
Management Aspects of Software Clone Detection

and Analysis

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Minhaz Fahim Zibran

c©Minhaz Fahim Zibran, June 2014. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Copying a code fragment and reusing it by pasting with or without minor modifications is a common

practice in software development for improved productivity. As a result, software systems often have similar

segments of code, called software clones or code clones. Due to many reasons, unintentional clones may

also appear in the source code without awareness of the developer. Studies report that significant fractions

(5% to 50%) of the code in typical software systems are cloned. Although code cloning may increase initial

productivity, it may cause fault propagation, inflate the code base and increase maintenance overhead. Thus,

it is believed that code clones should be identified and carefully managed. This Ph.D. thesis contributes in

clone management with techniques realized into tools and large-scale in-depth analyses of clones to inform

clone management in devising effective techniques and strategies.

To support proactive clone management, we have developed a clone detector as a plug-in to the Eclipse

IDE. For clone detection, we used a hybrid approach that combines the strength of both parser-based and

text-based techniques. To capture clones that are similar but not exact duplicates, we adopted a novel ap-

proach that applies a suffix-tree-based k-difference hybrid algorithm, borrowed from the area of computational

biology. Instead of targeting all clones from the entire code base, our tool aids clone-aware development by

allowing focused search for clones of any code fragment of the developer’s interest.

A good understanding on the code cloning phenomenon is a prerequisite to devise efficient clone manage-

ment strategies. The second phase of the thesis includes large-scale empirical studies on the characteristics

(e.g., proportion, types of similarity, change patterns) of code clones in evolving software systems. Applying

statistical techniques, we also made fairly accurate forecast on the proportion of code clones in the future

versions of software projects. The outcome of these studies expose useful insights into the characteristics of

evolving clones and their management implications.

Upon identification of the code clones, their management often necessitates careful refactoring, which is

dealt with at the third phase of the thesis. Given a large number of clones, it is difficult to optimally decide

what to refactor and what not, especially when there are dependencies among clones and the objective remains

the minimization of refactoring efforts and risks while maximizing benefits. In this regard, we developed a

novel clone refactoring scheduler that applies a constraint programming approach. We also introduced a

novel effort model for the estimation of efforts needed to refactor clones in source code.

We evaluated our clone detector, scheduler and effort model through comparative empirical studies and

user studies. Finally, based on our experience and in-depth analysis of the present state of the art, we expose

avenues for further research and development towards a versatile clone management system that we envision.

ii

Acknowledgements

“Great things are not done by impulse, but by series of small things brought together...”
– Vincent van Gogh

I take much pleasure to express my profound gratitude to my Ph.D. thesis advisor Dr. Chanchal K. Roy

for his persistent and inspiring supervision as well as financial support.

I also thank all the members of my thesis advisory committee, Dr. Kevin A. Schneider, Dr. Nathaniel

Osgood, Dr. Nadeem Jamali, and Dr. Khan A. Wahid for their valuable advices and guidance in shaping

my research towards a successful Ph.D. thesis. Special thanks to the external examiner of this thesis, Dr.

Giuliano Antoniol. Thanks to the anonymous reviewers for their valuable comments and suggestions in

improving the work and publications produced from this thesis. I would also like to thank Dr. James R.

Cordy and Dr. Rainer Koschke who have also been my sources of valuable advices and inspiration.

Special thanks to NSERC (Natural Science and Engineering Research Council of Canada), the University

of Saskatchewan, and the Walter C. Memorial Foundation for financial assistance during the progress of this

thesis. I am also thankful to the ACM SIGAPP and the College of Graduate Studies and Research (CGSR)

at the University of Saskatchewan for financially supporting my travels to national and international venues

for presenting parts of this thesis work to the research community.

I must also thank the Schloss Dagstuhl (Leibniz Center for Informatics) for inviting me at the “Dagstuhl

Seminar 12071: Software Clone Management Towards Industrial Application”, and covering my conveyance

and lodging during the week-long seminar in Germany. All the sessions and interactive brainstorming in the

seminar were really useful in shaping this thesis, and I thank all the participants and organizers.

I am thankful to my fellow researchers, faculty members, and staff of the Department of Computer Sci-

ence for their spontaneous cooperation and encouragement. I especially thank Ripon K. Saha, Muhammad

Asaduzzaman, Tariq Muhammad, and Yusuke Yamamoto with whom I jointly worked on a couple of research

projects. I also acknowledge the contributions of Sharif Uddin, Manishankar Mondal, Saidur Rahman, Mo-

hammad A. Khan, Ripon K. Saha, Muhammad Asaduzzaman, and Khalid Billah who voluntarily participated

in the user-centric studies of this thesis.

I am grateful to the members of my family, relatives and friends, especially to my wife Farjana Z. Eishita,

my mother Pixy Naznin, and my father Mohammad Y. Ali, who did not get the share of my time and

attention that they deserved. For those that I have not explicitly mentioned here, thank you for being a part

of this thesis and helping me grow as a person and a researcher.

Above all, my sincere gratitude to the Almighty, who creates and makes things happen.

“Before I can have, I must do. Before I can do, I must be...”
– Jim Clemmer

iii

I dedicate this thesis to my beloved mother, Pixy Naznin, whose selfless support has always been in each

and every step of my life, and to my darling wife, Farjana Eishita, whose constant support, companionship

and sacrifices made it possible to complete this work successfully.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables viii

List of Figures ix

List of Abbreviations xi

1 Introduction and Motivation 1
1.1 Problem Definition and Scope . 2

1.1.1 The Problem . 3
1.1.2 Scope . 5

1.2 Research and Contributions . 5
1.3 Outline of the Thesis . 7

2 Background 8
2.1 Definition of Code Clone . 8

2.1.1 Clone Relationship . 10
2.1.2 Clone Granularity . 11
2.1.3 Intentional and Accidental Clones . 11

2.2 Patterns of Cloning . 12
2.3 Negative Impacts of Code Clones . 12

2.3.1 A Real World Incident . 14
2.4 Clone Management . 14
2.5 Clone Detection . 15

2.5.1 Strengths and Weaknesses of Clone Detection Techniques 17
2.6 Clone Genealogy . 19

2.6.1 Clone Genealogy Extraction . 19
2.6.2 Genealogy-based Clone Change Patterns . 21

2.7 Summary . 22

3 Integrated Clone Search 23
3.1 Introduction . 23
3.2 Clone Detection . 25

3.2.1 Code Preprocessing . 26
3.2.2 Source Code Fingerprinting . 27
3.2.3 Creation of Suffix Tree . 29
3.2.4 Finding Largest Common Subsequences . 30
3.2.5 Approximate Matching . 30

3.3 K-difference Hybrid Algorithm . 31
3.3.1 Preprocessing of Suffix Tree . 31
3.3.2 Hybrid Dynamic Programming . 34

3.4 Evaluation . 36
3.4.1 Algorithmic Complexity . 36

v

3.4.2 Usability and Customization . 37
3.4.3 Empirical Evaluation . 38

3.5 Related Work . 41
3.6 Summary . 44

4 Analysis of Existence and Evolution of Clones 45
4.1 Introduction . 45
4.2 Analyzing and Forecasting Near-miss Clones . 47

4.2.1 Clone-density and its Correlation Coefficient . 48
4.2.2 Forecasting Clone-density . 49
4.2.3 Subject Systems . 50
4.2.4 Clone detection . 50
4.2.5 Findings . 51

4.3 Genealogy-based Investigation of Clone Propagation . 63
4.4 Clones in Industrial Web Applications . 66
4.5 Threats to Validity . 67
4.6 Related Work . 68

4.6.1 Analysis of Clones and their Evolution . 68
4.6.2 Study of Clones in Web Applications . 71
4.6.3 Genealogy-based Study of Clones . 72

4.7 Summary . 74

5 Investigation of Clone Change Patterns 76
5.1 Introduction . 76
5.2 Terminology and Metrics . 78
5.3 Study Setup . 80

5.3.1 Extraction of Genealogies . 80
5.3.2 Investigation . 81

5.4 Findings . 81
5.4.1 Size of the Clone-Groups . 82
5.4.2 Size of the Clone Fragments . 83
5.4.3 Entropy of Dispersion . 84
5.4.4 Change Patterns . 84
5.4.5 Frequency of Changes . 87
5.4.6 Level of Granularity . 87
5.4.7 Textual Similarity . 89
5.4.8 Age . 91

5.5 Threats to Validity . 92
5.6 Related Work . 93
5.7 Summary . 95

6 Refactoring Effort Estimation and Scheduling 96
6.1 Introduction . 96
6.2 Clone Refactoring . 98
6.3 Estimation of Refactoring Effort . 101

6.3.1 Context Understanding Effort . 101
6.3.2 Effort for Code Modifications . 102
6.3.3 Navigation Effort . 103
6.3.4 Effort Model . 104

6.4 Prediction of Refactoring Effects . 104
6.5 Refactoring Constraints . 105
6.6 Formulation of Refactoring Schedule . 108

6.6.1 An Illustrative Example . 109
6.7 Implementation . 110
6.8 Empirical Evaluation . 111

vi

6.8.1 Clone Detection . 114
6.8.2 Data Acquisition . 114
6.8.3 Data Normalization . 116
6.8.4 Schedule Generation . 116
6.8.5 Findings . 124
6.8.6 Threats to Validity . 129

6.9 Related Work . 131
6.10 Summary . 133

7 Vision of Software Clone Management 134
7.1 Introduction . 134
7.2 How Much is Clone? . 135

7.2.1 Choice of Clone Granularity . 135
7.3 State and Vision of Clone Management . 137

7.3.1 Clone Prevention . 137
7.3.2 Clone Detection . 138
7.3.3 Clone Documentation . 140
7.3.4 Clone Tracking . 142
7.3.5 Clone Refactoring/Reengineering . 145
7.3.6 Clone Analysis . 150
7.3.7 Clone Visualization . 154

7.4 Design Space for a Clone Management System . 158
7.4.1 Clone Management Strategies . 158
7.4.2 Design Choices . 159

7.5 Clones in Test Code . 162
7.6 Industrial Adoption of Clone Management . 162
7.7 Summary . 163

8 Conclusion 166
8.1 Summary . 167
8.2 Contributions . 168
8.3 Limitations . 169
8.4 Future Research Directions . 170

References 171

A Publications Out of This Dissertation Research 189
A.1 Co-authorship . 190

B User Manual for Our Clone Search Tool 191
B.1 Installation . 191
B.2 Customization . 194
B.3 Usage . 194

C OPL Model of The Refactoring Scheduler 204

vii

List of Tables

2.1 Code Clone Detection Techniques (extended from [163]) . 16
2.2 Summary of techniques for clone genealogy extraction . 20

3.1 Hypothetical fingerprints for distinct lines of code . 27
3.2 Hypothetical fingerprint for each LOC of fragment 1 . 28
3.3 Hypothetical fingerprint for each LOC of fragment 2 . 28
3.4 Global alignment of 0123456AA and 012784569AA . 31
3.5 Subject systems for the study on comparison with NiCad . 38
3.6 Accuracy of clone detection based on mutation-based evaluation 39
3.7 Demographic information about the participants of the user-study 40
3.8 Summary of clone detection support from IDE-integrated clone detection tools 42

4.1 Subject systems for the study based on clone-density . 50
4.2 Average clone density in each system . 52
4.3 Clone density categorized by system-size . 52
4.4 Pearson coefficients rfc and rfd . 53
4.5 Average forecast errors (ξs) for each subject system . 54
4.6 P-values from Kruskal-Wallis tests over the densities of clones categorized by languages . . . 56
4.7 Avg. forecast error (ξ) categorized by system-size . 58
4.8 Genealogy-based study on clone evolution . 65
4.9 Block clones in industrial web applications . 66

5.1 Software systems subject to our empirical study . 78
5.2 Sizes of removed and alive clone-groups . 82
5.3 Average sizes (LOC) of clone fragments . 83
5.4 Comparison of entropy of dispersion . 85
5.5 Removal of clone-groups classified by change patterns . 85
5.6 MWW tests over categories of changes . 86
5.7 MWW tests over removal of clones . 86
5.8 Frequency of changes before removal . 88
5.9 Removal of clone-groups at the granularities of function and block 89
5.10 Actual and normalized textual similarity of removed and alive clone-groups 90

6.1 QMOOD formula for quality attributes (taken from [22]) . 105
6.2 QMOOD metrics for design properties (taken from [22]) . 106
6.3 Constraint matrix Z representing the constraints among the refactorings in R 110
6.4 Software systems subject to the empirical study . 112
6.5 Code clones in the systems under study . 113
6.6 Demographic information about the developers used for refactoring effort/effect estimation . 113
6.7 Example of operations and efforts for extract method . 115
6.8 Parameters for genetic algorithm . 121
6.9 Comparison of automated scheduling approaches . 123
6.10 Time and memory comparison of CP and LP scheduling . 124
6.11 Developers feedback on the Likert scale questions . 128
6.12 Comparison of code clone refactoring schedulers . 132

7.1 Information need to be recorded with clone documentation 142
7.2 Summary of tool support for incremental clone detection . 145
7.3 Summary of clone visualization techniques . 157
7.4 Research questions and current solvable status in clone research 164

viii

List of Figures

2.1 Bug creation through code cloning . 13
2.2 Bug propagation through code cloning . 13
2.3 A clone genealogy with three lineages over versions Vk through Vk+4 19
2.4 Clone change patterns and types of genealogies over versions Vk through Vk+4: (1) static

genealogy, (2) consistently changed genealogy, (3) inconsistently changed genealogy 22

3.1 Focused clone search facility . 24
3.2 Schematic diagram of our approach for near-miss code clone detection 25
3.3 Code preprocessing and fingerprinting . 26
3.4 The suffix tree for the generalized sequence “0123456AA$012784569AA#” 29
3.5 Enumerated suffix tree having nodes partitioned into Runs marked with dotted rectangles [97] 31
3.6 Binary tree with nodes enumerated according to inorder numbering [97] 32
3.7 Customization options for clone detection . 37

4.1 Actual and forecasted density of exact and near-miss clones in Linux kernel 51
4.2 Number of functions and clones in subsequent releases of Apache-ANT 55
4.3 Average density of exact and near-miss clones at different UPITs (dissimilarity levels) 56
4.4 Actual and forecasted density of exact and near-miss clones in JasperReports 57
4.5 Exact and near-miss clone-density in JEdit . 60
4.6 Exact and near-miss clone-density in Apache-Ant . 61
4.7 Exact and near-miss clone-density in NANT . 62
4.8 Exact and near-miss clone-density in CruiseControl.NET . 63
4.9 Exact and near-miss clone-density in GCC . 64
4.10 Group of near-miss function clones in releases of DavMail . 65
4.11 Procedure of the empirical study on code clones in web applications 67

5.1 gCad settings for clone genealogy extraction . 80
5.2 Clone Removal in Subsequent Releases of C# Systems . 92

6.1 Example of clone refactoring in VisCad: the method on the top-right corner is extracted by
generalizing the clone pairs (shaded blocks on the left) . 98

6.2 Different object-oriented patterns for code clone refactoring 100
6.3 Computation of distance between classes . 104
6.4 Mutual inclusion and mutual exclusion constraints on clone refactoring 107
6.5 Traditional encoding of a solution in a binary string . 118
6.6 Our encoding of a solution in a chromosome . 119
6.7 Crossover operation . 119
6.8 Automated CP vs. manual scheduling . 125

7.1 Clone management workflow . 137
7.2 Late Propagation . 151
7.3 Achievements and scopes along different dimensions of clone management activities 161

B.1 Step 1 of installation . 191
B.2 Step 2 of installation: add a new Update Site . 192
B.3 Step 3 of installation: filling in information for new Update Site 193
B.4 Step 4 of installation: tool selection . 195
B.5 Step 5 of installation: choice review . 196
B.6 Step 5(c) of installation: reviewing the Copyright information 197
B.7 Step 5(c) of installation: reviewing the General Information 198

ix

B.8 Step 5(c) of installation: reviewing the License Agreement . 199
B.9 Step 6 of installation: acceptance of license agreement . 200
B.10 Step 1 of customization: opening Eclipse’s Preference page 200
B.11 Step 2 of customization: tuning CloMan’s parameters . 201
B.12 Usage of our clone search tool CloMan . 202
B.13 Step 1 of bringing up the Clone View . 202
B.14 Step 2 of bringing up the Clone View . 203

x

List of Abbreviations

AG Alive Genealogy
AI Artificial Intelligence
ASP Active Server Pages
CCG Consistently Changed Genealogy
CG Clone Genealogy
CP Constraint Programming
CSOP Constraint Satisfaction Optimization Problem
CSS Cascaded Style Sheet
DG Dead Genealogy
DP Dynamic Programming
EM Extract Method
ES Extract Superclass
EU Extract Utility-class
GA Genetic Algorithm
IDE Integrated Development Environment
IRS Incident Reporting System
JSP Java Server Pages
LIME Language Independent Matching Engine
LCA Lowest/Least Common Ancestor
LCE Longest Common Extension
LOC Source Line of Code
LP Linear Programming
Mb Megabit
MB Megabyte
MILP Mixed Integer Linear Programming
MVC Model-View-Controller
OmeGA Ordering Messy Genetic Algorithm
OO Object-Oriented
OPL Optimization Programming Language
PHP Hypertext Preprocessor or Personal Home Page
PM Pull-up Method
QMOOD Quality Model for Object-Oriented Design
SD Standard Deviation
SSG Syntactically Similar Genealogy
TRS Training Registration System
UPIT Unique Percentage of Items Threshold

xi

Chapter 1

Introduction and Motivation

“Do not go where the path may lead,
go instead where there is no path and leave a trail”

– Ralph Waldo Emerson

Copying existing code and pasting it in somewhere else followed by major or minor edits is a common practice

that developers adopt to increase productivity. Such a reuse mechanism typically results in duplicate or

very similar code fragments residing in the code base. Those duplicate or near-duplicate code segments are

commonly known as code clones. There are many reasons why the developers intentionally perform such code

cloning. Obvious reasons include reuse of existing implementation without “re-inventing the wheel”. More

comprehensive discussions on the reasons for code cloning can be found elsewhere [138, 233, 236]. Code clones

may also appear in the code base without the awareness of the developers. Such unintentional/accidental

clones may be introduced, for example, due to the use of certain design patterns, use of certain API’s to

accomplish similar programming tasks, or coding conventions imposed by the organization.

The reuse mechanism by code cloning offers some benefits [141, 142, 152]. For instance, cloning of existing

code that is already known to be flawless, might save the developers from probable mistakes they might have

made if they had to implement the same from scratch. It also saves time and effort in devising the logic and

typing the corresponding textual code. Code cloning may also help in decoupling classes or components and

facilitate independent evolution of similar feature implementations.

On the other end of the spectrum, code clones may also be detrimental in many cases [18, 85, 133, 141, 142,

187]. Obviously, redundant code may inflate the code base, and may increase resource requirements. This

may be crucial for embedded systems and systems such as hand held devices, telecommunication switches,

and small sensor systems. Moreover, cloning a code snippet that contains any unknown fault may result in

propagation of that fault in all copies of the faulty fragment [133]. From the maintenance perspective, a change

in one code segment may necessitate consistent changes in all clones of that fragment. Any inconsistency

may introduce bugs or vulnerabilities in the system. Fowler et al. [81] recognize code clones as a serious kind

of code smell.

However, during the software development process, duplication cannot be avoided at times. For exam-

ple, duplication may be enforced by the limitation of the programming language’s necessary mechanism to

1

implement an efficient generic solution of a problem at hand [141, 142]. Code generators may also generate

duplicated code that the developers do not want to modify.

Previous research reports empirical evidences that a significant portion (generally 9%-17% [313]) of a

typical software system consists of cloned code, and the proportion of code clones in the code base may be

as low as 5% [236] and as high as even 50% [234]. Indeed, due to the negative impact of code clones in the

maintenance effort, one might want to remove code clones by active refactoring, wherever feasible. However,

in reality, aggressive refactoring of code clones appears not to be a very good idea [50], and not all clones are

really removable through refactoring [44, 248]. Due to the dual role of code clones in the development and

maintenance of software systems, as well as the pragmatic difficulty in avoiding or removing those, researchers

and practitioners have agreed that code clones should be detected and managed efficiently [215, 310].

Indeed, clone management itself is a wide area of research and development. This thesis makes contribu-

tion in clone management with a new clone search technique integrated with IDE (Integrated Development

Environment), in-depth analyses of code clones and their evolution to derive clone management implications,

and a novel scheduler for scheduling of code clone refactorings based on cost-benefit analysis.

The remaining of this chapter is organized as follows. Section 1.1, describes the research problem addressed

in this thesis. The research approach and contributions of this thesis are described in Section 1.2. Finally,

in Section 1.3, presents the outline this thesis.

1.1 Problem Definition and Scope

Since the emergence of software clones as a research area in early 1990s, significant contributions over years

made the field grow and become quite a mature field of research. However, the majority of the earlier work in

the area were on the detection of a certain categories of code clones and analysis around only those categories

of clones mainly to understand different cloning characteristics [311]. Relatively a fewer of the earlier research

focused on software clones from the clone management perspective, and clone management has recently staged

in the interest of the community. Although clones have negative impacts on the development and maintenance

of source code, it is not always possible to avoid cloning or remove all clones from a system in practical settings

due to a number of reasons [141, 142].

• The speed-up in the development process through reusing source code by cloning is an immediate and

significant effect specially in tight development schedule.

• Sometimes the programming language, API libraries, and frameworks dictate the way the source code

needs to be written, and thus the developers are forced to write source code having clones despite their

fullest intention to avoid code clones.

• Programmers often deliberately create code clones to decouple program elements and facilitate their

independent evolution. In such situations clones are rather desirable.

2

• Independent developers, specially in a distributed team environment, may produce similar source code

while dealing with very similar problems. In such situations the developers even do not know about

those accidental clones, which can later be revealed eventually by visual inspection or by a clone

detection tool.

1.1.1 The Problem

Given that clones will exist in the source code, programmers will continue reusing source code by cloning,

and that code clones have both positive and negative impacts on software development and maintenance,

how can we efficiently manage clones to minimize their negative impacts while obtaining the best out of code

cloning? Indeed, the problem of clone management encompasses a wide range of all process activities for the

detection, analysis, and removal of code clones [86].

The difficulties in dealing with clones largely depend on their types. Exactly duplicate (except for their

layouts/formatting) code fragments are Type-1 clones. Code fragments that are very similar in their syntactic

structure but varies only in the names of corresponding variables and identifiers are known as Type-2 clones.

