comparative glyph and profile glyph arebetter than the star glyph.
The difference between comparative glyph and star glyph is significant (p-value=0.026).
Although there is no significant difference between comparative and profile glyphs (p-
value=0.232), the time subjects spent on the comparative glyph was much lower than for
the profile glyph. To conclude, we found comparative glyphs and profile glyphs were
better than the star glyphs for both accuracy and time. The accuracy for comparative
glyphs and profile glyphs are very similar, but they spent more time on profile glyphs.
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Figure 5.20: The comparison of accuracy for different glyphtypes.
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Figure 5.21: The comparison of time for different glyph types.
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Lastly, we compared the two layout strategies. Figure 5.22 compares the accuracy
for these two layout methods. In terms of accuracy, the two strategies are almost the
same (nearly 80%). However, in terms of task completion time, we noticed that the
subjects spent much more time when using the scatterplot layout. The average time for the
centered layout was 62 seconds, while for the scatterplot layout it was 87 seconds, which
is shown in Figure 5.23. This is a statistically significant difference (p-value=0.038). We
also noticed that the time variance of the centered layout islarge. We believe this is
because of different learning rates for this new layout method. Some subjects seemed to
learn and get used to this layout very quickly, while others had difficulties and spent more
time getting used to it. In a future evaluation, we will try toconfirm this difference in
learning rates and repeat the tests with trained subjects.

Figure 5.22: The comparison of accuracy for different layout types.

5.6 Usage Session

We now demonstrate how our visual exploration method could be used for solving real
life problems. Our usage session was again based on the diamond dataset. We invited a
user who was trying to make a decision on buying a diamond to test our system.

Before using our system, he first browsed some on-line diamond selling websites on
the internet to get familiar with the diamond purchasing task. There were two reasons
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Figure 5.23: The comparison of time for different layout types.

for this activity prior to using our system. The first was to help him understand which
attributes are important to him, i.e., to develop a personalpreference. The second reason
was that he could determine the minimum requirements and theprice range he’d like to
choose from. He told us his preferred price range was roughlybetween $6000 and $7000.
In terms of the importance of different attributes, he thought weight (size) was the most
important one. The second attribute important to him was color. The other two attributes,
clarity and cut, were not very important to him. He said this was because he thought the
latter two attributes were not as noticeable as weight and color for him. He also indicated
minimum requirements on these attributes: weight needed tobe at least 1.1; color needed
to be at least H (the required value was 4 where the best color value is 8); clarity needed
to be at least SI1 (the required value was 3 where the best clarity value is 8); he did not
have any requirements on the attribute cut.

With these requirements and preferences, he started using our visual exploration sys-
tem to perform the task. The first step was to define the local neighborhood range. After
being given some explanation on this step, he decided to define two diamonds as neigh-
bors when they have similar weight (within 0.15), color (plus or minus 1) and price (within
$500). He did not care about the other two attributes, clarity and cut, so he decided to
remove their influence at this step.

He then explored in the data in the global view (the star glyphdisplay) by hovering
the cursor over the glyphs (data items). The data attributesare shown when the cursor
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is on that data item. The glyphs are ordered based on price, sohe roughly picked some
interesting candidates within his preferred price range. He had two criteria when choosing
the candidates. For the first one, since he considered weightthe most important attribute,
he picked several heavy (large) diamonds. The second criterion was to focus more on
the blue data items. This is because we told him that generally glyphs colored blue are
usually better deals. After this initial rough selection, he chose three candidates as shown
in Table 5.1. These three diamonds are all blue, i.e., they are better than most of their
neighbors.

ID Weight Color Clarity Cut Price
584 1.26 6 2 3 6600
567 1.52 6 1 3 6510
544 1.51 2 3 2 6420

Table 5.1: Candidate diamonds after a rough exploration in the global star glyph view.

Then he decided to refine his selection by examining each candidate in the local pat-
tern view. He opened the local pattern view and compared the pre-selected candidates
with their similar local neighbors. The three local patternviews of these candidates are
shown in Figures 5.24, 5.25, and 5.26. The attributes are in the same order as introduced
in section 5.4: the first attribute isweightand the last attribute isprice. He wanted to find
more interesting candidates on the left hand side in this view.

