9 research outputs found

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    Structured Review of Code Clone Literature

    Get PDF
    This report presents the results of a structured review of code clone literature. The aim of the review is to assemble a conceptual model of clone-related concepts which helps us to reason about clones. This conceptual model unifies clone concepts from a wide range of literature, so that findings about clones can be compared with each other

    Understanding the Evolution of Code Clones in Software Systems

    Get PDF
    Code cloning is a common practice in software development. However, code cloning has both positive aspects such as accelerating the development process and negative aspects such as causing code bloat. After a decade of active research, it is clear that removing all of the clones from a software system is not desirable. Therefore, it is better to manage clones than to remove them. A software system can have thousands of clones in it, which may serve multiple purposes. However, some of the clones may cause unwanted management difficulties and clones like these should be refactored. Failure to manage clones may cause inconsistencies in the code, which is prone to error. Managing thousands of clones manually would be a difficult task. A clone management system can help manage clones and find patterns of how clones evolve during the evolution of a software system. In this research, we propose a framework for constructing and visualizing clone genealogies with change patterns (e.g., inconsistent changes), bug information, developer information and several other important metrics in a software system. Based on the framework we design and build an interactive prototype for a multi-touch surface (e.g., an iPad). The prototype uses a variety of techniques to support understanding clone genealogies, including: identifying and providing a compact overview of the clone genealogies along with their key characteristics; providing interactive navigation of genealogies, cloned source code and the differences between clone fragments; providing the ability to filter and organize genealogies based on their properties; providing a feature for annotating clone fragments with comments to aid future review; and providing the ability to contact developers from within the system to find out more information about specific clones. To investigate the suitability of the framework and prototype for investigating and managing cloned code, we elicit feedback from practicing researchers and developers, and we conduct two empirical studies: a detailed investigation into the evolution of function clones and a detailed investigation into how clones contribute to bugs. In both empirical studies we are able to use the prototype to quickly investigate the cloned source code to gain insights into clone use. We believe that the clone management system and the findings will play an important role in future studies and in managing code clones in software systems

    Visualization and analysis of software clones

    Get PDF
    Code clones are identical or similar fragments of code in a software system. Simple copy-paste programming practices of developers, reusing existing code fragments instead of implementing from the scratch, limitations of both programming languages and developers are the primary reasons behind code cloning. Despite the maintenance implications of clones, it is not possible to conclude that cloning is harmful because there are also benefits in using them (e.g. faster and independent development). As a result, researchers at least agree that clones need to be analyzed before aggressively refactoring them. Although a large number of state-of-the-art clone detectors are available today, handling raw clone data is challenging due to the textual nature and large volume. To address this issue, we propose a framework for large-scale clone analysis and develop a maintenance support environment based on the framework called VisCad. To manage the large volume of clone data, VisCad employs the Visual Information Seeking Mantra: overview first, zoom and filter, then provide details-on-demand. With VisCad users can analyze and identify distinctive code clones through a set of visualization techniques, metrics covering different clone relations and data filtering operations. The loosely coupled architecture of VisCad allows users to work with any clone detection tool that reports source-coordinates of the found clones. This yields the opportunity to work with the clone detectors of choice, which is important because each clone detector has its own strengths and weaknesses. In addition, we extend the support for clone evolution analysis, which is important to understand the cause and effect of changes at the clone level during the evolution of a software system. Such information can be used to make software maintenance decisions like when to refactor clones. We propose and implement a set of visualizations that can allow users to analyze the evolution of clones from a coarse grain to a fine grain level. Finally, we use VisCad to extract both spatial and temporal clone data to predict changes to clones in a future release/revision of the software, which can be used to rank clone classes as another means of handling a large volume of clone data. We believe that VisCad makes clone comprehension easier and it can be used as a test-bed to further explore code cloning, necessary in building a successful clone management system

    Management Aspects of Software Clone Detection and Analysis

    Get PDF
    Copying a code fragment and reusing it by pasting with or without minor modifications is a common practice in software development for improved productivity. As a result, software systems often have similar segments of code, called software clones or code clones. Due to many reasons, unintentional clones may also appear in the source code without awareness of the developer. Studies report that significant fractions (5% to 50%) of the code in typical software systems are cloned. Although code cloning may increase initial productivity, it may cause fault propagation, inflate the code base and increase maintenance overhead. Thus, it is believed that code clones should be identified and carefully managed. This Ph.D. thesis contributes in clone management with techniques realized into tools and large-scale in-depth analyses of clones to inform clone management in devising effective techniques and strategies. To support proactive clone management, we have developed a clone detector as a plug-in to the Eclipse IDE. For clone detection, we used a hybrid approach that combines the strength of both parser-based and text-based techniques. To capture clones that are similar but not exact duplicates, we adopted a novel approach that applies a suffix-tree-based k-difference hybrid algorithm, borrowed from the area of computational biology. Instead of targeting all clones from the entire code base, our tool aids clone-aware development by allowing focused search for clones of any code fragment of the developer's interest. A good understanding on the code cloning phenomenon is a prerequisite to devise efficient clone management strategies. The second phase of the thesis includes large-scale empirical studies on the characteristics (e.g., proportion, types of similarity, change patterns) of code clones in evolving software systems. Applying statistical techniques, we also made fairly accurate forecast on the proportion of code clones in the future versions of software projects. The outcome of these studies expose useful insights into the characteristics of evolving clones and their management implications. Upon identification of the code clones, their management often necessitates careful refactoring, which is dealt with at the third phase of the thesis. Given a large number of clones, it is difficult to optimally decide what to refactor and what not, especially when there are dependencies among clones and the objective remains the minimization of refactoring efforts and risks while maximizing benefits. In this regard, we developed a novel clone refactoring scheduler that applies a constraint programming approach. We also introduced a novel effort model for the estimation of efforts needed to refactor clones in source code. We evaluated our clone detector, scheduler and effort model through comparative empirical studies and user studies. Finally, based on our experience and in-depth analysis of the present state of the art, we expose avenues for further research and development towards a versatile clone management system that we envision

    Software Maintenance At Commit-Time

    Get PDF
    Software maintenance activities such as debugging and feature enhancement are known to be challenging and costly, which explains an ever growing line of research in software maintenance areas including mining software repository, default prevention, clone detection, and bug reproduction. The main goal is to improve the productivity of software developers as they undertake maintenance tasks. Existing tools, however, operate in an offline fashion, i.e., after the changes to the systems have been made. Studies have shown that software developers tend to be reluctant to use these tools as part of a continuous development process. This is because they require installation and training, hindering their integration with developers’ workflow, which in turn limits their adoption. In this thesis, we propose novel approaches to support software developers at commit-time. As part of the developer’s workflow, a commit marks the end of a given task. We show how commits can be used to catch unwanted modifications to the system, and prevent the introduction of clones and bugs, before these modifications reach the central code repository. We also propose a bug reproduction technique that is based on model checking and crash traces. Furthermore, we propose a new way for classifying bugs based on the location of fixes that can serve as the basis for future research in this field of study. The techniques proposed in this thesis have been tested on over 400 open and closed (industrial) systems, resulting in high levels of precision and recall. They are also scalable and non-intrusive
    corecore