Code fragments that exhibit similarity as of Type-2 clones and also have other differences such as added,

deleted or modified statements are called Type-3 clones. The Type-2 and Type-3 clones are often referred

to as near-miss clones [236, 242]. From an extensive literature survey [311], we found that although there

have been some work towards clone management, there are still three major open sub-problems pertaining

to dealing with different types of clones. This thesis addresses these sub-problems as described below:

Sub-problem 1: Integration with development process and dealing with Type-3 clones.

Accurate detection of code clones is the first and fundamental step towards clone management. Till date, more

than 40 clone detection tools and prototypes have been produced realizing a wide variety of techniques [236,

243]. However, from the perspective of clone management there still remains three issues. First, most of the

clone detectors are developed as tool separate from IDEs. While such clone detectors have become useful

in the analysis of clones, they lack the ability to provide IDE-integrated clone detection support for clone

management during the software development phase. For proactive clone management, clone detection must

be integrated with the development process so that the developers can deal with clone during their active

interaction with the source code. Second, such tools adopt a post-mortem approach that aims to detect and

report all clones from the entire source code. Typically a large number of clones are reported and it becomes

difficult for a developer to focus on a certain set of clones of interest, which can be relevant to the developer’s

current work at hand. Third, most of the clone detectors, especially those few tools that are integrated with

IDEs, exhibit limitations in detecting Type-3 clones [236, 243].

3

Sub-problem 2: Understanding clones and their evolution.

Integrated clone detection constitutes the merely the first step towards clone management. To devise effective

techniques, tools, and strategies for clone management, we must understand the existence and evolution of

clones. The significance of the clone management problem must be justified by knowing what proportion of

source code are typically cloned. A deeper understanding on how the proportion of clones changes during

the evolution of the software system is necessary to suggest the stages of the software lifecycle when it is

the most appropriate to deal with clones. Moreover, investigation of the types of changes the individual

clone fragments experience during their evolution is a must to determine what kinds of modification and

refactoring support are required for effective clone management. However, a little is known about these

phenomena, especially for the near-miss clones including Type-3.

Sub-problem 3: Ranking of clones for refactoring.

Once the clones are detected, they can be better managed when the proportion of cloned code in the source

code is kept to the minimum. The number of clones can be minimized by refactoring source code for

extracting a generalized code fragment from multiple duplicate or near-duplicate code fragments. Among

many general refactoring patterns [80, 81] the extract method refactoring is probably the most promising and

popular technique for clone refactoring [90]. However, refactoring in general is often error-prone and not an

easy task. Refactoring needs effort and care. Clone refactoring must deal with additional complexities due

to the dispersion of the clones in different parts of the source code with respect to the file system hierarchy

as well as inheritance hierarchy, and that there remains dependencies and conflicts among refactoring of the

individual clone fragments, which must be resolved in the first place.

Typically, a large number of clones are found in the source code. Despite the developers’ adoption of

proactive clone management, a significant number of clones are likely to exist due to that lack of clone

management ability of the individual programmers, coordination gap in team environment, and the like.

Moreover, integrated clone management cannot be applicable for many legacy systems. The number of clones

often proportionally increases with the increase in the size of the code base [313]. For clone refactoring, the

developer must examine those reported clones to short-list a subset of feasible candidates for refactoring. In

practice, all the reported clones do not appear to be feasible for removal by refactoring and there remain some

deliberate clones that must be kept intact due to design choices. The cost-benefit rationale also plays a vital

role in deciding which clones to refactor especially when the project runs in a limited budget. Therefore, prior

to performing clone refactoring, one must take into account all the conflicts, dependencies, and priorities to

produce a schedule of candidate clones for refactoring such that the cost of refactoring is minimized while

the expected benefits are maximized.

In this context, there remain two difficulties. First, such a refactoring scheduling problem is known to be

NP-hard [37, 176, 183], and thus, manual effort cannot be expected to perform well especially for medium

to large software systems. Therefore, an automated (or semi-automated) clone refactoring scheduler that

4

takes into account all the conflict, dependencies, and criteria is necessary, which is missing in the literature.

Second, there exists no established procedure for upfront estimation and quantification of the costs and

expected benefits involved in code clone refactoring.

1.1.2 Scope

Software clones can be detrimental if not properly managed, and the objective of this dissertation research is to

help clone management by devising techniques realized into prototype tools and by revealing clone management

implications from in-depth empirical studies performed in large scale.

This thesis contributes to clone management research for effective and informed management of Type-1,

Type-2, and Type-3 code clones at the granularities of functions and blocks. Code clones at these granularities

can be more meaningful with respect to reengineering and refactoring opportunities as further discussed in

Chapter 7 (Section 7.2.1). The work described in this thesis deals with source code written in imperative

programming languages such as Java, C, C++, and C#, as well as scripting code written in PHP. These

imperative programming languages are widely used in general purpose software development, and PHP

is a commonly used in the development of dynamic web applications. Although developed around the

aforementioned programming languages, the techniques and findings from this dissertation research can also

be made applicable for other languages and paradigms with minimal efforts.

Dealing with Type-4 (semantically similar) code clones and clones in software artifacts other than the

source code remains beyond the scope of the work presented in this thesis.

1.2 Research and Contributions

This thesis contributes towards clone management, in particular, we address the aforementioned three sub-

problems through in-depth analysis and development.

Addressing Sub-problem 1: Integrated Detection of Exact and Near-miss Clones

To resolve the sub-problem 1, we develop a clone search tool that enables on-demand search for exact and

near-miss clones including Type-3. The tool is developed as a plug-in to the popular Eclipse IDE (Integrated

Development Environment), and thus clone detection is integrated with the development process. Instead

of detecting and reporting all clones from the source code, the tool enables the developer to find clones

of a particular code fragment. Thus, the number of reported clones is significantly reduced, which allows

the developer to focus on a particular set of clones he or she is interested during the software development

process. Further details about our algorithm for clone detection and approach for evaluation of the tool are

described in Chapter 3.

5

Addressing Sub-problem 2: Clone Analysis

To address the sub-problem 2, we carry out a number of exploratory empirical studies. First, we conduct a

large scale empirical study on a wide range of open-source application software systems written in different

programming languages. We analyze the overall proportion of exact (Type-1) and near-miss (Type-2 and

Type-3) clones in the series of releases of those software systems. In particular, we examine whether there

is any impact of programming language or paradigm, program sizes on the proportion and evolution of

code clones in software systems. We also investigate for any patterns in the proportion of code clones over

the releases of the software system. The motivation and methodology of the study is further elaborated in

Chapter 4. One of the findings from the study suggests significant impact of programming languages and

paradigms on the existence of code clones in software systems. Beside studying clones in open-source systems,

we also study the patterns of cloning in two industrial web applications.

From the first study, we also find some clone-groups that remain intact and propagate over a long series

of releases of the evolving software systems. This finding inspired us to carry out a third empirical study

(Section 4.3), where we include a deeper investigation on the evolution of individual clones. As we examine

the evolution of individual clones, we again find long-lived clones that propagate across many releases of the

system while many of the clones disappear in a few early releases.

Then, it becomes necessary to study the evolution of individual clone fragments and clone-groups to

understand what type of changes those clones experience as they evolve across software releases, and what

type of changes they undergo before their removal. Thus, we carry out a fourth empirical study to investigate

the type of changes the individual clones experience as they evolve. The practical findings of the study suggest

what type of clones can initially be considered to be attractive for refactoring and what type of tool support

can be helpful for managing code clones. Further details of this empirical study is described in Chapter 5.

Addressing Sub-problem 3: Clone Refactoring

While a deeper understanding on the characteristics of clones and their changes can help point to interesting

clones from management perspective, the problem of scheduling clone refactoring (sub-problem 3) still plays

its role in practical settings where a large number of clones to need to be dealt with in limited budget

(i.e., time, effort). Addressing sub-problem 3, we propose the first effort model for the estimation and

quantification of the effort required to refactor code clones in object-oriented source code. For the efficient

scheduling of code clone refactorings, we also develop a novel scheduler that takes into account the refactoring

effort, effects, all possible conflicts and dependencies among the candidate clones. More details about the

effort model, the clone refactoring scheduler, and their evaluation is discussed in Chapter 6.

6

1.3 Outline of the Thesis

The research presented in this thesis is composed of three major parts. In the first part, we develop an

IDE-based clone search tool as a plug-in to the Eclipse IDE to support integration of clone detection with

the actual development process. The second part of the research includes in-depth empirical studies on the

characteristics of the existence and evolution of code clones in software systems. The empirical studies derive

insights into the code clones and their maintenance implications to inform clone management. Driven by

these implications, in the third phase of the dissertation research, we develop a parameterized effort model

for the estimation of code clone refactoring effort, and then introduce a novel scheduler for conflict aware

optimal scheduling of prioritized code clone refactorings.

In this chapter (Chapter 1), we introduced the research problem along with our motivation, research

methodology, and expected contributions from this thesis. The remaining of this thesis is organized as

follows.

• Chapter 2 presents the terminology and concepts that constitute the foundation necessary to follow the

remaining of the thesis.

• In Chapter 3, we present our IDE-integrated clone search tool and its evaluation.

• Chapter 4 includes empirical studies on the existence and evolution of code clones in diverse software

systems.

• An in-depth study on the evolution individual clones and their change patterns is presented in Chapter 5.

• In Chapter 6, we present a novel effort model for the estimation of clone refactoring efforts. We also

present an automated approach for efficient scheduling of clone refactoring on the basis of cost-benefit

analysis.

• Based on an in-depth survey [311] and our experience in the area, in Chapter 7, we present our vision

for a versatile clone management system and expose avenues for further research and contributions.

• Finally, Chapter 8 concludes this thesis.

Major parts of this thesis are already published in peer reviewed journals and international conferences.

A list of publications that are outcomes of this dissertation research are presented in Appendix A. A User’s

Manual for the IDE-integrated clone search tool (as described in Chapter 3) is included in Appendix B. The

OPL model of the clone refactoring scheduler (as described in Chapter 6) is presented in Appendix C.

7

Chapter 2

Background

“There is something fascinating about science.
One gets such wholesale returns of conjecture

out of such a trifling investment of fact”
– Mark Twain

In this chapter, we introduce the terminology and concepts necessary to follow the remaining of this thesis.

We begin with the definition of code clones in Section 2.1. Section 2.2 and Section 2.3 respectively describes

the patterns of cloning and negative impacts of clones. In Section 2.4, we clarify what is meant by clone

management. Section 2.5 briefly describes different clone detection techniques along with their strengths and

weaknesses. In Section 2.6, we introduce the clone genealogy model, which is used in some recent studies

(including ours) on code clone evolution. Finally, Section 2.7 summarizes the chapter.

2.1 Definition of Code Clone

Duplicate or similar code fragments are roughly known to be code clones. Over more than a decade of

research on code clones, the community [156, 162, 233, 236, 240, 249, 279, 313, 310] has accepted the following

categorizing definitions of code clones.

Type-1 Clone: Identical code fragments except for variations in white-spaces and comments are Type-1

clones. For example, the code fragments in Listing 2.1 and Listing 2.2 are Type-1 clones despite the

differences in their layouts and comments.

Type-2 Clone: Structurally/syntactically identical fragments except for variations in the names of identi-

fiers, literals, types, layout and comments are called Type-2 clones. For example, the code fragment in

Listing 2.3 is a Type-2 clone of the code fragments in Listing 2.1 and Listing 2.2.

Type-3 Clone: Code fragments that exhibit similarity as of Type-2 clones and also allow further differences

such as additions, deletions or modifications statements are known as Type-3 clones. For example, the

code fragment in Listing 2.4 is a Type-3 clone of the code fragments in Listing 2.1, Listing 2.2, and

Listing 2.3.

8

Type-4 Clone: Code fragments that exhibit identical functional behaviour but implemented through very

different syntactic structure are known as Type-4 clones. For example, the Java code fragment in List-

ing 2.5 implements the Bubble Sort algorithm using recursion, while the code fragment in Listing 2.6

implements the same algorithm using loops (iterations) only. These two code fragments are seman-

tic clones since they are functionally identical (i.e., implements the Bubble Sort algorithm) but the

structures of the program source code are very different.

Listing 2.1: Code fragment-1

1 final private boolean jj_3R_164 ()

2 { // brace in separate line

3 if (jj_3R_166 ())

4 return true;

5 Token xsp;

6 while (true) {

7 xsp = jj_scanpos;

8 if (jj_3R_171 ()) {

9 jj_scanpos = xsp;

10 break;

11 }

12 }

13 return false;

14 }

Listing 2.2: Code fragment-2

1 final private boolean jj_3R_164 () {

2 if (jj_3R_166 ())

3 return true;

4 Token xsp;

5 while (true)

6 { // brace in separate line

7 xsp = jj_scanpos;

8 if (jj_3R_171 ()) {

9 jj_scanpos = xsp;

10 break;

11 }

12 }

13 return false;

14 }

Listing 2.3: Code fragment-3

1 final private boolean jj_3R_168 () {

2 if (jj_3R_170 ())

3 return true;

4 Token xsp;

5 while (true) {

6 xsp = jj_scanpos;

7 if (jj_3R_182 ())

8 { // brace in separate line

9 jj_scanpos = xsp;

10 break;

11 }

12 }

13 return false;

14 }

Listing 2.4: Code fragment-4

1 final private boolean jj_3R_164 () {

2 if (jj_3R_166 ())

3 return true;

4 Token xsp;

5 while (true) {

6 xsp = jj_scanpos;

7 if (jj_3R_171 ()) {

8 jj_scanpos = xsp;

9 break;

10 }

11 doProcess (); // added line

12 }

13 return false;

14 }

9

Listing 2.5: Recursive Bubble-sort

1 public int[] recursiveBubble(int[] args,

2 int startIndex, int endIndex) {

3 if(startIndex > endIndex){

4 System.out.println(Arrays.toString(args));

5 return args;

6 }

7 if (startIndex == endIndex - 1) {

8 recursiveBubble(args, 0, endIndex - 1);

9 } else if (args[startIndex] >

10 args[startIndex+1]) {

11 int currentNumber = args[startIndex];

12 args[startIndex] = args[startIndex + 1];

13 args[startIndex + 1] = currentNumber;

14 recursiveBubble(args,

15 startIndex + 1, endIndex);

16 } else {

17 recursiveBubble(args,

18 startIndex + 1, endIndex);

19 }

20 return args;

21 }

Listing 2.6: Bubble-sort using loop

1 public int[] bubblesort(int[] args) {

2 System.out.println("Normal BubbleSort:");

3 for (int j = 0; j < args.length; j++) {

4 for (int i = 0; i < args.length; i++) {

5 int currentNumber = args[i];

6 if (i + 1 < args.length) {

7 if (currentNumber > args[i + 1]) {

8 args[i] = args[i + 1];

9 args[i + 1] = currentNumber;

10 }

11 }

12 }

13 }

14 System.out.println(Arrays.toString(args));

15 return args;

16 }

As described, the first three types of clones are defined based on the similarity in the program text,

while Type-4 clone is defined based on semantic similarity. Thus, Type-4 clones are also called semantic

clones. One the other hand, Type-1 clones are also known as exact clones, Type-2 clones are also sometimes

called renamed clones, whereas, the Type-2 and Type-3 clones jointly are called near-miss clones [236]. The

terms parameterized clone or p-match clone are often used in the community to refer to a subset of Type-2

clones, where there must be a bijective mapping between the identifiers of the two Type-2 clones [162]. Thus,

renaming (arbitrary or systematic) of identifiers are allowed in Type-2 clones, whereas for parameterized

clones, those renaming must be consistent/systemic [236] conforming the required bijective mapping.

For Type-3 clones, the deletion of statement from one code segment can be considered as an addition of the

statement in the other. The difference in the additional or changed statements in the Type-3 clones are often

called the gaps [282], and thus Type-3 clones are sometimes also referred to as gapped clones [162, 236, 282].

2.1.1 Clone Relationship

A clone relationship exists between two code segments that are clones to each other according to specification

of similarity as prescribed by the definitions stated above. Such a clone relationship is reflexive (i.e., if code

10

segment A is a clone of B, then B is also a clone of A). Moreover, for Type-1 and Type-2 clones, the transitive

relationship also exists (i.e., if code segment A is a clone of B, and B is a clone of C, then A is also a clone of

C). However, such a transitive property may not hold for Type-3 clones [34]. The aforementioned definitions

also imply that a subset relationship exists among the Type-1, Type-2, and Type-3 clones. Mathematically,

Type-i ⊆ Type-j, for i ∈ {1, 2} and j = i+ 1 [156].

Two code segments that are clones to each other (i.e., have clone relationship between them) are called

a clone pair. A clone-class or clone-group is a set of code segments such that any two of them are clone

pairs. The code fragments in Listing 2.1, Listing 2.2, Listing 2.3, and Listing 2.4 form a clone-group of four

members1.

2.1.2 Clone Granularity

The definitions of all four types of clones are based on the notion of code segment, and contiguous portion

of code at different levels of granularity have been used in the literature. As concerned with source code,

the most commonly used granularities are at the level of the entire source file, class definition, method body,

code block, and statements, which yield the the notion of code clones of the following five types:

File clone: When two files are found to have contained similar enough source code, they are called file

clones.

Class clone: Two classes of object-oriented source code can be considered as class clones if they have

identical or near-identical code.

Function clone: Two functions are considered as clones when the bodies of the functions consist of code

that are similar enough.

Block clone: When two blocks of code (marked with opening and closing braces or indentation, or the like)

are similar enough, they are called block clones. To consider clones at the granularity of blocks, one

must decide how to deal with nested blocks (i.e., blocks inside another block).

Arbitrary statements clone: When two groups of statements at arbitrary regions of the source file are

found to be similar enough, they are also regarded as clones (CCFinder detects such clones).

2.1.3 Intentional and Accidental Clones

Code clones in a software system can appear in two ways. First, the programmer copies existing code, pastes

it in another place, and thus reuses the implementation with or without further modifications. The resulting

code may still remain similar to the original and form a clone-pair. Such clones created by the programmer’s

deliberate copy-paste-modification activities are known as intentional clones or copy-pasted clones [86, 117].

1The code fragments in Listing 2.1, Listing 2.2, Listing 2.3, and Listing 2.4 are extracted from the source code of an open-
source project JEdit version 4.3-pre6.

11

There are a number of reasons why programmers create such intentional clones [162, 236]. An obvious reason

is to reuse existing implementation without “re-inventing the wheel”.

Indeed, similar code segments may also appear in the system without the programmer’s intention, and

often the developer can even be unaware of the creation of such clones [141, 142, 304]. For example, due to

the developer’s mental model, frequently used idioms are reproduced from memory instead of deliberate copy-

paste [233]. Even different developers may also produce very similar code while solving a similar problem,

or due to the dictation of certain APIs they use, or using the same design pattern [308]. Such similar code

snippets that are not produced by deliberate copy-paste operations are known as unintentional clones or

accidental clones.

In reality, there are many reasons behind the creation of intentional and accidental code clones in a software

system. Further details on the root causes of cloning can be found elsewhere [141, 142, 162, 236, 304].

2.2 Patterns of Cloning

The patterns of cloning characterize the creation and distribution clones in the source code. Forking and

Templating are two prominent patterns of cloning as described by Kapser and Godfrey [142]. In the process

of Forking, a piece of existing code is cloned to a different location, which is expected to evolve independently

from its original source. In Templating, similar behaviour is implemented by cloning existing code, which are

then expected to evolve together with any future changes.

2.3 Negative Impacts of Code Clones

As mentioned before, the practice of code cloning offers reuse of source code and thus speed-up development

process. Despite these immediate benefits, code clones may also have negative impacts in the long run on the

maintenance of the software systems. If code clones are not carefully managed, they can introduce bugs in

the system and can also cause propagation of bugs across different portions of the source code. Consider the

example in Figure 2.1, where the developer produces the lines 10 through 19 by copying the preceding block

(i.e., lines 1 through 9) and making necessary changes. However, the developer forgets to replace the variable

toExecMetricPrepSt by toExecRegMetricPrepSt at line 17. Consequently, the statement at line 27 will

never execute. Thus cloning may introduce new bugs in the system, when the developer fails to carefully

manage code clones.

Cloning an existing piece of code that already had an unknown bug can cause the bug propagate to

all copies of the buggy code. Consider the example in Figure 2.2, where the code fragment(1) performs

file I/O (i.e., write) operations, but the file writer was never closed upon completion of the operations. A

writer.close() statement can be expected at line 7, which is missing. When this code segment is copied to

other places, the vulnerability existing in the original code is also replicated to all the copies, i.e., fragment(2),

fragment(3), and fragment(4) in the figure.

12

else {
 logger.info("Invalid target table");
}
if(toExecMetricPrepSt){
 metricPrepSt.executeBatch();
}
if(toExecRegMetricPrepSt){
 regMetricPrepSt.executeBatch();
}

if (tableName.equalsIgnoreCase(MetricTable.name())){
 metricPrepSt.setInt(1, record.getId());
 metricPrepSt.setFloat(2, record.getFreq());
 metricPrepSt.setBoolean(3, record.getStatus());
 metricPrepSt.setString(4, record.getDescription());
 metricPrepSt.setDate(5, record.getDate());
 metricPrepSt.setTimestamp(6, record.getTimestamp());
 toExecMetricPrepSt = true;
}
else if (tableName.equalsIgnoreCase(RegMetricTable.name())){
 regMetricPrepSt.setInt(1, record.getId());
 regMetricPrepSt.setFloat(2, record.getFreq());
 regMetricPrepSt.setBoolean(3, record.getStatus());
 regMetricPrepSt.setString(4, record.getDescription());
 regMetricPrepSt.setDate(5, record.getDate());
 regMetricPrepSt.setTimestamp(6, record.getTimestamp());
 toExecMetricPrepSt = true;
 // should have been: toExecRegMetricPrepSt = true;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Figure 2.1: Bug creation through code cloning

copy

copy

copy

PrintWriter writer = null;
try {
 writer = new PrintWriter(
 new FileWriter(file));

 writer.write(...);
 //..... more statements
 // missing writer.close();
} catch (IOException e) {
 e.printStackTrace();
}

11
2
3
4
5
6
7
8
9
10

PrintWriter writer = null;
try {
 writer = new PrintWriter(
 new FileWriter(file));

 writer.write(...);
 //..... more statements
 // missing writer.close();
} catch (IOException e) {
 e.printStackTrace();
}

2

PrintWriter writer = null;
try {
 writer = new PrintWriter(
 new FileWriter(file));

 writer.write(...);
 //..... more statements
 // missing writer.close();
} catch (IOException e) {
 e.printStackTrace();
}

3PrintWriter writer = null;
try {
 writer = new PrintWriter(
 new FileWriter(file));

 writer.write(...);
 //..... more statements
 // missing writer.close();
} catch (IOException e) {
 e.printStackTrace();
}

4

Figure 2.2: Bug propagation through code cloning

13

Such defects introduced in the source code by code cloning can be avoided or captured and repaired by

applying clone management techniques. For example, when a bug is found in a certain piece of code, clone

detection technique can be used to identify similar code fragments for detecting possible similar bugs hiding

at different location of the source code.