When he viewed the local neighbors of diamond 584, he noticedthat diamond 624
was also a good choice because its weight is higher. Althoughthe price is a little higher,
since it is on the left hand side, it may still be worth buying.The second neighbor he
was interested in was diamond 547. This diamond has the same weight as diamond 624,
but it is much cheaper. Another interesting neighbor was diamond 461, whose weight is
higher than candidate 584, but much cheaper. All three interesting neighbors are on the
left hand side, indicating they are worth buying compared tothe candidate diamond 584.
Therefore, at this point, he removed diamond 584 from the candidate list and added the
three newly found diamonds onto the list.

Then he opened the local pattern view for diamond 567. He noticed that the neighbor
diamond 400 was a much better choice. The weight and color areboth better than those
of the previous chosen diamond 567, yet with a lower price. Sohe removed 567 from the
candidate list and added diamond 400 to it. He didn’t find any interesting neighbors for
candidate diamond 544.

Next, he wanted to view the local patterns of the newly added candidates to further en-
large the candidate list with more choices. He didn’t find anybetter choices for diamonds
624, 547, and 400. When he viewed the local pattern of diamond461 (Figure 5.27), he
found an interesting neighbor, diamond 384. Because its weight is higher and its price is
lower, he added it to the list. The candidate list at this point is shown in Table 5.2. Notice
that after refinement, he had found several additional interesting candidates and only one
pre-chosen diamond survived after examining the neighbors.
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Figure 5.24: The local pattern view of dia-
mond 584.

Figure 5.25: The local pattern view of dia-
mond 567.

Figure 5.26: The local pattern view of dia-
mond 544.

Figure 5.27: The local pattern view of dia-
mond 461.

ID Weight Color Clarity Cut Price
384 1.36 3 2 3 5890
461 1.3 4 2 3 6140
624 1.33 5 2 3 6790
400 1.58 7 1 3 5940
544 1.51 2 3 2 6420
547 1.33 4 2 3 6440

Table 5.2: Candidate diamonds after examining each local pattern of the pre-selected
diamonds.
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He then made a final decision among candidates on this list. Hefirst removed dia-
monds 544 and 384 because their color, an important attribute, did not satisfy his mini-
mum requirement. He then removed diamond 400 because its clarity was lower than that
of the rest. After this, he noticed that all the candidates’ clarity were lower than his initial
requirement. Since he cared about weight and color much more, he decided to make a
compromise on clarity, i.e., reduce the minimum requirement from SI1 (value 3) to SI2
(value 2). Now he narrowed his choices down to three similar diamonds: ID 461, 624,
and 547. He decided to remove diamond 624 because the price was high compared to the
other two. After a careful comparison between diamonds 461 and 547, he finally decided
to purchase diamond 461. This is because diamond 461’s weight is only slightly smaller
than diamond 547, which is probably not noticeable, but the price is $300 cheaper.

After the study, he said that overall this system was very helpful. The local pattern
view helped him compare similar data items, find more interesting candidates, and guide
him to make a more comprehensive decision. He mentioned thatthe system was easy to
use and helped him finish the task very quickly.

We asked him whether he had some suggestions for improving our system. He pointed
out some limitations and gave us some useful suggestions. Hesaid the neighbor definition
in the parallel coordinate view is somewhat confusing and hehad difficulty understand-
ing it. He said sometimes given a candidate, he only wanted toexamine the neighbors
with higher weight or color. He suggested we could add a function so that the user can
dynamically change the neighbor definition and give him greater flexibility in defining
neighbors not only centered in the focal diamond, but also can take the focal diamond’s
value as maximum or minimum, such as only cheaper neighbors.

Another suggestion was a sorting functionality. He said he might want to sort the star
glyphs in the global view during exploration. This functionality is not currently supported
but would not be difficult to add. A filtering functionality was also mentioned. He told
us that a range query filter would be useful. It could be used tohide the less interesting
diamonds which don’t satisfy the minimum requirement. Thisfunctionality could be
effective, especially in the case when a large number of local neighbors exist. The last
comment was to have a comparative view for the selected candidates. The view could
provide him an overall comparison, where he could select anyof the candidates as the
focal diamond.