2.3.1 A Real World Incident

In the early morning of October 12th, 2007, a catastrophic incident occurred in 662 railway stations in Tokyo,

Japan [299]. As reported, more than 4,000 automatic gate machines at the railway stations failed to start-up

correctly due to a defect in the source code of the software that controlled the boot-up process of the gate

machines. The program vendor took more than half a day to locate and fix the single line defect in the source

code. The failure affected around 2.6 million passengers.

Six days later, a similar start-up failure occurred in more than 100 fair adjustment machines in Tokyo’s

65 railway stations, and caused inconveniences to about 400 passengers. The software controllers for the gate

machines and fair adjusted machines were developed by the same vendor, and shared a similar source code

to handle the similar boot-up processes. Immediately after fixing the software defect to recover from the first

incident, the vendor also examined their other programs pertinent to automatic gate machines in search for

any possible similar defects. Nevertheless, the second incident took place.

It was discovered that the software implementations for the similar boot-up processes had similar source

code but used a different data format, which caused the failures occur in different days [299]. It is likely

that the source code for one controller was developed by ‘cloning’ from the other followed by necessary

modifications including those to accommodate the differences in the data format, and certain required changes

somehow escaped leaving defects in the programs. Had the vendor detected the similar defects in the similar

source code, at least the second incident could have been avoided.

2.4 Clone Management

“Clone management summarizes all process activities which are targeted at detecting, avoiding or removing

clones” [86]. Thus, clone management encompasses a broad categories of activities having clone detection as

the first step. Another major activity for clone management is the refactoring of code clones that aims to

minimize the number of clones in the source code, thus keeping the negative impacts (e.g., code inflation)

of clones in control. A deeper understanding the characteristics of clones and their implications can help

identifying clones of interest and techniques to deal with them. Thus, clone analysis from the maintenance

perspective also plays a vital role in clone management.

The primary objective for clone management includes minimization of the negative effects of clones while

maximizing the benefits out of code cloning. Aside from the main purpose, there are some additional business

values of clone management. The techniques, tools and information developed for clone management can be

14

applied for origin analysis (code provenance) [96], version merging [96], bug localization [117, 123, 181, 182],

plagiarism (code copyright infringement) detection [210, 225], malware detection [42, 287], aspect mining [40,

41], library candidate extraction [108], cross-version analysis and version/branch merging in product line

engineering [96].

2.5 Clone Detection

Clone detection is the most important and integral part of clone management. Clones from the source code

must be identified first before they can be dealt with. Over more than a decade of code clone research a

number of techniques have been devised for the detection of code clones and many clone detection tools

have been developed. Prominent techniques can be categorized as shown in Table 2.1. The categorization

is based on the type of information used in the analysis/comparison and the type of approach used for the

analysis. The first technique (Tracking Clipboard Operations) in the table is an action-trace based technique

and the rest are code similarity based techniques. In this section, we provide a brief summary of different

clone detection techniques, and point out the strengths and weakness of those techniques in general. More

detailed descriptions of those techniques can be found in the corresponding papers and elsewhere [236].

Tracking Clipboard Operations: This technique of clone detection is based on the assumption that

programmers’ copy-paste activities are the primary reason for the creation of code clones. So, the technique

simply tracks clipboard activities in the editor (inside IDEs such as Eclipse) when a programmer copies a

code segment and reuses by pasting it. The copied and the pasted code segments are recorded as clone-pairs.

Metrics Comparison: Metrics based techniques are usually used to detect function clones. The tech-

niques are based on the assumption that similar code fragments should yield very similar values for different

software metrics (e.g., cyclomatic complexity, fan-in, fan-out). Typically, for the code segments a set of

metrics are gathered into vectors. The differences in the vectors are calculated, where close vectors (e.g.,

measured by Euclidean distance) indicate that their corresponding code fragments are clones.

Texual Comparison: Text based techniques compare program text, typically line by line, with or

without normalizing the text by renaming the identifiers, filtering out the comments and differences in the

layout.

Token Based Comparison: The entire program is transformed into a stream of tokens (i.e., individual

units/words of meaning) through lexical analysis. Then the token stream is scanned to find similar token

subsequences, and the original code portions corresponding to those subsequences are reported as clones.

Syntax Comparison: Syntax comparison based techniques are developed on the fact that similar code

segments should also have similar syntactic structure. Thus, the program is parsed to produce syntax tree,

where similar subtrees indicate that their corresponding code segments are clones.

PDG Based Comparison: For a given program, a set of PDGs (Program Dependency Graphs) [77]

are produced based on the data and control dependencies among the statements of the program. The code

segments corresponding to the isomorphic subgraphs are identified and reported as clones.

15

Table 2.1: Code Clone Detection Techniques (extended from [163])

Tracking Clipboard Operations

copy-pasted code segments are recorded as clones [48, 62, 114, 292]

Metrics Comparison

comparing metrics for functions [1, 160, 161, 172, 197]

comparing metrics for web sites [66, 174]

Textual Comparison

hashing of strings per line, then textual comparison [126, 127]

hashing of strings per line, then visual comparison using dotplots [70]

latent semantic indexing for identifiers and comments [195]

code normalization, then textual comparison between lines [238]

code normalization and comparison of fingerprinted lines using suffix tree [310]

code normalization and comparison of fingerprinted statements [212]

code normalization and hash based comparison of functions/blocks [279]

Token-based (Lexical) Comparison

suffix trees for tokens per line [14, 15, 16]

token normalizations, then suffix tree/array based search [27, 137, 145]

data mining for frequent token sequences [182]

code block comparison based on ordered terms using MapReduce algorithm [253, 254]

hash-based filtering followed by suffix-tree-based comparison [164, 165]

token count based vector comparison using cosine similarity [301, 302]

hashing of token sequences [276]

Syntax Comparison

hashing of syntax trees and tree comparison [30, 298, 12]

coalescing all roots of isomorphic subtrees of abstract syntax tree [273]

data mining for frequent syntax subtrees [285]

serialization of syntax trees and suffix-tree detection [74, 166, 179]

derivation of syntax patterns and pattern matching [73]

metrics for syntax trees and metric vector comparison [122, 215]

PDG Based Comparison

approximate search for similar subgraphs in PDGs [84, 107, 111, 157, 167]

Comparison of Low Level Form of Source Code

comparing Java bytecode [17, 56, 136, 146, 147, 255]

comparison of compiled (assembler) code [60, 61, 76, 246]

comparing .NET CIL (Common Intermediate Language) [5]

16

Comparison of Low Level Form of Code: Instead of analyzing and comparing textual source code,

the techniques analyze the lower level code (e.g., assembly code, Java bytecode) as obtained from the trans-

formation by the compiler.

Other Techniques: Beside the aforementioned prominent techniques for clone detection, other tech-

niques, such as concolic analysis [171], anti-unification [43, 179], formal methods [255], and combination of

distinct techniques [83, 155, 178] in hierarchical manner were also approached. Tracing of abstract memory

states during the execution of the program was also attempted to detect semantic clones [151]. More details

about software clone detection techniques and their comparison can be found in a recent survey of Rattan et

al. [232] and elsewhere [34, 35, 236, 239, 243]

2.5.1 Strengths and Weaknesses of Clone Detection Techniques

Due to the orthogonal nature of the different approaches for clone detection, it is inappropriate rate one

technique over another. Each of the techniques have their strengths and weaknesses. In this section, we

briefly discuss the strengths and weaknesses of different clone detection techniques. More comprehensive

qualitative evaluation of the existing clone detection techniques and tools can be found elsewhere [239, 243].

Clone detection using clipboard operations (copy-paste) has the benefit that clones are captured at the

time of their creation. However, the technique poses a number of questions and limitations towards pragmatic

design decisions to be made for realizing the technique in a tool:

• How much (granularity) of copy-pasted code should be recorded as clones?

• Should the copy-pasted code that spans beyond a syntactic block be considered as clone?

• Copy-pasted code may later be modified and become very different from original. Should the very

dissimilar code segments still be treated as clones (as done in CloneScape [48]), or some similarity

based decisions have to be made?

• Since the tracking of copy-paste activity is coupled with a certain editor, the technique is vulnerable

to changes in the source code outside the editor.

• The technique cannot deal with unintentional/accidental clones, or clones in legacy systems.

The effectiveness of metrics based techniques depends on the selection of a broad set of orthogonal sig-

nificant metrics. Typically, metrics based techniques may be computationally expensive for the overhead of

calculating the chosen metrics. Moreover, due to the fact that different code segments may, at times, have

the same value for certain metrics, the metric based techniques may report many false positives.

The advantage of simple textual comparison is that the technique, in general, is independent of pro-

gramming languages and the program does not need to be complete or syntactically correct. However, the

technique (without advanced normalization and filtering of differences in layouts) may susceptible to even

minor changes in the source code [163]. Due to the use of lexical analysis only, the token based techniques can

17

operate by simple textual string comparisons and may detect code clones that span beyond the boundaries

of syntactic blocks unless such clones are filtered out using an additional mechanism.

The techniques based on syntax comparison suffer from the overhead of invoking a parser to generate

parse tree. Due to the use of a parser, the technique is coupled with programming language syntax. The

parser based syntax comparison techniques are very accurate in detecting clones that have similar syntactic

structure. Still, such techniques are vulnerable to even subtle differences in the nesting of code, and thus

may fail to detect many potential clones. Earlier empirical evaluations [13, 34, 35] also suggest low recall of

syntax comparison based clone detection techniques.

PDG based techniques analyze the source code at a level higher than that of syntax comparison based

techniques, and thus can capture the program semantics to some extent. PDG based techniques can detect

clones consisting of non-contiguous code. However, producing PDGs is computationally expensive. In ad-

dition, finding isomorphic subgraphs from PDGs is an NP-hard problem [163]. Therefore, approximation

algorithms are used, which do not aim for the optimum. The PDG based approach is tolerant to reorder-

ing of certain program elements, which is both a strength and weakness of the technique. The ordering of

statements specify the execution path of a program written in traditional imperative language, but the PDG

based techniques often disregard such order and reports clones composed of non-contiguous code segments,

and thus there remains quite good chance for false positives in detecting clones of practical significance.

Clone detection in compiled code (e.g., assembly code, binary executable, Java bytecode) requires the

source code to be complete and syntactically correct. Moreover, compilation generates the lower level code

that often normalizes syntactic variants of source code into a compact canonical representation free from

comments and differences in the layouts as in the source code. This, in principle, should make it easier to

capture semantically equivalent constructs that might “look different” in the source code written in a high

level language [60]. On the contrary, small difference in the source code may produce very different sequences

of bytes in the compiled code, and thus finding code clones based on byte code similarities may be even more

difficult than finding clones in source code [17]. Moreover, clone detection based on the analysis of compiled

code is typically performed at class level, because distinguishing the portion corresponding functions, blocks

or other level of granularity and mapping those back to locations in the higher level source code can be very

challenging.

The purpose of clone detection techniques is not limited to only clone management for improved software

maintenance. The variable strengths of different clone detection techniques lead to their applications in

solving diverse research problems such as plagiarism detection [39, 103], program fault localization [33, 46,

120, 123, 134], malware detection [42, 287], finding crosscutting concern code [41], aspect mining [148, 40],

quality assessment of requirements specification [131], and more. Indeed, the choice of an appropriate clone

detection technique largely depends on the context and the purpose [163].

18

2.6 Clone Genealogy

For in-depth investigation of the evolution of individual clone fragments, Kim et al. [153, 154] first coined the

term “clone genealogy”, which refers to a set of one or more lineage(s) originating from the same clone-group.

A clone lineage is a sequence of clone-groups evolving over a series of versions of the software system. The

versions may be official releases of the software system, or revisions based on individual commit transactions or

periodic (e.g., weekly, monthly) snapshots of the underlying code base. Thus, a clone genealogy (Figure 2.3)

describes the evolution history of a particular clone-group over subsequent versions of the system. The

extraction and study of clone genealogies from a series of versions of a program has been identified as an

important approach to investigate the evolution of individual clone-groups.

A

C

B

D

E

A

C

B
C

B

D

E

D

E

F

C

B

D

E

G

A

F

A

G

F

Clone-group

No change: A, B, C Consistent change: B, C No change: B, C

change: D, E

No change: D, E
Addition: F

No change: D, E

 Change: F

No change: A, G
Addition: F

Inconsistent change: A
Addition: G

A

D

C

B

E

C
lo

ne
 li

ne
ag

e

Vk Vk+1 Vk+2 Vk+3 Vk+4

Clone
fragments

Figure 2.3: A clone genealogy with three lineages over versions Vk through Vk+4

2.6.1 Clone Genealogy Extraction

To map clones across subsequent versions of a program (i.e. extraction of clone genealogies) mainly four

different approaches have been found in the literature, as summarized in Table 2.2. While most of these

approaches [11, 18, 23, 154, 248] focused on genealogies of Type-1 and Type-2 clones, gCad [247, 249] is the

only Type-3 clone genealogy extractor to date released as a separate tool.

19

Table 2.2: Summary of techniques for clone genealogy extraction

Approach Strength Weakness Citation

Separate clone detection from each version,

and then similarity based heuristic mapping

of clones in pairs of subsequent versions

flexible quadratic runtime [98], sus-

ceptible to large change in

clone

[18, 154, 248]

Clones detected from the first version are

mapped to consecutive versions based on

change logs obtained from source code

repositories

faster than

the above

technique

can miss the clones intro-

duced after the first ver-

sion [247]

[11, 23, 168, 274]

Clones are mapped during the incremen-

tal clone detection that used source code

changes between revisions

faster than

the above

two tech-

niques

cannot operate on the

clone detection results

obtained from traditional

non-incremental tools [247]

[93, 216]

Separate clone detection from each version,

functions are mapped across subsequent

versions, then clones are mapped based on

the mapped functions

improved

runtime

susceptible to similar over-

loaded/overriden functions

[188, 247, 249]

*A combination of the first and second approaches was also used in some studies [36]

20

2.6.2 Genealogy-based Clone Change Patterns

Recent genealogy based studies [154, 248, 249] on clone change patterns characterized the evolution of a

particular clone-group based on the following six categories of transitions between subsequent versions of the

software system.

Addition/Grow: One or more clone fragments is added to the clone-group in the next version.

Deletion/Shrink: One or more clones disappeared from the clone-group in the next version.

Consistent Change: All clone in the clone-group experience the same set of changes during transition to

the next version.

Inconsistent Change: During transition to the next version, at least one clone in the clone-group experi-

ences changes that are inconsistent with changes in other member(s) of the clone-group.

Same/No Change: The clone-group moves to the next version without experiencing any change in the

members.

Syntactically Similar Change: The clone-groups propagate through subsequent releases either without

any changes, or with changes only in formatting and identifiers (e.g., renaming of identifiers) in their

code snippets.

On the basis of the aforementioned categorization, clone genealogies are classified as follows. Figure 2.4

shows those different types of genealogies.

Static Genealogy: A genealogy where the clones in the clone-group do not experience any change over the

series of subsequent version.

Inconsistently Changed Genealogies: A genealogy where one or more clones in the clone-group experi-

ence inconsistent changes during transition between any two subsequent versions.

Consistently Changed Genealogies: A non-static genealogy where none of the clones in the clone-group

experience inconsistent changes during transition to subsequent versions.

Dead Genealogy: A genealogy that does not survive till the last version (i.e. before the last version the

clone-group disappears).

Alive Genealogy: A genealogy that survives at the last version of the software system.

Syntactically Similar Genealogy: A genealogy where all the clone fragments experience syntactically

similar changes during their evolution.

21

A

B

C

A

B

C

A

B

CN
o

ch
an

ge

N
o

ch
an

ge

A

B

C

A

B

C

A

B

C

A

B

C

A

B

CN
o

ch
an

ge

C
on

si
st

en
t c

ha
ng

e

N
o

ch
an

ge

C
on

si
st

en
t c

ha
ng

e

A

B

C

A

B

C

A

C

A

C

C
on

si
st

en
t c

ha
ng

e

In
co

ns
is

te
nt

 c
ha

ng
e

In
co

ns
is

te
nt

 c
ha

ng
e

Vk Vk+1 Vk+3
(Latest version)

Vk+4Vk+2

(1)

(2)

(3)

Al
iv

e
ge

ne
al

og
ie

s

Dead genealogy

Figure 2.4: Clone change patterns and types of genealogies over versions Vk through Vk+4: (1) static
genealogy, (2) consistently changed genealogy, (3) inconsistently changed genealogy

2.7 Summary

In this chapter, we have introduced the terminologies and preliminary concepts that form the foundation of

this thesis. At the beginning of the chapter, we presented the definition of code clones and described different

types of code clones, clone relationship, and granularity. We also described how clones can appear in the

source code due to the developers’ intention or even without their awareness. Next, we briefly illustrated

the patterns of cloning followed by a discussion on the impacts of clones with a real-world example. We

also clarified what is meant by “clone management”, and we discussed the pros and cons of different clone

detection techniques. Finally, we introduced the clone genealogy model that we use for in-depth study of

code clone evolution.

22

Chapter 3

Integrated Clone Search

“The problem is never how to get new, innovative thoughts into your mind,
but how to get old ones out. Every mind is a building filled with archaic furniture.

Clean out a corner of your mind, creativity will instantly fill it”
– Dee Hock

The detection of code clones is a fundamental part of clone management, in particular, clone detection

support within the IDE (Integrated Development Environment). Clones must be identified first to deal with

them. In this chapter, we introduce a new IDE-integrated clone detection tool. We describe the theory and

approach for clone detection adopted in our tool. Early evaluation of our prototype tool indicate that the

approach is effective in detecting exact and near-miss clones with high accuracy.

This chapter is organized as follows. First, we provide the motivation behind this particular work in

Section 3.1. In Section 3.2, we present our approach for clone search and in Section 3.3, we describe the

k-difference hybrid dynamic programming algorithm used in the detection of Type-3 clones. Section 3.4

illustrates how we evaluate our clone search tool. In Section 3.4, we discuss the work relevant to ours, and

finally Section 3.6 concludes this chapter.

3.1 Introduction

Over the past decade several techniques and tools for detecting code clones have been proposed, which we

have described in Chapter 2. While most of them are capable of detecting Type-1 (exactly similar code

fragments except for white-spaces and formatting) and Type-2 (syntactically similar code snippets, where

identifiers/variables can be renamed) clones, only a few of them are reported to detect Type-3 (where one

or more lines of code can be added/modified/removed) clones. Indeed, due to the additional differences to

be dealt with, the detection of Type-3 clones is relatively more challenging than the detection of Type-1 and

Type-2 clones.

Moreover, most clone detectors are developed as separate tools that facilitate ‘postmortem’ approach of

clone detection after code development is complete [175]. While such tools are beneficial in the analysis and

investigation of code clones and their evolution, they fail to provide necessary clone management support [309]

for clone-aware development process, as they are not IDE-based. Those few tools that are integrated with

23

IDEs (Integrated Development Environments) are mostly focused on detecting Type-1 and Type-2 clones,

and typically report all the clones in the entire code base. Such flooding of information may overwhelm the

developer, who in practice, is likely to be interested in only the clones of a certain portion of code she deals

with at a time.

To address these issues, we have developed an IDE-based clone search engine (as a plugin to the Eclipse

IDE) to facilitate focused search of both exact (Type-1) and near-miss (Type-2 and Type-3) clones during the

real development time. By “focused clone search”, we mean searching and reporting the clones of a selected

code segment only, something similar to that shown in Figure 3.1. This selected code segment is called the

seed fragment for the search, and it encompasses one or more consecutive lines of code ignoring the comments.

The search space may be the entire code base, or a portion of it (e.g., set of directories/packages, projects,

files) according to the user’s choice. Thus, such focused clone search avoids the unnecessary computation

overhead that the traditional clone detectors would perform in finding all the clones from the entire code

base.

Figure 3.1: Focused clone search facility

The tool support for focused search for clones of a particular code fragment has a number of use cases

pertaining to clone management, some of which are listed below.

• Upon identifying the desired clones of a chosen code fragment of interest, the developer may decide to

perform proactive clone refactoring, or make reference to existing code instead of introducing a new

clone fragment. Thus unnecessary creation of new clones can be avoided.

• While fixing a bug in a certain code fragment, the developer may search for its clones to examine the

presence of similar bugs elsewhere in the source code.

24

• During the development process, when the developer encounters a code fragment that he or she struggles

to understand, the developer can find similar implementations for investigation, and when necessary

can consult the authors of those clone fragments for discussion or help.

• To explore variant usage of a particular API, the developer can first find a code fragment where the

API is used, and then can initiate focused search for clones of the code fragment to find more example

usages of the concerned API from the same project or even from different projects.

• The focused search for clones can also be used for verifying code plagiarism and code provenance.

3.2 Clone Detection

Clone detection techniques can broadly be categorized as token-based, text-based, tree-based, graph-based,

and metric-based [243], which have their advantages and weaknesses, as discussed in Chapter 2 (Section 2.5).

For clone detection, we adopt a hybrid approach combining strengths of multiple techniques. Figure 3.2

presents a schematic diagram of the major algorithmic modules and the process of clone detection used in

our approach.

LIME

Source
Code

FingerprintingSuffix Tree
Creation

Suffix Tree
Preprocessing

k-difference
Matching

Clone
Clustering

Report
generation

AST

Snippet
Extraction

Comment
Filtering

Code
Formatting

Code
Normalization

Pre-processed
Code Snippets

Fingerprinted
Snippets

Preprocessed
Suffix Tree

CODE PREPROCESSOR

Figure 3.2: Schematic diagram of our approach for near-miss code clone detection

Given a seed fragment our technique finds all of its near-miss clones residing in the bodies of the functions

within the user-defined search space. For clone identification, each function within the search space is

25

examined with respect to the seed fragment. In the following subsections we describe our clone detection

procedure with an illustrative example. First, consider the top two code fragments in the Figure 3.3.