5.7 Conclusion

This chapter presented a novel pointwise visualization andexploration technique for vi-
sual multivariate analysis. Generally, any local pattern extracted using the neighborhood
around a focal point can be explored in a pointwise manner using our system. In partic-
ular, we focus on model construction and sensitivity analysis, where each local pattern is
extracted based on a regression model and the relationshipsbetween the focal point and
its neighbors. Using this system, analysts are able to explore the sensitivity information
at individual data points. The layout strategy of local patterns can reveal which neighbors

86



are of potential interest. Therefore, our system can be usedas a recommendation system.
During exploration, analysts can interactively change thelocal pattern, i.e., the derivative
coefficients, to perform sensitivity analysis based on different requirements. Following
the idea of subgroup mining, we employ a statistical method to assign each local pattern
an outlier factor, so that users can quickly identify anomalous local patterns that deviate
from the global pattern. Users can also compare the local pattern with the global pattern
both visually and statistically. We integrated the local pattern into the original attribute
space using color mapping and jittering to reveal the distribution of the partial derivatives.
We discuss case studies with real datasets to investigate the effectiveness and usefulness
of our approach. We performed comparative evaluations to confirm our glyph design and
layout decisions, and described the experience of a user performing a real task with the
system.
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Chapter 6

Conclusions

6.1 Summary

In this dissertation, I discussed three different visualization systems that assist analysts
in visually discovering interesting patterns in multivariate datasets. The main goal is to
discover patterns both computationally and visually. The proposed systems can facilitate
retrieving patterns, visually representing the patterns,and navigating in the pattern space.
The major contribution of three systems include:

• Linear Pattern Detection: This system allows users to visually examine the pa-
rameter space, i.e., the linear trend coefficient space, to discover linear trends and
set appropriate thresholds, such as maximum tolerance and minimum coverage.
The sampled parameter space shows where the ‘good’ linear patterns may exist
and the user can interactively adjust the sample point, which is an extracted linear
pattern. The preliminary results suggest that the system can facilitate discovering
multiple coexisting linear trends and extracting more accurate trend using computa-
tional techniques after interactively removing the outliers that are outside the trend
boundary. The user study shows that this system can better help the users discover
the hidden linear model in the datasets, compared to the computational methods.

• Visual Subgroup Mining:

The main contribution for this system is that we allow users to interactively submit
subgroup mining queries for discovering interesting patterns and visually examine
the mining result. Specifically, our system can accept mining queries dynamically,
extract a set of hyper-box shaped regions calledNuggetsfor easy understandability
and visualization, and allow users to navigate in multiple views for exploring the
query results. I proposed a multi-layer structure to assistthe user examine the
patterns in different level of details. While navigating inthe spaces, users can
specify which level of abstraction they prefer to view. Meanwhile, the linkages
between the entities in different levels and the corresponding data points in the data
space are highlighted. The user study indicates that this system can better help the
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users understand the mining result and identify interesting subgroups, compare to
existing tabular knowledge representations.

• Local Patterns Exploration and Anomaly Detection: In this system, the patterns
for the local sub-region with a focal point and its neighborsare computationally
extracted and visually represented for examination. The extracted local pattern is
used for sensitivity analysis. I designed a pointwise exploration method to allow
users to examine the neighbors of a focal point. To discover anomalous patterns, the
extracted local patterns are integrated and visually shownto the analysts. Users can
discover the anomalies based on the distributions of globalpatterns. The user study
showed that the designed local pattern view is better to assist the users understand
the relationship between the selected focal point and its neighbors. It also helps the
users more quickly identify interesting neighbors.

Table 6.1 gives a summary and comparisons of the three systems.

6.2 Contributions

The main features of the systems and contributions of my dissertation include:

• Pattern extraction: The main goal for my dissertation was to assist analysts com-
putationally, visually, and interactively discover and extract interesting patterns,
such as trends, clusters, and outliers from multivariate datasets. The proposed sys-
tems allow the users to mine different types of patterns and specify what kind of
patterns they expect to extract, including the pattern typeand parameters.

• Pattern representation: After the patterns are extracted according to the users’
requirement, the next step is to visually represent each pattern to help the users
understand each individual pattern, the relationship among patterns and how they
are distributed in the pattern space. In the nugget browser system, I used star glyphs
to visually represent each nugget and the layout strategy shows the relationships
among different extracted patterns.