1 void sumProd (int p) {
2 float sm = 0.0; // C1
3 float prd = 1.0; // C2
4 // C3
5 for(int x = 1; x <= p; x++){
6 sm = sm + x;
7 prd = prd * x;
8 foo(sm, prd);
9 // C4
10 }
11 // C5
12 }

1 void sumProd(int q)
2 {
3 float sum = 0.0; //C1
4 float prod = 1.0; //C2
5 int i = 0;
6 while (i < q)
7 {
8 sum = sum + i;
9 prod = prod * i;
10 foo(sum, prod);
11 i++;
12 }
13 }

1 void sumProd(int v1){
2 float v2 = 0.0;
3 float v3 =1.0;
4 int v4 = 0;
5 while (v4 < v1){
6 v2 = v2 + v4;
7 v3 = v3 * v4;
8 foo(v2, v3);
9 v4++;
10 }
11 }

1 void sumProd(int v1){
2 float v2 = 0.0;
3 float v3 = 1.0;
4 for(int v4 =1; v4 <= v1; v4++){
5 v2 = v2 + v4;
6 v3 = v3 * v4;
7 foo(v2, v3);
8 }
9 }

 Fragment 1 (original) Fragment 2 (original)

Fragment 2 (processed)Fragment 1 (processed)

Preprocessing

Fingerprinting

0123456AA 012784569AA

Figure 3.3: Code preprocessing and fingerprinting

These two fragments represent the editing scenario S4(d) of the clone detection technique evaluation

framework proposed by Roy and Cordy [243]. They showed that most of the existing clone detection tools

did not perform well to detect clones in this scenario. However, we will now show how our multi-phase

technique can efficiently detect them as clones.

3.2.1 Code Preprocessing

At the very first phase, using Eclipse’s JDT API’s, we generate ASTs (Abstract Syntax Trees) for the source

code within the user-defined search space. At this point, we filter out the comments and blank lines, and

extract all the functions/methods. Then using the Eclipse’s refactoring API, we further normalize the code

26

by consistently renaming identifiers and variable names. Such normalization is applied to the seed fragment as

well. The normalized code fragments are then uniformly formatted with the help of Eclipse’s code formatter

API. Thus, upon completion of the preprocessing, the original code segments are transformed to fragments

free from variations in variable names, comments and layout, as shown in the Figure 3.3. For our current

example, the original code snippets (top two in the Figure 3.3) are preprocessed to the transformed fragments

(the two fragments in the middle of the Figure 3.3). The preprocessed code segments are then fed to the

next module, LIME (Language Independent Matching Engine) [309], which performs further computation and

comparison.

3.2.2 Source Code Fingerprinting

Using Rabin’s fingerprinting algorithm [226], LIME computes fingerprints for each line of all the preprocessed

code fragments, and thus generates unique integer value for every distinct line of code. By using fingerprints

instead of original lines of source code, we avoid the overhead of comparatively expensive pairwise string

comparisons. Suppose, for the preprocessed code fragments shown in Figure 3.3, the computed fingerprints

for all distinct lines of both the fragments are as presented in Table 3.1. The actual fingerprints are very

different from what we show in the table. But for the clarity of description, here we show fingerprints having

single digit hexadecimal integer values.

Table 3.1: Hypothetical fingerprints for distinct lines of code

Line of Code Fingerprint

void sumProd(int v1){ 0

float v2 = 0.0; 1

float v3 = 1.0; 2

for (int v4 = 1; v4 <= v1; v4++){ 3

v2 = v2 + v4; 4

v3 = v3 * v4; 5

foo(v2, v3); 6

int v4 = 0; 7

while (v4 < v1){ 8

v4++; 9

} A

Having the lines source codes ‘fingerprinted’, for each code fragment, we get a sequence of fingerprints.

For the preprocessed fragments of Figure 3.3 the sequence of fingerprints we get are “0123456AA” for the

fragment 1, and “012784569AA” for the fragment 2 in accordance with the demonstrations in Table 3.2 and

Table 3.3..

27

Table 3.2: Hypothetical fingerprint for each LOC of fragment 1

Source lines of fragment 1 Fingerprint

void sumProd(int v1){ 0

float v2 = 0.0; 1

float v3 = 1.0; 2

for (int v4 = 1; v4 <= v1; v4++){ 3

v2 = v2 + v4; 4

v3 = v3 * v4; 5

foo(v2, v3); 6

} A

} A

Fingerprint sequence: 0123456AA

Table 3.3: Hypothetical fingerprint for each LOC of fragment 2

Source lines of fragment 2 Fingerprint

void sumProd(int v1){ 0

float v2 = 0.0; 1

float v3 = 1.0; 2

int v4 = 0; 7

while (v4 < v1){ 8

v2 = v2 + v4; 4

v3 = v3 * v4; 5

foo(v2, v3); 6

v4++; 9

} A

} A

Fingerprint sequence: 012784569AA

28

3.2.3 Creation of Suffix Tree

Upon fingerprinting the preprocessed code fragments, we prepare a generalized sequence of fingerprints by

concatenating fingerprint-sequences from all the fragments. To separate fingerprint-sequences from subse-

quent fragments, we use a distinct terminator (for the current example, say the ‘$’ and ‘#’ symbol) after each

of the fingerprint-sequences1. So, for the preprocessed fragments of Figure 3.3, the generalized fingerprint-

sequence we get is “0123456AA$012784569AA#”.

R

A

A

$ 012784569AA#

$ 012784569AA#

#

$ 012784569AA#

#

9AA#

784569AA#
84

56
9A

A#

3456AA$ 012784569AA#
012 3456AA$ 012784569AA#

784569AA#

12

34
56

AA
$ 0

12
78

45
69

AA
#

784569AA#

2

34
56

AA
$

01
27

84
56

9A
A#

78
45

69
AA

#

6

9AA#

AA$ 012784569AA#

56

9AA#

AA$ 0
12

78
45

69
AA#

456

9AA#

AA$ 012784569AA#

Figure 3.4: The suffix tree for the generalized sequence “0123456AA$012784569AA#”

Next, for the generalized fingerprint-sequence, we construct a generalized suffix tree using Ukkonen’s

online algorithm [283], which runs in linear time. A suffix tree T for an m-character string S is a rooted

directed tree with exactly m leaves. Each internal node of the suffix tree, other than the root, has at least

two children, and each edge is labeled with a nonempty substring of S. Moreover, no two edges out of a

node have edge-labels beginning with the same character. Each leaf corresponds to a suffix of S that can

be obtained by concatenation of the edge-labels on a path from the root to the leaf. A direct edge from a

non-leaf node to a leaf node is called a leaf edge.

1The algorithm for creating a suffix-tree requires that the last symbol of the sequence must be unique.

29

In the Figure 3.4, we present the suffix tree for the sequence “0123456AA$012784569AA#” having the

root at the center marked with ‘R’. Upon creation of the suffix tree, we discard from each of the edge-labels

the portion following the first (left-most) terminator symbol. Those discarded portions are shown in the

figure with strike-through text. The label of each leaf edge thus ends with a terminator symbol.

3.2.4 Finding Largest Common Subsequences

The concatenation of edge-labels on paths from the root to the non-leaf internal nodes (filled circles in the

figure) of the suffix tree gives a set of all sub-sequences common in the fingerprint-sequences. Which fragments

participate in a certain common sub-sequence can be determined by looking at the terminator symbols on the

labels of the leaf edges on the path from corresponding internal node. For our current example, {2, 12, 012,

6, 56, 456, A, AA} is the set of common sub-sequences we find. We further filter out this set by removing all

those sequences that are subsumed by any other sequences and those which are smaller than a user-defined

minimum size ω. For our example, the resulting set of the largest common sub-sequences becomes {012, 456}
for ω ≥ 3 LOC (Source Lines of Code).

From this set of fingerprint-sequences we trace back the actual lines of the original code fragments, and

thus we find that the first three lines of fragment 1 is a Type-2 clone of the first four lines of the fragment

2. Similarly, lines six through eight of the fragment 1 and the lines eight through ten are also Type-2 clones

of each other. To the best of our knowledge, CCFinder, CloneDigger, Dup, RTF and the rest of the suffix-

tree-based clone detectors including that of Tairas and Gray [267] exploit suffix trees up to this level with or

without fingerprinting the source code [243]. But, the usage of suffix trees up to this point can facilitate the

detection of Type-1 and Type-2 clones only. The detection of Type-3 clones requires further computations.

3.2.5 Approximate Matching

For detecting Type-3 clones, we invoke a k-difference hybrid algorithm (described later in Section 3.3) on

pairs of fingerprinted code fragments. The approximate matching algorithm finds all the occurrences of one

sequence inside another allowing at most k differences. Based on a user-defined dissimilarity threshold, we

compute k for each pair of code fragment as, dk = l×threshold
100 e, where, l is the number of lines in the smaller

fragment. The threshold signifies what percentage of different lines of code be allowed in the approximate

matching. For example, consider two fragments of source code having 100 and 120 lines respectively, and the

user’s given threshold is 10%. Then the value of k = 100×10
100 = 10, which means in the approximate matching,

difference of at most 10 lines will be tolerated. Thus our computation of k is sensitive to the size of the code

fragments.

For our current example, the corresponding fingerprint-sequences “0123456AA” and “012784569AA” ap-

proximately match (with k ≥ 3) having three differences, yielding a global alignment, for instance, as shown

in Table 3.4.

30

Table 3.4: Global alignment of 0123456AA and 012784569AA

0 1 2 7 8 4 5 6 9 A A

0 1 2 3 4 5 6 A A

Here, ‘ ’ denotes a space

Thus, given either of the original fragments of Figure 3.3 as seed, we accurately detect the other as

its Type-3 clone. All the detected clones are then sorted according to their similarity with the given seed

fragment, and the result is then displayed in the Eclipse’s interactive Tree View. Choosing a clone from the

Tree View highlights the corresponding code fragment in the editor.

3.3 K-difference Hybrid Algorithm

We adapted the k-difference hybrid algorithm from the work of Landau and Vishkin [173]. The algorithm

combines the advantage of further preprocessed suffix tree with dynamic programming (DP). Readers inter-

ested in the details of the algorithm are referred to elsewhere [97, 173]. In this section, we provide a brief

description of how we adapted the algorithm for near-miss clone detection.

3.3.1 Preprocessing of Suffix Tree

We enumerate all the r nodes of the suffix tree T according to the standard depth-first (preorder) numbering

as shown in Figure 3.5. Thus each node v of T is numbered with a dlog2re bit integer.

Figure 3.5: Enumerated suffix tree having nodes partitioned into Runs marked with dotted rectan-
gles [97]

31

Then, we map the enumerated suffix tree T to a hypothetical rooted complete binary tree B, whose

vertices are enumerated according to inorder numbering, as shown in Figure 3.6. Throughout the remainder

of the chapter, we will simply use “node v”, to refer to the node in the enumerated rooted tree having node

number v.

Definition 1 (lowest common ancestor) The lowest or least common ancestor (LCA) of any two nodes

u and v in a rooted tree Υ, denoted as LCAΥ(u, v), is the deepest node x in the tree, which is an ancestor of

both u and v [97].

Definition 2 For any node k, h(k) is the position (from right) of the least significant 1-bit in the binary

representation of k. For a node k in B, h(k) equals the height of the node in B [97].

Definition 3 For a node v of T , I(v) is the node w in T such that h(w) is the maximum over all nodes in

the subtree of v including v itself [97].

Definition 4 A run in T is a maximal subset of nodes of T , denoted as Tr, such that, ∀〈u, v〉 ∈ Tr, I(u) =

I(v). The head of a run is the node closest to the root [97].

We map each node v in T to a node I(v) in B. Figure 3.5 presents an example of partitioning the nodes

of suffix tree T into seven different runs. Figure 3.6 shows a complete binary tree B, which the nodes of the

suffix tree T of Figure 3.5 are mapped to. In the Figure 3.6, the binary representation of the number a node

v in B is shown if there is a node in T that maps to v.

!""!"!!!""!!

!"!""!!"

"!""

!"""
#

!$

!" !%

%

$ &

'! () !!* !)!'

Figure 3.6: Binary tree with nodes enumerated according to inorder numbering [97]

Moreover, for each node v in T , we create an O(log2r) bit number Av. Bit Av(i) is set to 1 if and only if

node v has some ancestor in T that maps to height i in B, i.e., if and only if v has an ancestor u such that

h(I(u)) = i.

32

Computing LCA in Binary Tree

Having the inorder numbering of the nodes of binary tree B, we compute LCAB(u, v) in constant time using

shift and XOR operations. We first determine if u is an ancestor of v, or vice versa. Using h(u) and h(v)

we determine which of the nodes u and v is higher (closer to the root). If u is the higher node, we find the

number of edges on the path from the root to node u. Then we take the XOR of u and v, and find the

position k of the left-most 1-bit (counting from the left). Node u is an ancestor of node v if and only if k

is larger than the number of edges on the path from the root to node u. In this case node u is the LCA of

nodes u and v.

In the cases, where none of u and v is an ancestor of the other, we XOR u and v, find the left-most 1 bit

in the kth position in the result. Then we right shift u by d− k places (where d = dlog2re is the number of

bits used in numbering the nodes of B), set the right-most bit to 1, and left shift it back by d− k places.

Computing LCA in Suffix Tree

Using the following procedure [97], we find z in constant time, where z = LCAT (x, y) for the suffix tree T
preprocessed as described before.

1. Find b = LCAB(I(x), I(y)).

2. Find the smallest position ρ ≥ h(b) such that both numbers Ax and Ay have 1-bits in position ρ.

3. Find x′, the node closest to x on the same run as z (unknown yet) as follows.

(a) Find location ρr of the right most 1-bit in Ax.

(b) If ρr = ρ, then set x′ = x, and go to step 4.

Otherwise continue to next steps.

(c) Find the position ρl of the left-most 1-bit in Ax, which is to the right of position ρ. Form the

number iw consisting of the bits of I(x) to the left position of ρl, followed by a 1-bit in position

ρl, followed by all zeros. Then find the head w of the run containing node iw. Set node x′ to be

the parent of node w in T .

4. Find y′, the node closest to y on the same run as z, using the same approach as in step 3.

5. If x′ < y′ then z = LCAT (x, y) = x′, otherwise, z = LCAT (x, y) = y′.

Finding Longest Common Extension

Suppose, S = [s1 s2 s3 . . . sm] is a sequence of length m, and [si si+1 si+2 . . . sj] (where, 1 ≤ i ≤ j and

1 ≤ j ≤ m) is a subsequence of S, which we denote as S[i . . . j]. Thus, a suffix [si si+1 si+2 . . . sm] starting

from element si is denoted by S[i . . .m], and S(i) refers to the ith element in sequence S. Given a pair of

33

sequences S1 (of length m) and S2 (of length n), and an index pair 〈i, j〉 where i and j refer to element-

positions in S1 and S2 respectively, the longest common extension (LCE) between the sequences (with respect

to the given index pair) is the longest subsequence of S1 starting at position i that matches a subsequence

of S2 starting at the jth position; in other words, the longest prefix of S1[i . . .m] that matches a prefix of

S2[j . . . n].

Using a preprocessed generalized suffix tree T for the sequences, given an index pair 〈i, j〉 corresponding

to sequences S1 and S2, the LCE can be computed in constant time. We first find the LCA, z of the leaves

of T that correspond to S1[i . . .m] and S2[j . . . n]. The concatenation of the edge-labels on the path from

the root to z yields the LCE we want.

3.3.2 Hybrid Dynamic Programming

A classical way to represent a sequence matching problem is to express it in terms of global alignment. Given

a couple of sequences S1 and S2, their global alignment is obtained by first inserting spaces in chosen places

(between elements, at the end or beginning of S1 and S2) to make the resulting sequences S′1 and S′2 have

equal length l, and then superimposing one above the other so that every element or space in either sequence

is opposite a unique sequence or a unique space in the other sequence [97]. Table 3.4 presents an example of

global alignment. Typically, a score g(x, y) is associated with the alignment of each pair 〈x, y〉 of elements.

The score of an alignment of S1 and S2 is computed as
∑l
i=1 g(S′1(i), S′2(i)), and the alignment with the

optimal score yields the optimal global alignment.

Let V (i, j) denotes the score of the optimal global alignment of S1[1 . . . i] and S2[1 . . . j]. The optimal

global alignment of the sequences having score V (m,n) can be computed in O(mn) time by traditional

dynamic programming (DP) using the following recurrence.

V (i, j) = min

V (i− 1, j − 1) + g(S1(i), S2(j)),

V (i− 1, j) + g(S1(i),),

V (i, j − 1) + g(, S2(j))

where the base conditions are,

V (0, j) =
∑

1≤p≤j

g(, S2(p)) and V (i, 0) =
∑

1≤1p≤i

g(S1(p),).

We formulate the focused clone searching problem as a variation of the optimal global alignment problem.

Let S2 and S1 be the fingerprint-sequences of respectively the seed and another fragment in the search space.

We define a scoring scheme as follows:

34

g(S1(i), S2(j)) =

 0, if S1(i) = S2(j)

1, if S1(i) 6= S2(j)

g(S2(i),) = 1

g(, S1(j)) =

0, if ∀j′ < j, S1(j′) aligned to ‘ ’

or, j > m

1, otherwise.

Instead of finding their optimal global alignment, we need to find all the global alignments with scores no

more than the k. The k-difference hybrid approach makes use of suffix trees to solve subproblem of computing

the LCE queries within the framework of DP. Consider an m × n traditional DP table for S1 and S2. The

solution to the optimal global alignment problem computed using traditional DP approach yields a path on

the DP table specifying the computed optimal alignment as well as giving the number of pairwise character

matches and differences. The same concept of path is used in the hybrid algorithm.

For the sake of the hybrid algorithm, we enumerate the diagonals of the DP table as follows. The main

diagonal of the table consisting of cells 〈i, i〉, for 0 ≤ i ≤ n ≤ m, is numbered diagonal 0. The diagonals above

the main diagonal are numbered 1 through m; the diagonal starting at cell 〈0, i〉 is diagonal i. The diagonals

below the main diagonal are enumerated −1 through −n; the diagonal starting at cell 〈i, 0〉 is diagonal −i.

Definition 5 (d-path) A d-path in the DP table is a path that starts in the row zero and specifies a total

of exactly d mismatches and spaces [97].

Definition 6 (farthest reaching d-path) A d-path is farthest reaching on diagonal i, if it is a d-path

ending on diagonal i, and the index of its ending column c along diagonal i is the maximum among all the

d-paths ending on diagonal i [97].

For d > 0, three distinct d-paths on diagonal i can be computed from (d− 1)-paths on diagonals i− 1, i,

and i+ 1 [97]:

Rv-path is composed of the farthest-reaching (d− 1)-path on diagonal i+ 1, trailed by a vertical edge (cor-

responding to a space in S1) to diagonal i, and a maximal extension along diagonal i that corresponds

to identical subsequences in S2 and S1.

Rh-path consists of the farthest-reaching (d − 1)-path on diagonal i − 1, trailed by a horizontal edge (cor-

responding to a space in S2) to diagonal i, and a maximal extension along diagonal i that corresponds

to identical subsequences in S2 and S1.

Rd-path is made up of the farthest-reaching (d − 1)-path on diagonal i, trailed by a diagonal edge (corre-

sponding to a mismatch between an element in S2 and an element in S1) along diagonal i, followed by

a maximal extension along diagonal i that corresponds to identical subsequences in S2 and S1.

With these specifications, in Algorithm 1, we describe the k-difference hybrid algorithm.

35

Algorithm 1 : k-Difference Hybrid Algorithm [97]

for i = 0 to m do
find the LCE between S1[i . . .m] and S2[1 . . . n] by
LCE query to suffix tree. This specifies the end column
of the farthest reaching 0-path on diagonal i.

end for
Any path reaching row n in column c, defines an exact
match of S2 in S1 ending at S1(c).
for d = 1 to k do

for i = −n to m do
Find the end on diagonal i of paths Rv, Rh, and
Rd. The farthest-reaching of these three paths is
the farthest-reaching d-path on diagonal i.

end for
Any path reaching row n in column c, defines an
approximate match of S2 in S1 ending at S1(c) with
at most k differences.

end for

3.4 Evaluation

In this section, we present both theoretical and empirical evaluation of our approach in terms of performance,

accuracy, and usability.

3.4.1 Algorithmic Complexity

Suppose, we have F code fragments in the search space including the seed fragment, and fragment f has lf

lines of code. The total number of lines over all code fragments is lF =
∑F
f=1 lf . Without loosing generality,

we can assume that each line of code has c characters.

Code preprocessing is done in linear time. Using Rabin’s fingerprinting algorithm (which runs in linear

time [226]), we fingerprint a line of code in O(c) time, and thus for computing fingerprints of all lF lines it

takes O(c× lF) time. The number of characters in a nonempty line of source code typically vary between 1

and 20. So, we may consider c to be invariant, and thus the running time of Rabin’s fingerprinting algorithm

over all lines of source code becomes O(lF).

To construct the generalized suffix tree we use Ukkonen’s online algorithm [283], which also runs in

linear time. Hence the construction of the generalized suffix tree also takes O(lF) time. Exact matches are

readily detected as we construct the generalized suffix tree. Since, the fragments are preprocessed to discard

variations in variable names and formatting, all Type-1 and Type-2 clones across all code the fragments are

also detected in O(lF) time.

Preprocessing of the generalized suffix tree also takes O(lF) time. Given a text S1 of length m and a

pattern S2 of length n, in O(km) time and O(m + n) space, the k-difference hybrid algorithm can find all

end locations in S1 where S2 matches with at most k differences [97, 173]. Based on the algorithm, our

36

implementation takes O(klF) time and O(lF) space to find all occurrence of k-difference near-miss clones of

a chosen seed fragment in all other fragments in the search space.

Figure 3.7: Customization options for clone detection

3.4.2 Usability and Customization

One of the primary objectives of our work is to support clone-aware programming during the real development

activities. To make the focused clone search facility flexibly usable, our tool enables the user to simply select

a code fragment and invoke focused search for it’s near-miss clones by choosing the appropriate option from

a drop-down menu (Figure 3.1). The user can also define the search space (i.e., projects, directories, or files).

Moreover, the tool offers a variety of customization options through an Eclipse-preferences user-interface (UI)

as shown in the Figure 3.7.

These customizations define a set of search options such as the type of the target clones (i.e., Type-1,

Type-2, and/or Type-3), dissimilarity threshold, code normalization options, minimum clone size, and match-

unit (i.e., lines or tokens). Alhough, in Section 3.2, we described our clone detection approach to have each

line of code as a match-unit, the technique can also use each token/word as a match-unit, and thus can offer

more rigorous search if needed. For the token-based operation, the code formatting phase can be skipped,

and the rest of the phases remain as they are. The code normalization phase is skipped if only the Type-1

clones need to be identified, and the k-difference hybrid algorithm is invoked only when the Type-3 clones

have to be detected.

37

Table 3.5: Subject systems for the study on comparison with NiCad

Subject Total # of # of Clone

Systems LOC Functions Groups Fragments

weltab 9936 123 20 68

PostGreSQL 154843 4689 203 519

3.4.3 Empirical Evaluation

Since our tool is developed as a plugin to Eclipse, it is tedious and time consuming to use the Eclipse’s editor

UI to manually select code fragments, find their clones and then verify accuracy. Therefore, we created

a variant of our tool by replacing the Eclipse-coupled “code preprocessor” module by a separate TXL2

implementation. Such an implementation can handle any programming language, as long as the appropriate

grammar and the transformation rules are defined. Ours can handle C, C#, and Java. Also note that, except

the “code preprocessor” module, the rest of our tool is language independent.

The stand-alone variant of our tool can operate outside IDE, and we used this to empirically evaluate the

accuracy of clone detection (Section 3.4.3 and Section 3.4.3). We also carry out a user-study (Section 3.4.3)

to evaluate the usability of our tool and its usefulness in context.

Comparison with NiCad

Traditional clone detectors are not directly comparable to our tool, as the objective of our tool is to enable

focused clone search instead of the detection of all clones from the entire code base. The work of Lee at

al. [175] could have been comparable, but their implementation was not available in public. So, we devised a

technique for comparison with NiCad [238], a state-of-the-art tool for detecting exact (Type-1) and near-miss

(Type-2, and Type-3) clones. We chose NiCad for two main reasons. First, the threshold schemes of our

tool and NiCad are similar and comparable. Second, as a clone detector, NiCad was reported to have high

precision [238, 242] and recall [240].

For both NiCad and our tool, we set the minimum clone size to three LOC in the pretty-printed for-

mat [238] of the source code. Moreover, the UPIT (Unique Percentage of Items Threshold) for NiCad and

the dissimilarity threshold for our tool, both were set to 30%. Since NiCad performs line-based comparison,

the match-unit for our tool was also set to ‘line’. Then we instructed NiCad to detect all near-miss function

clones from the two subject systems, weltab and PostGreSQL (Table 3.5). These systems obtained from

www.bauhaus-stuttgart.de/clones/, are two of those used in the clone detectors comparison framework of

Bellon et al. [35]. NiCad reports the clone detection result having the clones clustered into clone-groups.

2http://www.txl.ca/

38

Table 3.6: Accuracy of clone detection based on mutation-based evaluation

Measurement Type-1 Type-2 Type-3 Overall

precision 1.0 1.0 1.0 1.0

recall 1.0 0.96 0.90 0.94

f-score 1.0 0.97 0.94 0.96

The number of clone-groups and the total number of individual clone fragments as identified by NiCad, are

presented in the right-most two columns of the Table 3.5.

From each of the clone-groups, we randomly picked a fragment, passed it to our tool as the seed fragment,

and invoked the tool to perform a focused search for all the clones of the seed. Then we verified the search

result to determine whether our tool detected all other members of the clone-group (as of the seed), and

whether any false positives were reported. For each seed fragment obtained from every clone-group over both

the subject systems, our tool did find all the remaining members of the corresponding group, and did not

report any false positives.

Mutation-based Evaluation

The aforementioned comparative study evaluated our tool’s accuracy in clone detection with respect to that

of NiCad. Using a variant of the mutation framework proposed by Roy and Cordy [240], we further evaluated

the precision and recall of our tool. As the code base subject to this study, we chose JHotDraw-5.4b1, which

had 20,613 LOC Java code.

We selected, as seed fragments, 10 arbitrary functions (f1 . . . f10) of different sizes from different locations

of the code base. Then we made 15 copies (f1
i . . . f

15
i) of each of those 10 fragments, and modified them

following a subset of mutation operators [240]. Thus, we produced five Type-1 clones, five Type-2 clones,

and five Type-3 clones of each seed fragment fi, resulting a total of 150 synthetic function clones. Then we

injected these clones into different locations of the original code base, resulting a mutated code base.

We configured our tool according to the specifications shown in the Figure 3.7. Then we invoked focused

clone search on the mutated code base, providing each of the 10 seed fragments, one at a time. For each

of the seed fragments, we investigated whether all of its synthetic clones (Type-1, Type-2, and Type-3) were

reported in the search result. Some additional fragments were also reported as clones, as they existed in the

code base but we did not know about them in advance. We manually verified those additional clones for any

possible false positives.

With respect to the injected synthetic clones, we compute the precision, recall (i.e., sensitivity), and

f-score of our tool using the following equations:

39

p =
|cs ∩ cd|
|cd|

, r =
|cs ∩ cd|
|cs|

, ` =
2× p× r
p+ r

where p, r, and ` denotes precision, recall, and f-score respectively while cs and cd are respectively the sets

of injected synthetic clones, and those that our tool detects. In the Table 3.6 we present the accuracy of our

tool in detecting those synthetic clones.

Our tool missed two of the Type-2 and five of the Type-3 synthetic clones. We manually investigated

those clones, and found that while creating the Type-2 clones, we altered the order of declaration of variables.

The normalization based on “consistent renaming” of identifiers is sensitive to such orders, and this was set

in the configuration. This is why our tool could not detect those as clones, but it was able to capture them

when later we applied normalization using the “blind renaming” operation. The five Type-3 clones escaped

due to the fact that upon modification, those fragments simply went beyond the 30% dissimilarity threshold

we used.

Table 3.7: Demographic information about the participants of the user-study

Age Software development experience

U
se

r

(in in industry in academia Known Programming Languages

years) (months) (months)

1 27 0 96 C, C++, Java, Visual C++, JavaScript

2 30 3 72 C, C++, Java, C#, TXL

3 33 96 24 C, C++, Java, C#, Python

4 35 6 14 C, Java, PHP, SQL, Matlab

5 31 57 96 C, C++, Java, C#, Perl, Python, TXL, VB

6 34 30 156 C, C++, Java, Python, SQL

7 35 0 144 C, C++, Java, VB, Scheme, Assembly, PHP, JavaScript

8 31 18 84 C, C++, Java, C#, JavaScript, PHP, HTML, ColdFusion

User Study

We carried out a user study involving eight programmers who were graduate students having years of expe-

rience in programming under different IDEs including Eclipse. All the participants are familiar with code

clones and their impacts on software development and maintenance. Demographic information about the

participant of the user-study is presented in Table 3.7.

We provided our Eclipse plugin to them, and they used it for an extended period of time while doing

some programming tasks. Then we interviewed them with a questionnaire comprising both open and closed

questions. The closed questions included a Likart-scale query saying, “How will you rate this tool’s usability

40

and usefulness?”. The participants had to choose one of the answers: very poor, poor, moderate, good,

very good, or excellent. In response, five of the participants chose ‘good’, two chose ‘moderate’, and the

other participant chose ‘very good’. A noteworthy comment from one of the participants was, “...this [tool]

is intuitive!”.

3.5 Related Work

There are many clone detection tools out there and a comprehensive list can be found elsewhere [243, 311].

In Chapter 2 (Section 2.5), we discussed different clone detection techniques and pointed to their strengths

and limitations. Among all those clone detectors, those which are IDE-based are the most relevant to our

work on integrated clone search as presented in this chapter.

CloneBoard [62], CPC [292], and CloneScape [48] are Eclipse plugins that can detect and track clones

based on clip-board (copy-paste) activities of programmers. Based on programmer’ copy-paste activities,

CReN [117] (another plugin to Eclipse), offers some sort of clone refactoring support by consistent renaming

of identifiers. While such an approach based on programmers’ copy-paste activities may be able to handle

intentional clones, they cannot deal with unintentional clones. Moreover, such tools may not be suitable

for distributed development, as they may fail to combine information about clones separately created by

distinguished developers working in a distributed environment.

CPD3 is a part of Java source code analyzer, PMD. SDD [177] and Simian4 are plugins to Eclipse. Tairas and

Gray [267] also developed a suffix-tree based clone detector as a plugin for the Microsoft Phoenix framework.

Bahtiyar developed JClone [12] as a plugin to the Eclipse IDE for detecting code clones from Java projects.

All of these clone detectors can detect Type-1 and Type-2 clones only, but not Type-3 [12, 36]. Another

Eclipse plugin, CloneDR5, is an AST-based clone detector that can detect Type-1 and Type-2 clones, but

it also fails to detect Type-3 clones in many scenarios [243]. CloneDetective [132] uses a suffix-tree-based

algorithm to detect Type-1 and Type-2 clones but “probably not” Type-3 [243]. However, SimScan6, which is

a parser-based tool available as plugin to Eclipse, IDEA, or JBuilder, can detect Type-1, Type-2, and possibly

a subset of Type-3 clones.

SHINOBI [145] is a plugin to Microsoft Visual Studio. It internally uses CCFinderX’s preprocessor, and thus

it can detect Type-1 and Type-2 clones only, but not Type-3. It was developed as a client(IDE)-server(CVS)

application to relocate the the clone detection overhead from the client to a central server. A similar clone

detection tool is JSync [215] that is available as an add-on to Subclipse/SVN, an Eclipse plugin software

configuration management tool. However, such client-server configuration may not be suitable for those

individual practitioners who work on their separate stand-alone machines.

3http://pmd.sourceforge.net/cpd.html
4http://www.harukizaemon.com/simian
5http://www.semdesigns.com/Products/Clone/
6http://blue-edge.bg/download.html

41

Table 3.8: Summary of clone detection support from IDE-integrated clone detection tools

Tool
Integration Clone detection Supported clone types

with approach Type-1 Type-2 Type-3 Type-4

CloneDetective [132] ConQAT suffix tree based #

SimScan
Eclipse, JBuilder, AST

 #
intelliJ IDEA based

Simian Eclipse unknown # #

DupMan
Eclipse

internally uses
 #

[87] SimScan

CloneScape [48] Eclipse copy-paste G# G# G# #

CloneBoard [62] Eclipse copy-paste G# G# G# #

CPC [292] Eclipse copy-paste G# G# G# #

CnP [114] Eclipse copy-paste G# G# G# #

SHINOBI Microsoft suffix array
 # #

[145] Visual Studio based

Wrangler Eclipse, AST,
 # #

[179] Emacs anti-unification

JClone [12] Eclipse AST based # #

JSync
SVN

AST, LSH,
 G# #

[215] feature vector

CPD PMD fingerprinting # #

SDD
Eclipse

indexing,
 # #

[177] n-neighbour

CloneDR Eclipse AST based G# #

CloneDigger Eclipse
AST, suffix tree,

 # #
anti-unification

CodeRush MS Visual Studio unknown G# #

AgentRalph ReSharper
internally uses

 # #
Simian

Tool of Tairas and Gray MS Phoenix suffix tree
 # #

[267] framework based

Tool of Zibran and Roy
Eclipse

fingerprinting
 #

[310] AST, suffix tree

Legends: = supported, G#= partially supported for a limited subset, #= not supported

42

Earlier prototypes of JSync [215] appeared as Clever [218] and Cleman [217]. JSync detects clones based

on similarities among the feature vectors computed over AST representation of the code fragments. To attain

computational efficiency, JSync applies N(N = 16) locality sensitive hashing (LSH) functions to first cluster

the code fragments into N buckets. Indeed, the effectiveness of such a clustering depends on the definition

of those N individual hash functions. But specifications of those hash functions are not reported, and so no

further comments can be made on their effectiveness. Upon having the fragments clustered into N buckets,

the fragments in each bucket are pairwise compared to determine if they are clones. Finally, the clone pairs

are merged to form clone-groups based on the assumed transitive property among the clones. However, such

transitive property may not hold for Type-3 clones, while it may hold for Type-1 and Type-2 clones only. This

implies that JSync’s approach for clone detection may perform well enough for Type-1 and Type-2 clones,

but not for Type-3. The authors of JSync also noted, “For Type-3 clones, in JSync, the changes are limited

to the minor ones with less than a small pre-defined threshold of added/removed program elements” [215].

Moreover, the accuracy of clone detection is proportional to the value of N , and the increase of N also

increases computational overhead.

CloneTracker [68] uses SimScan as the underlying clone detector. CeDAR [268] can incorporate the results

from different clone detection tools (e.g., CCFinder, CloneDR, DECKARD, Simian, or SimScan) and can display

properties of the clones in an IDE. DupMan7 is an Eclipse duplication management framework for clone

detection and removal. It also works on top of other clone detectors (e.g., SimScan, CCFinder, CloneDR, Dup,

Duploc, Duplix). Doppel-Code [79] is another Eclipse plugin developed mainly for presenting clone detection

result obtained from a separate clone detector Simian. While all these four tools are developed as plugins to

Eclipse, they suffer from the limitations of the underlying clone detectors they use internally. AgentRalph8

is a clone detector developed as a plug-in to the ReSharper add-on of Microsoft Visual Studio. AgentRalph

can detect Type-1 and Type-2 function clones only from source code written in C#.

Li and Thompson developed Wrangler [179], a tool for supporting refactoring of functional programs

written in Erlang. Wrangler can be integrated with Emacs or Eclipse IDE through the ErlIDE plugin.

Wrangler can detect clones from Erlang programs in several phases. First, the program is parsed to generate

AST. Then the AST is normalized (generalized) by replacing certain expression by placeholders. The source

code corresponding to the generalized AST is then pretty-printed and serialized into a single sequence of

delimited expressions. Each expression statement is then hashed to generate a sequence of hash values, which

are then used to build a suffix-tree. The clones detected from the suffix-tree are then examined through anti-

unification for filtering out the false positives. Thus Wrangler can detect Type-1 and Type-2 clones only, but

probably not Type3. In addition, the clone detection approach of Wrangler is computationally expensive.

The anti-unification technique for the examination of a single clone-group having n members itself has the

O(n2) worst case runtime complexity [179].

7http://sourceforge.net/projects/dupman/
8https://code.google.com/p/agentralphplugin/

43

https://code.google.com/p/agentralphplugin/

All of the aforementioned tools adopt the traditional ‘postmortem’ approach to detect clones from the

entire code base, which is overkill for a focused search of only the clones of an individual code fragment [175].

Most of those tools have limitations in detecting Type-3 clones, as can be seen more clearly in Table 3.8.

Ours is the first that enables efficient focused search not only for Type-1 and Type-2 clones, but also for Type-

3 [310]. Moreover, our tool, unlike SHINOBI and Clever, can be conveniently adopted in both distributed and

centralized development environment. Lee et al. [175] used an algorithm based on feature-vector computation

over AST and finds the k most similar clones of a given code segment. But their tool was not reported to

be integrated with IDE. On the contrary, integration with IDE was a main objective of our work. Moreover,

using a suffix-tree-based hybrid algorithm, our tool finds all the clones of a chosen code fragment for a given

similarity threshold. A similar clone detection technique as of ours was applied by Bazrafshan et al. [32] for

approximate code search in program histories.

3.6 Summary

To facilitate proactive clone management, clone detection must be integrated with the regular software

development process. Since a developer typically works inside IDE, clone detection facility must be integrated

with the IDE. Instead of overwhelming the developers by reporting all clones from the entire code base, the

integrated clone detector must allow the focused search of clones of a particular code fragment that the

developer is interested at some point.

In this chapter, we have presented an IDE-integrated focused clone search tool implemented based on a

suffix-tree-based k-difference hybrid algorithm. Our novel approach for clone detection exploits the benefits

of both AST-based techniques as well as text-comparison-based techniques, and is capable of detecting exact

(i.e., Type-1) and near-miss (i.e., Type-2 and Type-3) clones of a particular code fragment of the developer’s

choice made by selection in the editor. The detected clones are reported in the descending order of their

similarity with the initially selected seed code fragment of the developer’s choice.

Using an asymptotic complexity analysis, we have shown that our approach is efficient in terms of both

time and memory. Performing a mutation-based evaluation, we have also demonstrated that our tool is

highly accurate in terms of precision and recall. This was further confirmed by a case study comparing our

tool with NiCad [238], a state-of-the-art near-miss clone detector. Moreover, from a user-centric pilot study,

we found that our tool is flexibly usable for clone-aware software development and thus clone management.

A user manual including instructions for the installation and usage of our clone search tool is available in

Appendix B.

44

Chapter 4

Analysis of Existence and Evolution of Clones

“Details matter, its worth waiting to get it right”
– Steve Jobs

In the last chapter (Chapter 3), we presented our IDE-integrated tool for the detection of both exact and

near-miss code clones. While clone detection is a significant phase in the early stage of clone management,

we must understand and determine how we should deal with the detected clones. Therefore, we need to

study the characteristics of clones and their evolution in software systems to explore patterns and trends that

can suggest potential strategies and techniques for clone management. In this chapter, we present empirical

studies on the existence and evolution of code clones in open-source and industrial software systems from

diverse application domains and written in different programming languages.

The rest of the chapter is organized as follows. In Section 4.1, we introduce our motivation and context.

In Section 4.2, we provide the details of the experimental setup and then Section 4.2.5 presents the findings

of our study. Section 4.5 shows the threats to the validity of our results. In Section 4.6, we discuss the

related studies on clone evolution and attempt to place our work in that context by providing comparative

discussion. Finally, Section 6.10 concludes the chapter.

4.1 Introduction

Until recently, many studies on code clones reported observations on the effect of program size and pro-

gramming language/paradigm on code cloning. However, to develop a more confident understanding on such

phenomena, a larger scale structured study with statistical analysis on many releases of diverse systems is still

required. Most of the other earlier studies [89, 153, 154, 169, 168, 188, 201] on clone evolution investigated

how individual cloned fragments evolve across subsequent CVS commit transactions or CVS snapshots over

weekly intervals or so.

Although such fine-grained studies offer important insights into the maintenance implications of code

clones, a broader picture through analysis of clone densities at release level is also necessary to capture more

stable characteristics of clone evolution over a longer period. Such an study can provide an overall but quick

understanding of clones, which might help in estimating the maintenance cost of the software. Since the

45

number of cloned code is believed to have significant effect on software development and maintenance effort,

project planning and management activities need deeper understanding on how many clones there may be

in an evolving software. The ability to predict the amount of clones in the future releases would be useful in

taking decisions on software cost estimation and project planning, specially for large and complex systems.

Most of the previous work studied the evolution of Type-1 (identical code fragments except for variations in

whitespace and comments) and/or Type-2 (where syntactically similar fragments are also considered clones)

clones. The studies of Antoniol et al. [7, 8] might have included Type-3 (statements added/deleted/modified

in copied fragments) clones, but their metric based approach for clone detection must have included many

false positives.

In this chapter, we present an empirical study on the existence and evolution of exact and near-miss clones

over 1,636 releases (and pre-releases) of 18 large open source software systems of diverse categories written

in three different languages namely Java, C#, and C. To the best of our knowledge, this is the largest study

so far on code clone evolution. Moreover, this study includes not only Type-1 and Type-2 clones, but also

Type-3. Our study has two goals: first, using regression analysis we aim to compute one step ahead forecast

on clone-density in subsequent releases starting from a very early release of the system. Second, applying

statistical methods we investigate cloning property for understanding to what extent previous observations

hold over a large number of releases of a wide variety of systems written in diverse programming languages.

In particular, we focus on the following research questions:

(a) Using a simple statistical model how accurately can we predict the amount of code clones in future

releases?

(b) Is there any common pattern in the evolution of clone-density over releases of evolving software systems?

(c) Is there any significant difference between the existence and evolution of exact clones and near-miss

clones?

(d) Do programming languages/paradigms have any effect on the amount and evolution of code clones in

the evolving systems? and

(e) How do the sizes of systems and functions affect density of exact and near-miss clones?

A good understanding on these facts should be helpful for project managers in project planning, cost esti-

mation, and planning for clone management strategies. It is believed that the effort required to evolve and

maintain a software project is affected by the proportion of code clones present in the current code base and

the proportion of clones results in the next version. Hence, an estimation of the probable amount of clones in

the next version might be useful for estimating required effort (e.g., cost, risk, time, number of developers)

for future development and maintenance activities [7].

Through extensive quantitative analysis and manual investigation over 1,636 releases of the 18 software

systems, we draw the following conclusions.

46

• Using simple regression analysis technique it is possible to make fairly accurate one step ahead forecast

of clone-density in future versions of software systems. The forecast errors can indicate the magnitude

of irregularities in the creation of clones in the evolving software system.

• Programming language/paradigm is found to have significant effect on code cloning. Java systems are

found to have the highest proportion of function clones, C systems have the lowest clone-density, and

the C# systems fit in the middle. Systems developed using object-oriented (OO) language/paradigm

(Java and C#) have higher proportion of exact clones than near-miss clones, whereas the opposite

holds for systems written using procedural C language. During evolution, Java and C# systems exhibit

higher variation of clone densities than C systems. Moreover, there exists little or no effect of system’s

size on the regularity in the evolution of clone-density.

• With the growth of software systems, as the number of functions increases, the number of both exact

and near-miss cloned fragments also increases, indicating a very strong positive correlation between

them. On the other hand, the correlation between clone-density and number of functions is positive,

but fairly weak, and larger systems tend to exhibit less clone-density. As the similarity threshold

decreases from near-miss clones to exact clones, the correlation between clone-density and number of

functions gradually gets weaker.

• The rate of change in clone-density of near-miss clones is relatively irregular than that of exact clones

in all the subject systems regardless of languages/paradigms and types of systems.

• There are some common patterns in the evolution of clone-density across subsequent versions. For

instance, relatively higher rate of changes in clone densities is found over early versions of software

evolution. In the later releases, there exists long sequences of versions having relatively much less

variations in clone densities.

The findings from the study drives us to carry out follow up investigations, one with two industrial web

applications and the other based on clone genealogies in open-source software systems.

4.2 Analyzing and Forecasting Near-miss Clones

In this study, we applied the NiCad clone detection tool [238] to find function level clones in release versions

of a number of open source systems. Then we used a clone-density metric, Pearson’s correlation coefficient,

and regression analysis technique to examine the results. This section introduces the studied systems and

describes the methodology and metrics used, including a brief overview of our approach for manual verification

of the detected clones.

47

4.2.1 Clone-density and its Correlation Coefficient

We conducted our analysis using the notion of clone-density, which is the percentage of cloned functions over

all functions in the system. Mathematically,

clone density =
fc × 100

fc + fnc
(4.1)

where, fc denotes the number of cloned functions, and fnc refers to the number of non-cloned functions.

According to the above definition, having the number of cloned functions unchanged, if the number of

total functions increases, clone-density is expected to decrease in the subsequent releases. Intuitively, an

increase in the total number of functions also increases the chance of more clones. Hence, the investigation of

changes in clone-density necessitates understanding the change relationship among total number of functions,

number of cloned functions, and clone-density. To examine this, we used Pearson product-moment correlation

coefficient [209], which is a well-established statistical measurement to examine linear relationship between

variables. We chose to use Pearson coefficient because it is suitable for interval data. The Pearson product-

moment correlation coefficient rxy between variables x and y is calculated by [6]:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

(4.2)

where xi and yi are values of the variables x and y, n is the number of samples (values) available for those

variables, x̄ and ȳ are respectively the mean of all n values of x and y.