• Pattern exploration: Interactions are provided so that the users are able to explore
in the pattern space. Since the pattern space is usually sampled or discretized,
to discover more interesting data items in the pattern space, the exploration must
be interactive. For example, in the linear pattern discovery system described in
Chapter 3, we provide users a sampled model space, where users can select a single
point and explore in the space.

• Pattern refinement: Users can refine their queries to extracted more appropriate
patterns. Also, users can adjust each pattern to improve accuracy. For example,
in the linear pattern discovery system mentioned in Chapter3, users can adjust the
discovered or computed linear trend in a model selection panel. The line width and
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Linear Pattern
Detection

Visual Subgroup
Mining

Local Patterns Explo-
ration

Interestingness modeling
prediction

statistical detec-
tion
prediction

sensitivity analysis
anomaly detection

Shape of the sub-
region

areas between
two hyper-planes

clustered cells
hyper-box shaped
nuggets

areas around the focal
points

Pattern discovery
(computational
or user explo-
ration)

explore in the
model space
tune the model

user involved
subgroup defini-
tion
statistical method

user involved neighbor
definition
sensitivity extraction
statistical method

Pattern selection tune in a parallel
coordinate view

select an item in
one layer

click an instance as a
focal point

Connections be-
tween model and
data

highlight the data
points with color;
distance mapping

display the data
involved when
selecting

highlight all neighbors
with large glyphs

Data space dis-
play

Scatterplot matri-
ces

Parallel Coordi-
nates

Star Glyphs

Pattern space dis-
play

3 designed views 3 coordinated
views

comparative display

Color mapping distance to the
trend

indicate the sig-
nificance level

indicate the outlier fac-
tor

Position mapping projection view layout of nugget
space

layout of local neigh-
bors

Representation
method

line graph
histogram

star glyphs
parallel coordi-
nate

designed comparative
method

Pattern adjust-
ment

drag in a parallel
coordinate view

tune cut-point po-
sitions
tune target share
range

change the coefficients

Evaluations User-driven
model selection

Visual represen-
tation of mining
result

Visual local pattern rep-
resentation

Table 6.1: A summary of the three proposed visual mining systems.
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line color represent the goodness of the current trend. In the pointwise locl pattern
exploration system, described in Chapter 5, users are allowed to customize the local
pattern based on their requirements.

6.3 Future Work

In the future, I’d like to:

• Extend the parameter space exploration and visualization to other general mod-
els, such as non-linear forms. Extend this model extractionproblem to other data
mining tasks, for example, not only for regression, but alsofor discrimination and
classification tasks.

• Add more interactions and more complex mechanisms for managing the user’s dis-
coveries in the Nugget Browser system, such as adjusting nugget boundaries with
domain knowledge, as well as removing highly overlapping nuggets. Another ex-
tension is to use the extracted nuggets as evidence to verifythe hypotheses about
the casual relationship between the independent and targetvariables. Therefore, an
evidence pool is a useful feature that can be supported in thefuture.

• Extend the pointwise local pattern exploration to support more types of patterns,
such as distances. Interactively submitting queries for detecting interesting local
pattern can also be supported in the future, for example, finding similar local pat-
terns based on an interesting one.

• Continue to evaluate the systems with users. Longitudinal studies could be per-
formed to analyse the learning curves of different systems.

• Since “nugget” denotes a subset of data or any interesting findings in multivari-
ate datasets, this idea of knowledge discovery can be extended to a more general
use. Some other visual analytic systems can be proposed, implemented and evalu-
ated. These systems can assist users in computational and interactively extracting
nuggets, visually representing each nugget and the relationship between the nugget
and data for better understanding, as well as interactivelyadjusting the nuggets
with user’s domain knowledge. Some other potential future work includes: discov-
ering other types of patterns, which are not mentioned in this dissertation, such as
graph/structure based patterns or surprising patterns; discovering different patterns
in subspaces or lower dimensional space projections; mixing nuggets of different
types from different systems; supporting collaborative nugget-based analysis; as
well as managing and comparing the findings from different parameter settings or
data sources.
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