The value of rxy ranges between +1.0 and −1.0 and indicates to what extent the variables are positively

or negatively correlated. Two variables are positively correlated if one increases, then the other also increases.

Negative correlation between variables implies if one gets larger, then the other gets smaller. Positive value

of rxy implies positive correlation and negative value implies negative correlation. The closer rxy to ±1.0

the stronger the correlation relationship is. A value of rxy close to zero indicates very weak or no correlation

between the variables.

For exact and near-miss clones in the series of releases of each system, we computed Pearson coefficient

rfc between the number of functions and the number of cloned functions. Similarly, we computed Pearson

coefficient rfd between the number of functions and clone-density. These two measurements help understand

the change of clone-density. Positive correlation between the number of functions and the number of cloned

functions indicates that as new functions are created, many of them are possibly created by copy-paste

operations, or those functions are accidental clones due to incorporation of similar product feature, or tackling

similar problems. Positive correlation between the number of functions and the density of clones implies the

number of new clones is higher than the amount of newly created functions.

48

4.2.2 Forecasting Clone-density

We applied regression analysis [209] for forecasting clone-density in the subsequent versions of the each

software system. Using regression analysis we estimated one step ahead clone-density in the subsequent

versions starting from the third version of the underlying software system. The model gradually adapts the

trend as more data becomes available, and thus error of estimation is expected to be reduced in the forecasts

for the subsequent versions.

For each software system in our study, we plotted the clone densities against subsequent versions both

for determining the suitable regression function and for identifying the components of the time series. As

expected, we did not find any seasonality or cyclic component, but we found randomness and linear trend.

Hence, we decided on linear regression model with single predictor variable, written as [208],

ŷi = α̂i + β̂ixi

where ŷi is the response (estimation), xi is the predictor variable (sequence number of a version), α̂i and β̂i

are regression coefficients at the ith estimation step. The values of αi and βi (at the ith step) are estimated

using the following equations [208]:

α̂i+1 = ȳi − β̂i+1x̄i

β̂i+1 =

∑i
k=1(xk − x̄k)(yk − ȳk)∑i

k=1(xk − x̄k)2

x̄k =

∑k
j=1 xj

k

ȳk =

∑k
j=1 yj

k

where yi is the actual value (clone-density) observed at step i. The hat (̂.) symbol over a variable indicates

estimated value. At the ith step we compute the standard error of estimation σi using the following formula [6]:

σi =

√∑i
k=1(yk − ŷk)2

i
(4.3)

And for a given system s, the average standard error of estimate ξs is given by:

ξs =

∑
i∈Vs

σi

|Vs|
(4.4)

where Vs is the set of all versions of the system s, for which forecasts were made. The regression model tries

to find the best fit of the clone-density evolution patterns in the software systems. Hence, forecast errors

are expected to be relatively low for those systems having very regular clone evolution patterns. Thus the

magnitudes of the forecast errors over subsequent versions indicate how irregular the underlying evolution

pattern is.

49

Table 4.1: Subject systems for the study based on clone-density

Types/domains Releases Avg. LOCs Functions (Avg.)
Lang. Systems of systems Ranges Total per release Total Sizes

Java

Apache-Ant Build tool 1.1 to 1.8.0.1 20 80544 7246 11
ArgoUML Modeling tool 0.8.1 to 0.30.1-beta 145 136737 10048 14

Commander4j ERP system 2.2 to 2.97 37 45164 2373 19
DavMail Email client 1.4.0 to 3.6.5-1000 20 8324 469 18

JasperReports Reporting tool 0.x.x to 3.7.2 70 81853 5848 14
JEdit Editor 30-pre-4 to 43-pre-18 66 74261 4131 18

Over all six Java systems 358 71147 5019 16

C

Conky System monitor for X
based on torsmo

1.1 to 1.8.0 70 19987 485 41

GCC Compiler 1.21 to 4.5.0 79 915438 16661 55
GIT Version control system 0.01 to 1.7.0.5 154 89896 2121 42

Linux kernel Operating System 0.01 to 2.6.0-test11 459 823021 19359 43
PostGreSQL Database 1.08 to 9.0.6 157 391628 9070 43

Samba File and print server 1.6.07 to 3.5.2 180 294227 9016 33
Over all six C systems 1099 422366 9452 43

C#

NANT Build tool 0.1.3 to 0.90.1 22 27850 1026 27
CruiseControl Continuous integration

server
0.7 to 1.5.6804.1 24 59905 3545 17

iTextSharp Editor 0.01 to 5.0.1.1 39 131657 5691 23
ProcessHacker Process viewer and

memory editor
1.0.0.0 to 1.3.9.0 35 63385 473 134

WixEdit Editor 0.1.1 to 0.7.3 32 10999 556 20
ZedGraph Drawing library 1.1 to 5.0.4 27 37702 505 75

Over all six C# systems 179 55250 1966 49

Total number of release and pre-release versions across all systems is 1,636

4.2.3 Subject Systems

Table 6.4 describes the 18 software systems, their average sizes, and number of releases we used as subjects

of our study. The number of lines presented in the Table 6.4 excludes blank lines and commented lines.

Furthermore, we consider .c, .java and .cs files only. Our choice of subject systems was based on three

criteria: (a) availability of many release versions over long life span of the systems, (b) size of the systems to

be sufficiently large for clone analysis, and (c) diversity in types (i.e., OS, editor, database, etc.) of systems

to minimize domain effect on the results.

4.2.4 Clone detection

We used the NiCad clone detector [238] for detecting near-miss clones. For consistency with our earlier studies

[237, 242], we considered all non-empty functions of at least 3 lines in pretty-printed format. We then use

size-sensitive UPI (Unique Percentage of Items) thresholds [238] to find exact and near-miss function clones.

For example, if the UPI threshold (UPIT) is 0%, we detect only exact clones; if the UPIT is 10%, we detect

two functions as clones if at least 90% of the pretty-printed text lines are the same (i.e., if they are at most

10% different). In this study, we used the representative set of UPITs 0%, 10%, 20% and 30%, corresponding

to editing changes of from 0% to 30%, or 0 to 3 lines in every ten. It was not possible to manually validate

all the detected clones in all releases of all the systems. We validated the clones of three releases (the first

and the last releases and another randomly selected release) for each system and experienced almost no false

50

positives. We used NiCad’s interactive HTML output to obtain an overall view of the original source of the

clone classes. Then, we carried out pairwise comparisons on the original source code of the functions in each

clone class using Linux diff, followed by manual examination with a greater difference limit than the UPIT.

Manual validation of precision using this method is both easy and efficient [242], but measuring recall over

all the functions was not possible due to the difficulty level of the approach. However, NiCad, as a clone

detector, was reported to have high recall [240] and precision [238, 242].

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

!" (!" '!!" '(!" #!!" #(!")!!")(!" $!!" $(!" (!!"

*+,-./"0)!12" *+,-./"0#!12" *+,-./"0'!12" *+,-./"0!12"

3456+.7,"0)!12" 3456+.7,"0#!12" 3456+.7,"0'!12" 3456+.7,"0!12"

)!1"

#!1"

'!1"

!1"

!"
#$

%&
'%

$(
)*+

&

,%-()#$(&#.&/)$01&2%-$%"&

345&*6-%(6#"'&

Figure 4.1: Actual and forecasted density of exact and near-miss clones in Linux kernel

4.2.5 Findings

For every release of each of the 18 systems, we computed density of clones (using equation 4.1) at different

UPITs. Then for each system, at each different UPIT, we computed the average density of clones over all

releases, as presented in Table 4.2. Over all releases of each system, we computed the Pearson correlation

coefficient between number of functions and clones (rfc), as well as between number of functions and clone-

density (rfd), as shown in Table 4.4. Applying the regression analysis model, we made one step ahead forecast

on clone-density in subsequent releases of the systems. For each release of a system we calculated the total

number of functions, the number of cloned functions, the actual and forecasted clone densities.

We compared each forecasted clone-density with the actual density and computed the standard error of

estimate using Equation 4.3. For each of four different UPITs, using Equation 4.4, we calculated the average

standard error of estimate over all releases of a system. The regression analysis model enabled us to obtain

one step ahead forecast on clone densities with reasonable level of accuracy. The standard error of estimation

51

Table 4.2: Average clone density in each system

Prog. Subject Densities for UPI threshold

Lang. Systems 30% 20% 10% 0%

Java

Apache-Ant 20.43 17.49 15.99 15.73

ArgoUML 26.79 21.59 16.85 15.83

Commander4j 43.76 38.33 33.98 32.63

DavMail 13.74 6.93 4.42 3.64

JasperReports 40.39 38.18 35.32 33.72

JEdit 13.57 9.20 5.98 5.69

Average 26.45 21.95 18.76 17.87

C

Conky 9.04 5.96 2.63 1.98

GCC 18.61 13.93 9.31 6.77

GIT 2.92 1.74 1.03 0.84

Linux Kernel 14.15 9.19 4.85 3.14

PostGreSQL 13.01 7.27 3.03 1.93

Samba 15.39 8.84 3.28 1.78

Average 12.19 7.82 4.02 2.74

C#

NANT 16.73 12.63 8.69 8.42

CruiseControl 10.87 6.80 4.46 4.38

iTextSharp 18.43 15.05 12.59 11.76

ProcessHacker 7.32 3.20 2.17 2.17

WixEdit 15.44 12.11 7.65 6.93

ZedGraph 17.19 13.89 9.67 9.33

Average 14.33 10.61 7.54 7.17

Average 17.65 13.46 10.11 9.26

Table 4.3: Clone density categorized by system-size

Sizes Densities for UPI threshold

(LOC/release) 30% 20% 10% 0%

Below 50K 19.32 14.97 11.17 10.49

Between 50K and 100K 15.92 12.77 10.83 10.42

Above 100K 17.73 12.64 8.32 6.87

52

Table 4.4: Pearson coefficients rfc and rfd

Prog. Subject rfc rfd

Lang. Systems 30% 0% 30% 0%

Java

Apache-Ant 0.999 0.997 0.75 0.53

ArgoUML 0.81 0.63 -0.22 -0.15

Commander4j 0.998 0.99 0.67 0.50

DavMail 0.98 0.97 0.88 0.92

JasperReports 0.999 0.998 0.87 0.87

JEdit 0.95 0.89 -0.55 0.42

C

Conky 0.89 0.12 0.47 -0.24

GCC 0.99 0.99 0.94 0.91

GIT 0.80 0.48 -0.76 -0.59

Linux Kernel 0.995 0.99 0.69 0.68

PostGreSQL 0.98 0.83 0.78 0.03

Samba 0.97 0.91 0.89 0.16

C#

NANT 0.996 0.99 0.81 0.62

CruiseControl.NET 0.84 0.23 0.02 -0.39

iTextSharp 0.997 0.99 0.83 0.81

ProcessHacker 0.997 0.99 -0.45 0.84

WixEdit 0.94 0.88 0.38 0.39

ZedGraph 0.92 0.84 0.92 0.82

53

averaged over all four levels of UPITs and all the systems is 2.35. Table 4.5 presents the average forecast

errors at different UPITs for all the 18 systems. Figure 4.1 plots the actual and forecasted density of clones

in all 459 releases of Linux kernel (the system in our study having the highest number of releases).

Table 4.5: Average forecast errors (ξs) for each subject system

Prog. Subject ξs for UPI threshold Avg.

Lang. Systems 30% 20% 10% 0% ξ

Java

Apache-Ant 2.61 2.27 2.20 2.10 2.29

ArgoUML 5.01 5.30 5.38 5.24 5.23

Commander4j 0.44 0.46 0.60 0.56 0.52

DavMail 2.23 2.00 1.25 1.20 1.67

JasperReports 6.41 6.48 6.53 6.49 6.48

JEdit 0.43 0.44 0.38 0.37 0.41

Average 2.86 2.82 2.72 2.66 2.77

C

Conky 2.18 1.83 1.27 1.20 1.62

GCC 1.93 1.64 1.43 1.09 1.52

GIT 1.44 1.31 1.05 1.07 1.22

Linux Kernel 0.55 0.85 0.62 0.46 0.62

PostGreSQL 0.92 0.87 0.78 0.69 0.82

Samba 2.89 2.72 2.32 2.23 2.54

Average 1.65 1.54 1.25 1.12 1.39

C#

NANT 4.05 4.07 3.56 3.60 3.82

CruiseControl 2.29 2.10 1.77 1.76 1.98

iTextSharp 4.55 4.62 4.01 3.74 4.23

ProcessHacker 0.09 0.15 0.15 0.15 0.13

WixEdit 4.48 4.76 4.36 3.73 4.34

ZedGraph 3.32 3.13 2.68 2.61 2.93

Average 3.13 3.14 2.76 2.60 2.91

Overall 2.55 2.50 2.24 2.13 2.35

Growth of Clones

For all the systems, with the growth of the source code, the number of clones also tends to increase. As

can be observed in Table 4.4, for all the subject systems, the Pearson correlation coefficients (rfc) between

the number of functions and the number of functions clones are quite high, and for clones detected at UPIT

30% (and for some systems, clones at UPIT 0%), the correlation coefficients are found to be above 0.9

54

and close to 1.0 for some systems. Such high Pearson correlation coefficients suggest that at almost all

the transitions between subsequent releases, whenever the number of functions increases or decreases in the

source code, the number of function clones also increases or decreases in the same direction. The plot in

Figure 4.2 demonstrates the phenomena with respect to Apache-ANT for which both the Pearson correlation

coefficients (i.e., rfc and rfd) are above 0.99.

0"

2000"

4000"

6000"

8000"

10000"

12000"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20"

Number"of"func6ons"

Number"of"clones"at"UPIT"0%"

Number"of"Clones"at"UPIT"30%"

Versions"of"ApacheFAnt"

Figure 4.2: Number of functions and clones in subsequent releases of Apache-ANT

As we consider the Pearson correlation coefficient (rfd) between the number of functions and clone-density

(right-most two columns in Table 4.4), we find relatively lower coefficient values, still most positive values

with a few negative values for some of the systems (e.g., ArgoUML, Jedit, Conky, GIT, CruiseControl.NET

and ProcessHacker). Thus, we can interpret that with some exceptions, in most of the cases, the proportion

of clones (i.e. clone-density) also increases (or decreases) with the increase (or decrease) in the number of

functions in the source code during transitions between subsequent releases.

Effect of Programming Language/Paradigm

In Figure 4.3, we present the density of exact and near-miss clones averaged over all systems categorized

by programming languages. The standard deviations of the distributions are also marked by the respective

horizontal bars. We found that for all of the four UPITs, Java systems have the highest clone-density, C

systems have the lowest clone-density, and C# systems fall in between. This finding is consistent with that

reported by Roy and Cordy [242], where they mentioned that the existence of accessor methods/functions

in Java and C# systems might be a possible reason for object-oriented systems to have higher number of

clones. Morever, due to the presence of encapsulation, object-oriented source code may have similar functions

defined in different classes, if appropriate abstraction mechanism was ignored or not possible.

55

0" 3" 6" 9" 12" 15" 18" 21" 24" 27"

30%"

20%"

10%"

0%"
Overall"

C#"clone"Density"

C"Clone"Density"

Java"Clone"Density"

U
PI
"th

re
sh
ol
d"

clone"density"

SD = 13.10
SD = 5.51

SD = 4.31
SD = 10.32

SD = 13.71
SD = 4.02

SD = 4.61
SD = 10.28

SD = 13.31
SD = 2.87

SD = 3.73
SD = 10.02

SD = 12.87
SD = 2.11

SD = 3.47
SD = 9.81

SD = Standard Deviation

Figure 4.3: Average density of exact and near-miss clones at different UPITs (dissimilarity levels)

The average function size in the Java systems in our study is much lower than those in the systems written

in C and C# (Table 6.4). The effect of programming paradigm (OO versus procedural) or practice might

have caused such differences. The existence of many getter and setter methods in the OO systems might also

have played a role. Intuitively, the smaller the sizes of the functions, the higher the the statistical probability

of their being clones. This may be another reason for comparatively higher clone-density in Java systems in

our study. As the UPIT increases from 0% to 10%, 20%, and 30%, the density of clones largely increases in

C systems. On the contrary, exact clones dominate in Java and C# systems, as with the increase of UPIT

clone-density does not increase much for these systems.

To examine the statistical significance of the impact of programming languages over clone densities, we

conducted Kruskal-Wallis [6] tests with significance level α set to 0.05. We separately applied the statistical

test over the densities of clones categorized by languages at each of the four UPITs (i.e., 0% to 10%, 20%,

and 30%). The P-values obtained from the tests are presented in Table 4.6.

Table 4.6: P-values from Kruskal-Wallis tests over the densities of clones categorized by languages

UPIT 0% 10% 20% 30%

P-value 0.01 0.034 0.071 0.097

As we interpret the results reported in Table 4.6, the differences in the average densities of clones in the

systems categorized by the underlying programming languages are found to be statistically significant for

56

exact (Type-1) clones and for near-miss clones at UPIT 10% (p < α). However, for the clones with higher

dissimilarities (i.e., at UPITs 20% and 30%), the differences do not appear to be statistically significant

(p > α).

!"

#$"

#!"

%$"

%!"

&$"

&!"

'$"

'!"

!$"

!!"

$" #$" %$" &$" '$" !$" ($")$"

*+,-./"01234,5".,"678",9:139;/0"&$<"

=;:1+.3,10"01234,5".,"678",9:139;/0"&$<"

*+,-./"01234,5".,"678",9:139;/0"$<"

=;:1+.3,10"01234,5".,"678",9:139;/0"$<"

>/
;2

1"
01

23
4,5

"

?1:34;23";@"A.3B1:C1B;:,3"

Figure 4.4: Actual and forecasted density of exact and near-miss clones in JasperReports

Regularity in Evolution Patterns

The Java system JasperReports contributed the most in the standard error of estimate mentioned above.

For this system, the average standard error of estimate is the highest (6.48), which also indicates high

irregularities in its clone evolution, as shown in Figure 4.4. To keep the figure legible, we plotted the actual

and forecasted density of clones only for exact clones and near-miss clones with threshold 30%. The Pearson

coefficients rfc and rfd (Table 4.4) indicates that over subsequent releases of JasperReports as the number

of functions increased or decreased, the number of clones as well as clone-density also changed in the same

direction. This suggests that the fluctuations in JasperReports’ clone-density is due to major changes in the

number of functions in the subsequent releases. This is further validated by the data for individual releases.

For example, we found that between JasperReports 0.2.5 and JasperReports 0.3.1 the number of functions

increased from 796 to 1,147 and the number of exact cloned functions increased from 103 to 293 resulting

increase in clone-density from 12.9% to 25.5%. Looking at the change log for JasperReports 0.3.1, we found

that besides bug fixes and architectural improvements from earlier release, support for XML output was

added in release 0.3.1, which may be a reason for such large increase in number of functions and clones.

Effect of Programming Languages on Irregularity of Clone Evolution: As we see in Table 4.5,

the forecast errors averaged over C systems are much lower (1.39) than that of Java and C# systems. For

57

Java and C# systems the average forecast errors (2.77 and 2.91 respectively), are more than twice as for C

systems. This implies that the clone evolution patterns in Java and C# systems are more irregular than in C

systems. However, among Java systems JasperReports and ArgoUML produced the highest average forecast

errors, 6.48 and 5.23 respectively. On the other hand, WixEdit and NANT among all C# systems produced

the most forecast errors, 4.34 and 3.82 respectively.

Table 4.7: Avg. forecast error (ξ) categorized by system-size

Sizes Avg. ξ for UPI threshold

(LOC/release) 30% 20% 10% 0%

Below 50K 2.78 2.71 2.29 2.15

Between 50K and 100K 2.29 2.21 2.05 2.01

Above 100K 2.64 2.67 2.43 2.24

Effect of Program Size on Irregularity of Clone Evolution: Table 4.7 presents the forecast errors

averaged over systems categorized by their sizes. We see that for all four UPITs systems of sizes between

50 KLOC/release and 100 KLOC/release exhibit the least average forecast errors. For UPIT 0% and 10%

the systems of sizes above 100 KLOC/release yield more forecast errors than systems having less than 50

KLOC/release. On the contrary, for UPITs 20% and 30% we found the opposite. Hence, it is difficult to say

anything about the effect of system size on the regularity of clone evolution, and further investigation may

be required in this regard.

As the UPIT increases from 0% to 30%, for most of the systems across all three languages the average

forecast errors (Table 4.5) also increase indicating that the evolution of near-miss clones is more irregular

than that of exact clones. The reason may be the fact that any two fragments have higher chance of being

similar than being exactly same, and so, creation or deletion of a functions may have higher effect on the

amount of near-miss clones than exact clones. Possibly, due to the same reason, for almost all systems,

as UPIT increases from 0% to 30%, the Pearson coefficient rfc (between number of functions and number

of cloned functions) gets closer to +1.0 (Table 4.4). We see that for all systems, rfc is positive for both

exact and near-miss clones. For all systems rfc is +0.80 or more for near-miss clones (UPIT 30%), which

suggests a very strong positive correlation between the number of functions and the number of near-miss

cloned functions. In case of exact clones, rfc is +0.5 or higher for 15 out of 18 systems, which also suggests

fairly strong positive correlation.

On the other hand, the value of rfd (correlation coefficient between the number of functions and clone-

density) is +0.5 or higher for 11 out of 18 systems at UPIT 30%, and for four systems rfd is negative. This

may be interpreted with the fact that for the near-miss clones at UPIT 30%, there exists weak positive

correlation between the number of functions and clone-density. For exact clones half of the systems exhibit

rfd values less than +0.5, and four of the systems has negative rfd. This shows relatively weaker positive

58

correlation between number of functions and density of exact clones. We also see that with the decrease

in UPIT from 30% to 0%, positive correlation between number of functions and clone-density gets weaker.

However, looking at average clone densities categorized by systems’ size (Table 4.3) we see that for UPIT 0%,

10%, and 20% average clone-density decreases as the systems’ size increases from below 50 KLOC to over

100 KLOC. This further weakens the positive correlation between number of functions and clone-density.

A possible explanation may be that large systems in our study tend to have functions of larger sizes, and

larger functions have statistically less probability of being clones than smaller functions. In our study the

four largest systems are C systems namely GCC, Linux kernel, PostGreSQL, and Samba having average

function size of 43 LOC, much higher than average Java function size (16 LOC). For instance, the “void

ffebld constantarray prepare (...)” function in “gcc/f/bld.c” source file of GCC-3.0.1 has 361 pretty-printed

LOC consisting of long sequences of switch statements.

Clone Evolution Patterns

Looking at the clone densities over all the systems across subsequent releases, we found interesting patterns in

the evolution of clone-density. For each system, clone densities for the four UPITs exhibit the same evolution

pattern varying only in their magnitudes. For example, Figure 4.1 plots clone densities at UPITs 0%, 10%,

20%, and 30% with roughly parallel lines. We also observed that for most of the systems, the density of

exact clones does not differ much from the density of clones at UPIT 10%. In Apache-Ant, NANT, JEdit,

ArgoUML, GIT, GCC, ProcessHacker, WixEdit, CruiseControl.NET, and ZedGraph clone densities at UPIT

10% is found to be almost equal to the densities of exact clones. For other systems, we found differences,

which is much lower than the differences of clone densities between UPITs 10% and 20%, or between threshold

20% and 30%.

Having some short term fluctuations of increase and decrease, over long term clone-density tend to increase

linearly in Linux kernel (Figure 4.1). Previous studies on Linux kernel reported roughly linear (super linear)

growth of Linux kernel source code in terms of LOC [95]. The linear growth of both line of source code as

well as density of code clones indicate that cloning activities continued in a similar pace as the development

and maintenance activities took place in Linux kernel code base. Similar geometric evolution of clone-density

is found in JEdit. For this system, at all four UPITs clone-density gradually increased over the early 38

releases between JEdit-3.0-pre4 and JEdit-4.2-pre2. Then over the later 28 releases between JEdit-4.2-pre3

and JEdit-4.3-pre18 clone-density decreased. However, we found roughly linear growth in the number of

functions over all releases of JEdit. This suggests possibly more copy-paste-modification activities took place

during the early development of JEdit due to active development of similar features implementation, and

as the project became stable, later development activities were possibly dominated by maintenance, and

performance enhancement rather than new feature incorporation.

For all the other 16 systems (except Linux kernel and JEdit), we observed some distinguishing patterns in

the evolution of clone densities. In all these 16 systems, we noticed major change in clone densities over early

59

!"

#"

$"

%&"

%'"

%!"

%#"

&" %&" '&" (&" !&")&" #&" *&"

!"#$%&'()&(*+,(&-."$-/0!(12(!"#$%&'()&(*+,(&-."$-/0!(312(

!"#$%&'()&(*+,(&-."$-/0!(412(!"#$%&'()&(*+,(&-."$-/0!(512(

6".$%/#$(/7(89!%&(

:0
/#

"(
!"

#$
%&'

(

Figure 4.5: Exact and near-miss clone-density in JEdit

releases, and relatively smaller variations over sequence of many later releases. A reason to this fact may

be during the early releases active development and feature implementations dominated in software growth,

whereas maintenance activities dominated in the later releases. As shown in Figure 4.6, clone-density strictly

increased in Apache-Ant from release 1.1 (10.6% exact clones) to release 1.4 (16.8% exact clones) and did not

vary much (amount of exact clones remained between 15.38% 16.8%) over the later 16 releases. Such pattern

was also found in Commander4j. Similar pattern of increasing clone-density was also found in DavMail,

Conky, NANT, and WixEdit. However, in these systems, the early change in not strictly increasing, rather

overall increase with short term fluctuations is found. For example, clone-density in NANT (Figure 4.7)

increased from release 0.1.3 (5.1% near-miss clones at UPIT 30%) to 0.8.3 (20.9% near-miss clones at UPIT

30%), and did not exhibit much variations over the later releases (density of near-miss clones at UPIT 30%

remained between 20.9% and 23.4%). However, between NANT-0.1.3 and NANT-0.8.3, there exists some

fluctuations of increase and decrease in clone-density. From NANT-0.1.4 clone-density increased in NANT-

0.1.5, again decreased through release 0.5 and 0.6, which followed an increased density in NANT-0.7.7. This

is possibly due to active development and refactoring activities during those early releases of NANT.

A second pattern of clone evolution during early developments was found in CruiseControl.NET, Ar-

goUML, GIT, JasperReports, PostGreSQL, and ZedGraph. For all these systems, during the early releases,

clone densities tend to decrease along with some short term fluctuations. Figure 4.8 shows this pattern plot-

ting the evolution of clone-density for CruiseControl.NET. For this system, as we see, clone-density largely

60

!"#

!$#

!%#

!&#

!'#

$"#

$$#

$%#

"# (# !"# !(# $"#

)*+,-./#0.#123#.45*,467)#8"9#

)*+,-./#0.#123#.45*,467)#$"9#

)*+,-./#0.#123#.45*,467)#!"9#

)*+,-./#0.#123#.45*,467)#"9#

:*5,-6+,#6;#<=0>4*?<+.#

@7
6+

*#
)*

+,
-./

#

Figure 4.6: Exact and near-miss clone-density in Apache-Ant

decreased from release 0.7 (9.6% exact clones) through release 1.0 (2.8% exact clones), and over later 16

releases (release 1.0.1 through release 1.5.0) density of exact clones remained between 2.3% and 3.6%. How-

ever, we found that over those releases of CruiseControl.NET, the number of functions increased from 2,473

to 2,859, which indicates the possibility of not much copy-paste-modification activities took place during the

early developments of CruiseControl.NET.

After the early phase of software evolution, over long term relatively less variation in clone-density was

found in general. However, two interesting patterns are found. The first pattern exhibits roughly steady

clone-density over long sequence of releases with small irregular variations. Such pattern is found in WixEdit,

iTextSharp, DavMail, Commander4j, Ant (Figure 4.6), NANT (Figure 4.7), CruiseControl.NET (Figure 4.8),

and JasperReports (Figure 4.4). In the second pattern, clone-density is found not to vary that much over

long sequence of releases, and relatively large changes found between such release sequences. Similar pattern

is found in GCC, ArgoUML, GIT, JasperReports, PostGreSQL, Samba, and ProcessHacker. Scatter plot of

such pattern yields a stair-like shape, as shown in Figure 4.9, which shows exact and near-miss clone densities

in 79 releases of GCC.

There are two possibilities to cause such steady clone-density: when neither the number of functions nor

the number of cloned fragments changes, or when both changes in a ratio such that clone-density remains

steady. Interestingly, both of these facts are found in systems exhibiting such patterns. For example, density

of exact clones remained between 3.78% and 3.84% over seven releases of GCC, GCC-2.8.0 through GCC-

2.95.3. Among these releases, between GCC-2.8.1 and GCC-2.95 the number of functions increased from

5,893 to 11,268, and the number of cloned functions also increased from 223 to 433 causing no significant

61

!"

#"

$!"

$#"

%!"

%#"

!" #" $!" $#" %!"

&'()*+,"-+"./0"+12')134&"5!6"

&'()*+,"-+"./0"+12')134&"%!6"

&'()*+,"-+"./0"+12')134&"$!6"

&'()*+,"-+"./0"+12')134&"!6"

7'2)*3()"38"9:9;"

<4
3(

'"
&'

()
*+,

"

Figure 4.7: Exact and near-miss clone-density in NANT

change in clone-density. Again, from GCC-2.95.3 to GCC-3.0 the number of functions increased from 11,300

to 15,936, and number of cloned functions increased from 431 to 1161, causing the clone-density jump from

3.81% to 7.28%. Over the following four releases, GCC-3.0.1 through GCC-3.0.4 the total number of functions

varied a bit between 16,016 and 16,134. The number of cloned functions remained unchanged at 1,170 and

consequently the clone-density varied a little between 7.25% and 7.31%.

Besides the above mentioned patterns in the evolution of clone-density in the later releases, some systems

exhibit sudden significant increase in clone densities between subsequent releases followed by large decrease

in the next release. Such sudden variations are found in JEdit, ArgoUML, GIT, ZedGraph, and Samba.

For instance, the large spike in Figure 4.5 corresponds to JEdit-4.3-pre6 between JEdit-4.3-pre5 and JEdit-

4.3-pre7. In JEdit-4.3-pre6, the number of clones increased significantly compared to its previous and later

releases.

Clone Propagation Across Releases

In an earlier work [153], Kim et al. tracked individual clone-groups (genealogies and lineages [153]) over

releases and characterized them in terms of dead, alive, consistently changed, and syntactic similar genealo-

gies. However, the length of the succession of individual clone-groups over releases is yet to be investigated

to understand how persistent the clone-groups are across releases. A clone-group in a later release is said to

be a successor of a clone-group of an earlier release, if the code snippets in the earlier release do not change

more than a threshold (30% lines in our study) in the later release. The length of succession of a clone-group

is the maximum number of subsequent releases in which a successor of that clone-group exists.

62

!"

#"

$"

%"

&'"

&!"

&#"

&$"

&%"

'" (" &'" &(" !'" !("

)*+,-./"0."123".45*,467)"8'9"

)*+,-./"0."123".45*,467)"!'9"

)*+,-./"0."123".45*,467)"&'9"

)*+,-./"0."123".45*,467)"'9"

:*5,-6+,"6;"<5=-,*<6+.567>?@A"

<7
6+

*"
)*

+,
-./

"

Figure 4.8: Exact and near-miss clone-density in CruiseControl.NET

For the two Java systems DavMail and Apache-Ant, we tracked individual clone-groups, and found that

a significant amount of clone-groups have succession length over 60% of the total number of releases. In

DavMail 38% of the clone-group successions have length 80% of the releases or more. In Figure 4.10, we

present an example of such a succession of near-miss clones in releases of DavMail. The clone-group consisting

of the two shaded functions in the figure have succession spanned over releases 2.0.0 through 2.1.1. The other

two functions joined the clone-group in release 3.0.0, and the succession continued to release 3.6.5 resulting

a total succession length of 18 releases out of 20.

4.3 Genealogy-based Investigation of Clone Propagation

The long succession of some clone-groups as observed from the study described above, inspired us to follow it

up with a genealogy-based study1 to obtain a deeper understanding over the longevity of evolving individual

clone-groups. As subjects to our study, we used releases of 17 open-source software systems (Table 4.8)

written in four different programming languages namely C, C++, Java, and C#.

1This genealogy-based study was performed jointly with Ripon K. Saha and Muhammad Asaduzzaman, who were two M.Sc.
students at the Department of Computer Science, University of Saskatchewan, Canada. As this is a joint work, we kept its
description concise. This particular work of ours appeared in a peer-reviewed conference [248], where further details of the study
can be found.

63

!"

#"

$!"

$#"

%!"

%#"

&!"

!" $!" %!" &!" '!" #!" (!")!" *!"

+,-./01"20"345"067,.689+"&!:"

+,-./01"20"345"067,.689+"%!:"

+,-./01"20"345"067,.689+"$!:"

+,-./01"20"345"067,.689+"!:"

;,7./8-."8<"=>>"

>9
8-

,"
+,

-.
/01

"

Figure 4.9: Exact and near-miss clone-density in GCC

We used CCFinderX2 to detect code clones in each release of the software systems under study. Then for

each of the subject systems, to construct the clone genealogies, we mapped the clones-groups detected from

successive releases using based on textual similarity of the code snippets in addition to a snippet-matching

technique that match code snippets by comparing the names of identifiers. Finally, we characterize the

extracted clone genealogies according to the change patterns described in Section 2.6.2 of Chapter 2. The

size number of total and different categories of clone genealogies found in each of the subject systems are

presented in Table 4.8.

From our analysis of the characterized clone genealogies, we found many alive and long-lived genealogies

while many of the genealogies disappeared within a few early releases. 47.57% of the alive genealogies spanned

over at least half of the total number of releases of the respective software systems. In most of the clone

genealogies extracted from the subject systems, clone-groups propagated across releases either without any

change or with changes only in the names of identifiers. Hence, it is possible that these types of genealogies

do not need any extra care during software maintenance. Also, they are less likely to be removed from the

systems, and on average almost 69% of them reached to the final release. As many as 11% to 38% of all

the extracted genealogies experienced consistent changes. Moreover, on average nearly 67% of total alive

genealogies did not experience any addition or deletion of lines, or renaming of identifiers.

2CCFinderX is an extended version of the clone detector CCFinder [137]

64

!

"#$%&'(%!)*+*+,!)*+*-,!)*-*+,!)*.*+,!)*)*+,!)*)*+/0-,!)*)*+/0.,!)*1*+,!)*2*+,!)*3*+,!)*3*-,!)*3*.,!)*3*),!)*3*1,!)*3*2!
!

45675&8!6#$%&'(%!.*+*+,!.*-*+,!.*-*-
davmail.(ui.)tray.AwtGatewayTray.java
public void init() {
 SwingUtilities.invokeLater(
 new Runnable() {
 public void run() {
 createAndShowGUI();
 }
 });
}
davmail.(ui.)tray.AwtGatewayTray.java
public void resetIcon() {
 SwingUtilities.invokeLater(
 new Runnable() {
 public void run() {
 trayIcon.setImage(image);
 }
 });
} !

!
davmail.ui.tray.FrameGatewayTray.java
public void init() {
 SwingUtilities.invokeLater(
 new Runnable() {
 public void run() {
 createAndShowGUI();
 }
 });
}

davmail.ui.tray.FrameGatewayTray.java
public void resetIcon() {
 SwingUtilities.invokeLater(
 new Runnable() {
 public void run() {
 mainFrame.setIconImage(image);
 }
 });
}

!!

!
Figure 4.10: Group of near-miss function clones in releases of DavMail

Table 4.8: Genealogy-based study on clone evolution

Duration No. Genealogy statistics
Prog. Subject Size (yyyy-mm-dd) of AG DG SSG CCG
Lang. System (LOC) From To rel. Total (%) (%) (%) (%)

Java

JUnit 2,179–8,785 2003-05-12 2009-12-08 20 127 78.74 21.26 81.89 15.75
CAROL 2,812–11,694 2002-11-12 2005-04-13 10 141 44.68 55.32 56.73 38.30
dnsjava 11,025–23,334 2001-03-29 2009-11-21 22 417 82.97 17.03 85.37 12.23
JabRef 11,352–74,104 2003-11-30 2010-04-14 33 1132 73.41 26.59 66.25 26.06
iText 51,860–82,164 2002-03-07 2008-01-25 49 1568 68.75 31.25 74.62 20.22

Average for systems written in Java 26.80 677 71.43 26.57 72.67 21.77

C++

KeePass 14,789–43,644 2003-11-17 2006-10-14 35 790 70.76 29.24 73.54 20.63
Notepad++ 26,937–81,980 2003-11-25 2007-02-04 30 977 81.99 18.01 73.69 19.86
7-Zip 71,638–100,823 2003-12-11 2009-02-03 45 1427 65.38 34.62 64.62 24.46
eMule 6,803–203,780 2002-07-07 2010-04-07 73 3547 66.08 33.92 59.57 29.86

Average for systems written in C++ 45.75 1685.25 68.79 31.21 64.32 26.18

C

Wget 14,209 - 40,021 1998-09-23 2009-09-22 17 206 57.77 42.23 60.68 28.64
Conky 7,029–42,060 2005-07-20 2010-03-30 70 1328 53.69 46.31 82.45 11.97
ZABBIX 12,468–70,890 2004-03-23 2010-01-27 28 1026 65.79 34.21 49.31 28.65
Claws Mail 126,247–203,783 2005-03-19 2010-01-31 47 2363 85.57 14.43 63.26 27.08

Average for systems written in C 40.50 1230.75 76.00 24.00 77.55 16.84

C#

NAnt 686–52,533 2001-07-19 2007-12-08 22 625 76.96 23.04 55.20 34.08
iTextSharp 33,545–163,890 2003-02-04 2007-03-08 26 2666 77.16 22.84 86.38 10.43
ProcessHacker 10,349–123,878 2008-10-17 2010-01-23 38 950 71.79 28.21 73.26 20.32
ZedGraph 2,439–26,433 2004-08-02 2008-12-12 28 374 76.74 23.26 62.83 24.87

Average for systems written in C# 28.50 1153.75 68.75 31.25 74.62 20.22

Avg. over all the Systems 34.88 1156.71 70.33 29.67 66.56 24.28

Total number of releases across all the subject systems is 593
Here, rel. = releases, AG = Alive Genealogy, SSG = Syntactically Similar Genealogy

DG = Dead Genealogy, CCG = Consistently Changed Genealogy

65

4.4 Clones in Industrial Web Applications

Unlike the traditional software applications written in a particular language, web applications these days

typically have multilingual implementations, where a single source file may contain tangled snippets of source

code written in different programming languages such as HTML, PHP, and JavaScript. Most of the earlier

studies (including ours as described in Section 4.2 and Section 4.3) on the analysis of code clones focused on

open-source traditional applications written in a particular programming language such as Java, C, C++,

and C#. While such studies provide useful insights into clones in those kinds of software systems, relatively

fewer research aimed to investigate clones in web applications, even though web applications are becoming

more ubiquitous these days than in the past.

Those few studies [194, 229, 231] on the analysis of code clones in web applications mostly analyzed only

Type-1 and Type-2 clones or the set of clones based on the authors’ distinct definitions of code similarity.

Moreover, those studies were limited in the investigation of clones only in static HTML pages, or in the

reference graph derived from the links among different pages and resources.

Thus, we became motivated to study clones in industrial web applications, in particular to understand if

there is any significant difference between web applications and traditional software systems in terms of the

existence of clones and patterns of cloning. In this study3, investigate the patterns of both exact (Type-1) and

near-miss (Type-2 and Type-3) code clones in two industrial web applications: a Training Registration

System (TRS)4 and an Incident Reporting System (IRS)5.

The systems are developed at the Information and Communications Technology division of the University

of Saskatchewan (UofS), Canada. TRS was developed using the traditional page-based copy-paste style where

HTML mark-up and PHP code were put together on dynamic web pages. IRS was developed following a

more sophisticated approach using the MVC (Model-View-Controller) pattern that resulted in a relatively

more modularized implementation.

Table 4.9: Block clones in industrial web applications

Subject Development Number of % of

Systems Style Experienced LOC .php files PHP blocks clones cloned files cloned files

IRS Modular implementation 6,848 75 644 240 30 40%

TRS Page-based copy-paste 5,295 27 868 212 19 70%

3This study on the clones in web applications is a joint work with Tariq Muhammad and Yosuke Yamamoto, two Ph.D.
students at the Department of Computer Science, University of Saskatchewan, Canada. Since this is a joint work, we kept its
description short. This particular study of ours appeared in a peer-reviewed conference [211], where further details can be found.

4http://www.usask.ca/dhse/trainingcourses
5http://lamp.usask.ca/dhse/ZF1.0.1

66

Web Pages
HTML, Style
code, PHP
scripts, and
JavaScripts

Island
Grammar

Code
Extraction

 PHP
code

Clones
Report

VisCad
Visualization

Clone
patterns

NiCad
Clone

Detector

Clone
detection Clone Analysis

Manual
Investigation

Figure 4.11: Procedure of the empirical study on code clones in web applications

Using island grammar [265], we extracted the PHP code from the tangled source code of the dynamic web

pages. Then using the NiCad [238] clone detector, we detected clones in the PHP code at the granularity of

syntactic blocks, and analyzed them with VisCad [10], a clone analysis and visualization tool. We investigated

the possible instances of different patterns of cloning such as Forking and Templating [142] (see Section 2.2).

In particular, we aimed to examine whether there is any significant difference in the existence and patterns

of cloning in the two web applications that underwent technically two different development approaches. A

schematic diagram portraying the procedural steps of our empirical study is presented in Figure 4.11.

The sizes of the web application, the number and proportion of clones found in each of the subject

systems are presented in Table 4.9. From the study, we found that despite the architectural differences

and development styles, both the web applications had significant number of code clones. However, the

system developed using the traditional page-based approach had relatively higher number of the clones very

scattered over different areas of the code base. On the contrary, the modular implementation following the

MVC pattern resulted in relatively less scattered clones in the other system. The dispersion of clones in the

later system was dictated by the underlying framework, and those clones appeared to be relatively easier to

manage compared to those in the other system.

4.5 Threats to Validity

In our clone-density-based study (Section 4.2), we examined multiple releases of six systems for each of three

programming languages (C, C#, and Java) which leads to a total of 18 subject systems. This number of

systems for each language may not be enough to derive a decisive conclusion on the effect of programming

languages/paradigms on code clone evolution. However, this clone-density-based empirical study was the

largest study in clone evolution at the time this work was published [313]. The genealogy-based study was

also a large-scale study with 593 releases of 17 software systems. Indeed, the findings from our study on

clones in web applications (Section 4.4) are based on only two industrial systems, and thus can be argued

against their generalizability.

There exists an open question about what should be the appropriate level of similarity to consider two code

fragments as near-miss clone-pair. To address this concern, in our clone-density-based study (Section 4.2),

67

we examined the evolution of code clones at four different levels of similarities: exact clones, and near-miss

clones with 70%, 80%, and 90% similarities on the pretty-printed source lines of code (see [242, 238] for

details).

The types of subject systems might have domain influence on the results. To minimize such domain

effects, in both the clone-density-based study (Section 4.2) and the genealogy-based study (Section 4.3), we

included a large number of releases of software systems from diverse application domains. The clone-density-

based study included a total of 1,636 releases over 18 subject systems and the genealogy-based study was on

the basis of 593 releases of 17 software systems written in diverse programming languages.

Although we carried out some manual verifications, exhaustive manual validation over all the clones

found in all the releases of all the systems was not feasible due to the huge amount of time and effort required

for this. However, in our clone-density-based study (Section 4.2) as well as in the study of clones in web

applications (Section 4.4), we used the NiCad clone detection tool, which was reported to have high precision

[238, 242] and recall [240] in finding clones. Thus, we gain confidence about the validity of the results from

these studies.

However, in our genealogy-based study (Section 4.3), we used CCFinderX for clone detection, which is

recognized to have high recall in clone detection, although its precision can be lower that some other clone

detectors [35]. As CCFinderX cannot detect Type-3 clones, our genealogy-based study does not include

genealogies of Type-3 clones. For this particular study, we chose CCFinderX to be able to compare our results

with the study of Kim et al. [154]. Maintaining consistency with the their study [154], we carefully set

CCFinderX’s parameters to keep the probable false positives to the minimum.

4.6 Related Work

Over the last decade, many studies were conducted to reveal the patterns and characteristics of code clones

in software systems. However, we confine our discussion on only those studies that reported the management

implications of code clones and their evolution. To keep the discussion easy to follow, we organize our

discussion in accordance with the analytical studies presented in this thesis.

4.6.1 Analysis of Clones and their Evolution

Over the past decade, many empirical studies have been conducted, majority of which were exploratory studies

for understanding the existence and properties of clones in software systems. Relatively recent studies have

aimed to investigate the evolution of clones and their implications on software maintenance. In this section,

we discuss only those work that appear to be relevant to our study on clone evolution presented in Section 4.2.

Roy and Cordy [242] conducted an empirical study on 23 systems written in three different languages,

and examined distribution of clones in the systems as well as the effect of programming language and sys-

tem’s size. Later they conducted another study [241] on eight systems written in Python, and found that

68

cloning properties of Python systems are not really different from previous observations for C, Java, and C#.

However, both the studies examined code clones in single version of each system, without investigating the

evolution clones across software releases.

Laguë et al. [172] studied the evolution of clones with six versions of a large telecommunication software

system and concluded that although a significant number of clones were removed during the evolution, the

overall clone-density increased over time. Antoniol et al. [8] and Li et al. [182] studied the evolution of the

Linux kernel and observed that although clone coverage (i.e., the proportion of cloned code over the entire

source code) increased early in the development, it stabilized over time. Our study differs from theirs because

we not only study clone-densities but also forecast clone-densities for the future releases of the software and

that we conduct the study with 18 diverse categories of systems of three different languages and we use a

hybrid clone detection tool, NiCad [238], which has high precision [242] and recall [240].

Göde [89] examined the evolution of individual exact cloned fragments in several open-source systems

written in C, C++, and Java using iClones [92]. The ratio of exact clones over system size decreased

in majority of the systems he studied. Krinke [169] on the other hand, conducted an empirical study to

investigate the type of changes taking place on cloned versus non-cloned code to determine whether cloned

code is more stable than non-cloned code. For clone detection, he used Simian, a text-based clone detector

capable of identifying almost identical clones. He observed that changes to the evolving software is dominated

by massive deletion of cloned code, and if deletions are ignored, in terms of line addition and modification,

cloned code is more stable than non-cloned code. Krinke [168] also analyzed many revisions of five open-

source software systems and found that half of the changes to code clone-groups are inconsistent and that

corrective changes following inconsistent changes are rare.

A number of tools and frameworks [67, 217] have been developed for aiding clone tracking, analysis,

evolution and management. Kim et al. [153, 154] coined the terms “clone lineage” and “clone genealogy”

to describe relationship between clone-groups in subsequent versions of evolving software. To investigate the

clone evolution, they developed a clone genealogy extractor using CCFinder [137], a token based Type-1 and

Type-2 clone detector. To evaluate their approach, they extracted clone genealogy from two open-source

Java projects, Carol and DnsJava. They found that many genealogies disappear in a relatively short time

after their birth.

Saha et al. [248] conducted a follow-up study at release level. Lozano and Wermelinger [188] analyzed

commit-by-commit evolution of five open-source Java projects over at least thirty months. They also used

CCFinder [137] for detecting clones in methods. They found that cloned methods change more than non-

cloned method, which contradicts Krinke’s findings [169]. They further reported that cloned methods tend

to remain cloned most of their lifetime, which also contradicts the findings of Kim and Notkin [154].

Bakota et al. [18] proposed a machine learning approach for detecting inconsistent clone evolution situ-

ations and found different bad smells using twelve versions of Mozilla Firefox. Thummalapenta et al. [274]

proposed an automatic approach for classifying the evolution of cloned fragments and reported an analysis

69

using four different Java and C software systems for investigating to what extent clones are consistently

propagated or evolved independently. Bettenburg et al. [36] studied the inconsistent changes of clones at the

release level. They noted that the number of defects due to inconsistent changes in clones is substantially

lower at the release level than at the revision level.

While these studies provide important insights on the fine-grained evolution of clones and their mainte-

nance implications, our study, as described in Section 4.2, significantly differs from them in several aspects.

First, instead of providing in-depth analysis on the evolution of clones, we provide an overall analysis on the

evolution of clone-densities and attempt to forecast such densities in the future releases for 18 diverse vari-

eties of systems of three different programming languages. None of the studies above attempted to forecast

clone-densities as ours.

There exists a common issue with most of these studies that they are based on CVS snapshots over certain

intervals. The interval of commit-by-commit transactions or snapshots of CVS/SVN repository over certain

periods may be too frequent for analyzing clone evolution [36]. Even a large number of such versions of the

source code can span over only a few stable releases. In addition, the source code under study may not

experience significant development/changes during some of those intervals. Moreover, commit transactions

are sensitive to developer’s commit style. Therefore, we conducted our study (Section 4.2) at the release

level to capture stable changes in the clones over a longer period. Finally, most of the earlier studies focused

on the evolution of Type-1 and/or Type-2 clones, whereas we studied both exact (Type-1) and near-miss

(Type-2 and Type-3) clones at different similarity levels using a hybrid clone detection tool.

Antoniol et al. [7] applied ARIMA(p,d,q) [38] time series analysis to model code clone evolution for

predicting proportion of code clones in 27 subsequent versions of MiniSQL (written in C) using a metrics-

based clone detection tool. Again, our study (Section 4.2) significantly differs from them in examining 18

systems of diverse varieties written in three different programming languages, and using a parser-based but

text-line comparison clone detection tool with different similarity levels. Moreover, the ARIMA process is

elegant but complicated, and applicable only when there is enough historical data available to generate a

reliable model. The very first step in the ARIMA process is to identify a tentative model through the analysis

of historical data, and it is recommended that 50, preferably more historical observations be considered at

this step [209].

Shawky et. al. [260] modelled clone evolution in two software systems (i.e., 50 versions of FileZilla and

100 versions of VLC) using chaos theory for prediction in new versions. Chaos theory also requires historical

data to build the initial model. This implies that neither ARIMA nor chaos theory is suitable for estimation

during the early stage in the evolution, whereas the regression analysis technique is applicable from the very

early releases of the software evolution.

70

4.6.2 Study of Clones in Web Applications

Very few studies are found in the literature that investigated code clones in web applications. In this section,

we discuss the work relevant to our study on code clones in industrial web applications, as presented in

Section 4.4.

One of the earliest works in this regard was performed by Lucca et al. [190]. Their work focused on

the detection of similar static web pages as clones. Their approach was based on serialization of HTML

tags in web pages and then pairwise computation of Levenstein distance between tag-sequences. Later, they

conducted a follow up work [66], in which they attempted to detect clones in ASP pages. They viewed an

ASP page as a sequence of references to different ASP objects. They hypothesized that ASP pages having

same behaviour host the same sequence of such references. They constructed “ASP-strings” composed of

the sequence of references extracted from ASP pages, and detected similar ASP pages applying a similar

approach based on Levenstein distance between “ASP-strings”. Our work significantly differs from those of

Lucca et al. [190, 66]. While the objective of their work was to identify similarities in the entire static HTML

pages and ASP pages, in our work, as described in Section 4.4 of Chapter 4, we investigate the patterns of

cloning in the scripting code embedded in dynamic web applications.

Lucia et al. [191, 193] proposed a method to identify clones in the navigational patterns in web applica-

tions. They extracted a navigational graph from the references among the different web pages and resources.

Then they applied a graph-based pattern matching algorithm to search for pairs of maximal clones in the

navigational graph. Later, they extended their work to develop a tool [192] to facilitate the analysis of clones

in the navigational patterns. However, our study (Section 4.4) is different from theirs in the fact that we

investigate cloning patterns in the PHP scripts, whereas their work was towards the detection and analysis

of clones in the navigational patterns.

Lanubile and Mallardo [174] applied a metric based approach (with the help of a tool called eMetric)

to detect function level clones in the JavaScript and VBScript code in three web based systems. Rajapakse

and Jarzabek [229] conducted a case study on 17 web applications. The objective of their work was mainly

to understand to what extent there existed cloned code in web applications, and they found a cloning rate

of up to 63%. In a later study [231], they explored the effectiveness of the PHP Server Pages technique in

minimizing clones in web applications. They concluded that clone unification using Server Pages technique

can reduce the number of clones, but such a reduction may also negatively affect the system qualities (e.g.,

runtime performance), which may not be acceptable in many practical situations [230, 231].

Our work (Section 4.4) significantly differs from those studies in a number of ways. The metric based

clone detection technique used in the study of Lanubile and Mallardo [174] might have reported many false

positives and missed many potential clones, as the metric based techniques are known to have low accuracy

in clone detection [243, 311]. The studies of Rajapakse and Jarzabek [229, 231] were only on Type-1 and

Type-2 clones, as the clone detector CCFinder used in their study can detect only Type-1 and Type-2 clones,

but not Type-3.

71

However, in our study (Section 4.4), we use a hybrid clone detector, NiCad [238], which was reported to

have high accuracy in detecting both exact (Type-1) and near-miss (Type-2 and Type-3) clones [238, 243].

Moreover, the objective of Lanubile and Mallardo [174] was the detection of clones in source code written in

JavaScript and VBScript code, whereas Rajapakse and Jarzabek [229, 231] focused on the existence of clones

and the effectiveness of Server Pages technique in clone minimization. On the contrary, our work (Section 4.4)

is on the analysis of cloning patterns in PHP scripts in industrial web applications that underwent distinct

development processes.

Similar to our study (Section 4.4), the work of Mao et al. [194] also used TXL [51] implementation of

island grammar [265] to extract style information from HTML files. Then they identified the exact (Type-1)

clones in the style code segments by pairwise comparison, and factored out the styles and adjusted the div

tags that referred to the styles. The objective of their work was to convert the table-based layout websites

to standards-compliant modern CSS stylesheet-based websites. Our work, as described in Section 4.4 of

Chapter 4, is orthogonal to theirs. We use island grammar to extract scripting code from the dynamic

web applications, we detect both the exact (Type-1) and near-miss (Type-2 and Type-3) clones using the

NiCad [238] clone detector, and analyze those clones with the help of VisCad [9, 10].

4.6.3 Genealogy-based Study of Clones

The maintenance implications of clones are studied more in the recent years than in the past. Such studies

typically investigate how individual clones experience changes during their evolution and the impacts of

such changes on software maintenance. Our genealogy-based empirical study was conducted with the same

objective. In this section, we discuss those work that we find relevant to our genealogy-based study as

described in Section 4.3.

Kapser and Godfrey [141, 142] conducted large-scale empirical studies and concluded that clones are not

necessarily harmful and found several patterns of clones that could be useful in many cases. Juergens et

al. [133], on the other hand, argued that unintentionally created inconsistent clones always lead to faults,

and concluded that clones could be harmful in software maintenance. While we also studied the maintenance

implications of clones, our study (Section 4.3) significantly differs from theirs in the sense that they did not

study the evolution of clones.

The study of Kim et al. [154] is the most closely related to our genealogy-based study presented in

Section 4.3 of Chapter 4. However, they studied only two small Java systems and at the revision level. On

the other hand, we conducted a larger study with 17 diverse open-source systems written in four different

programming languages. Furthermore, instead of location mapping, we have used snippet matching together

with text similarity for mapping the clone-groups from one version to the next. This allows us to map

clone-groups even when lines are modified or reordered in the next version.

Aversano et al. [11] extended the clone evolution model of Kim et al. [154] by grouping inconsistent

changes to independent and late evolution classes. Again, they studied only two open-source Java systems

72

namely ArgoUML and dnsjava and reported contradictory findings for the consistently changed clone-groups.

Lozano et al. [187, 189] carried out several studies on the maintenance implications of clones. While they

could not find any systematic relationships between cloning and maintenance efforts, they concluded that

change efforts might increase for a function/method when it has clones. However, the work of Lozano et

al. [187, 189] studied clones in revisions of software systems written in Java only, and their focus was on the

changes in all functions/methods irrespective of whether they had clones or not. On the contrary, our work

(Section 4.3) was particularly focused only on the cloned code in releases of software systems written in four

different languages.

Göde [89] proposed an incremental approach that models Type-1 clone evolution based on the changes

made to the source code at consecutive revisions of several open-source systems. While he concluded that

the ratio of clones decreased in the majority of the systems and cloned fragments survived more than a year

on average, no general conclusion on the consistent or inconsistent changes to clone-groups was reported.

Bazrafshan [31] studied the daily snapshots of the source code repositories of seven open-source software

systems to investigate the differences in the evolution of exact and near-miss clones. Unlike the work of

Göde [89] or Bazrafshan [31], our study (Section 4.3) took into account both Type-1 and Type-2 clones in

stable releases of software systems. Krinke [168] analyzed many revisions of five open source software systems

and found that half of the changes to code clone-groups are inconsistent and that corrective changes following

inconsistent changes are rare. In another study [169], he found that cloned codes are more stable than non-

cloned codes and thus require less maintenance effort compared to non-cloned code. Bakota et al. [18]

proposed a machine learning approach for detecting instances of inconsistent clone evolution situations, and

based on a study over twelve monthly revisions of Mozilla Firefox, reported different “bad smells”. However,

they studied the evolution patterns of cloned fragments whereas we studied clone-groups.

Note that, all the aforementioned studies on clone evolution were based on revisions of the software systems

under study. Such revisions are composed of periodic snap-shots of the underlying code base or the developers’

commit transactions. Many of such revisions can constitute only a few stable releases of the software system,

and those revisions often contain temporary clones that the programmer create for experimentation only [36].

To avoid, such effects of short-lived temporary clone, in our studies, we investigated clones in the stable

releases of the software systems.

Bettenburg et al. [36] studied the inconsistent changes of clones in releases of two open-source software

systems. They noted that the number of defects through inconsistent changes is possibly substantially lower

at the release level than at the revision level. However, the study of Bettenburg et al. [36] was based on releases

of only two software systems and they examined the possible relationship between inconsistent changes in

clones and software defects. We conducted a larger study (Section 4.3) on 17 software systems written in

four different languages, and we particularly focused on evaluating clone genealogies.

For investigating to what extent clones are consistently propagated or independently evolved, Thum-

malapenta et al. [274] performed an empirical study on four open-source software systems written in C and

73

Java. While they focused on identifying evolution of cloned codes over time and relating the evolution pat-

terns with other parameters (e.g., clone granularity, clone radius and cloned code fault-proneness), in our

work (Section 4.3), we focused on examining clone genealogies with 17 open-source software systems covering

four popular programming languages.

4.7 Summary

In this chapter, we presented empirical studies on the existence and evolution of code clones in open-source

and industrial software systems. The first work is a clone-density-based empirical study on the evolution of

exact (Type-1) and near-miss (Type-2 and Type-3) code clones in 18 large open-source software systems of

diverse categories written in three different languages namely Java, C#, and C. For each software system

our study included many releases (and pre-release) ranging between 20 and 459, summing up to 1,636 in

total. For each system we investigated how the density of code clones changes between subsequent releases

at four different similarity levels. Using the Pearson product moment correlation coefficient we examined the

relationship between software growth (in terms of number of functions) and changes in the amount of clones.

We found that with the increase in the number of functions, the number of cloned fragments also increases

in all systems. However, between clone-density and the number of functions, very weak positive correlation

has been identified. Moreover, the average clone-density for larger (in terms of LOC) systems are found to be

less than that for smaller systems. Using a simple regression, analysis we were able to make one step ahead

forecast on the densities of both exact and near-miss clones in subsequent releases. The average standard

error of estimate over all releases of all systems was 2.35. We tracked the forecast errors over subsequent

releases of each system and examined the regularity of changes in clone-density from release to release.

Programming languages/paradigms are found to have significant impact of the existence and evolution of

clones. The average density of exact clones over all releases of all systems is found to be 9.26%. The average

density of near-miss clones was 10.11% at UPIT 10%, 13.46% at UPIT 20%, and 17.65 at UPIT 30%. For all

the four UPITs Java systems are found to have the highest density, and C systems have the lowest density of

clones. With the increase of UPIT the increase in clone-density is found to be much higher in C systems than

Java and C# systems. The evolution of clone-density in Java and C# systems is found to be more irregular

than C systems. Moreover, with the increase of UPIT, irregularity in the change in clone-density is found to

have increased in all systems. These results suggest that one should expect higher number of code clones in

software systems written in object-oriented languages such as Java and C#. Thus, such systems can be more

vulnerable to the negative impacts of code clones and therefore active clone management is more important

for those systems.

We also identified some interesting patterns in the evolution of clone-density over subsequent releases.

For instance, we found major changes in clone-density over few early releases of software life time, and

over the later releases there exists long sequences of releases among which clone-density does not vary that

74

much. We also found several instances of where a particular clone-group propagated over a long series of

releases. Our genealogy-based follow-up study (Section 4.3) also revealed many long-lived clones. From

the other follow-up study on clones in web applications (Section 4.4), we found even higher proportion of

clones in the industrial web applications compared to the traditional open-source software systems. Due

to the tangled multilingual nature of the source code for web applications, tracing and managing those

clones in such applications demand specialized tool support that should be able to perform language specific

separation of code from the multilingual program source, and handle them separately while still preserving

the inter-language relationships of the code clones.

The presence of a significant number of long-lived clones and the irregularities in the evolution of clone

densities found in the studies drives us to carry out a more in-depth investigation on the changes and removal

of individual clones, as presented in the next chapter (Chapter 5).

75

Chapter 5

Investigation of Clone Change Patterns

“A fact is a simple statement that everyone believes. It is innocent, unless found guilty.
A hypothesis is a novel suggestion that no one wants to believe. It is guilty, until found effective”

– Edward Teller

In the last chapter (Chapter 4), we presented empirical studies on the existence and evolution code clones in

terms of clone-density as well as clone genealogy. The studies revealed irregularities in the changes of clone

densities across software releases and reported many clones that propagated over long sequences of software

releases. Therefore, we became interested to carry out a deeper level study on the changes and removal of

individual clone-groups.

In this chapter, we present a genealogy-based study on the evolution and mutation of clones across

releases of open-source software systems written in different programming languages. Addressing a number

of research questions, this study offers insights into the mutation and removal of code clones in practice and

points to pragmatic possibilities for clone management. In Section 5.1, we introduce our motivation and the

research questions. In Section 5.2, we present the terminology and metrics used in our study. In Section 5.3,

we describe the setup and procedure of our empirical study. Section 5.4 presents the findings our study. In

Section 5.5, we discuss the possible threats to the validity of our study, Section 5.6 accommodates related

work, and Section 5.7 concludes the chapter with a summary.

5.1 Introduction

Despite ongoing research on the positive and negative effects of code clones [133, 142, 154, 201, 202, 222,

227, 274], researchers and practitioners have come to an accord for the need of active and informed clone

management [309, 310] including documentation and removal of clones through refactoring. Out of a recent

study, Fontana et al. [78] also reported that the removal of code clones improves code quality in most cases but

not all. However, code clones can often be desirable, and aggressive removal of clones through refactoring may

not be a good idea [154, 308, 307, 312], given the risks and efforts involved in such activities. In this regard,

a number of classification schemes [20, 139, 158, 258], metric based selection approaches [19, 49, 104], and an

effort model [308, 307, 312] have been proposed to identify potential clones for refactoring. Still, for many

systems, clone management and removal is yet to be a part of the daily maintenance activities [90]. Despite

76

more than a decade of software clone research, clone management remains far from industrial adoption, and

this area has gained more focus from the community in recent years [311].

A deep understanding of how individual clones change during their evolution, and which criteria cause

their removal from the system, can help in devising effective strategies and tool support for clone management.

A number of studies on near-miss clone evolution [203, 204, 205, 206, 207, 248, 251, 313, 314] are found in

the literature, which attempt to inform clone management [284, 309, 311]. These studies on clone evolution

and programmers’ psychology lead to some common beliefs and at times even contradictions about the traits

of clone evolution. For example, the study of Kim et al. [154] suggests that many clones are volatile (i.e.,

disappear shortly after they are created), while the study of Lozano and Wermelinger [188] suggests otherwise.

This chapter focuses on the patterns of changes and removal of code clones during the evolution of

software systems. In particular, we formulate the following eight research questions to capture different

characteristics of clone change and removal. Some of the research questions correspond to common beliefs

(or, contradictions) in the community [45]; but we want to develop empirical evidence based on a systematic

genealogy-based study on clone change and removal in evolving software systems.

RQ1: Do the sizes of the groups of clones make any difference in clone removal in practice? — Kim et

al. [152] suspected that frequently copied code fragments (i.e., larger clone-groups) can be good candidates

for clone refactoring.

RQ2: Do the sizes of the individual clone fragments in terms of the number of lines impact clone removal

in practice? — Larger clone fragments can be attractive candidates for refactoring, as conjectured by Kim

et al. [152].

RQ3: For a group of clones, does the distribution of the clones in the file system hierarchy impact their

removal in practice? — Göde [90] reported that the developers were more interested in refactoring closely

located clones.

RQ4: Is there any relationship between any particular type of changes in the clones and their removal? —

This is still an open question, as far as we are concerned. If there exists any relationship between a particular

type of changes and clone removal, the clone management tools can focus on supporting that category of

changes.

RQ5: How frequently do the clones experience changes before they are removed from the system? — There

is an ongoing debate on the stability of cloned code as compared to the non-cloned code [91, 169, 201, 202].

RQ6: Does the granularity (entire function bodies or syntactic blocks) of clones make any difference in their

removal in practice? — A recent study of Göde [90] reported many instances of removal of block clones by

extract method refactoring.

RQ7: Does the textual similarity in the source code of the clones have any effect in the removal of clones in

practice? — Very similar (e.g., Type-1) clones can be expected to be easier to refactor than very dissimilar

(e.g., Type-3) clones.

77

RQ8: During the evolution of the software systems, when does clone removal take place? — This question

addresses the aforementioned contradiction about the volatility of clones.

To address the research questions, we carry out a systematic study based on code clone genealogy [154,

249], which maps the individual clone fragments across subsequent releases over their evolution. We investi-

gate the changes and removal of individual clones in 329 releases of nine diverse open-source software systems

written in Java, C, and C#. Then we analyze them against a wide range of metrics and characterization

criteria. In the light of a combination of qualitative analysis, quantitative analysis and statistical tests of

significance, we derive the answers to the research questions.

We believe, such an empirical study on the characteristics of changes and removal of individual near-miss

clone fragments is timely and addresses a gap in the literature. Our study is based on genealogies of near-miss

clones including not only Type-1 and Type-2 clones, but also Type-3 clones.

Table 5.1: Software systems subject to our empirical study

Prog. Subject No. of Releases Dates (mm/dd/yy) Duration Source Lines of Code
Lang. System Releases From To From To (months) (LOC ranges)

dnsjava 50 0.9.2 2.1.1 04/19/99 02/10/11 131 6,290 – 15,018
Java JabRef 27 1.5 2.4.2 08/15/04 11/01/08 50 22,041 – 69,170

ArgoUML 48 0.27.1 0.32.beta2 10/04/08 01/24/11 26 176,618 – 202,555
ZABBIX 31 1.0 1.8.4 03/23/04 06/01/11 86 9,252 – 62,845

C Conky 28 1.1 1.8.1 06/20/05 10/05/10 62 6,555 – 39,810
Claws Mail 44 2.0.0 3.7.9 06/30/06 04/09/11 63 1,33,642 – 1,89,786
CruiseControl 31 0.7.rc1 1.8.4 11/08/04 09/01/13 98 35,895 – 1,82,032

C# iTextSharp 22 5.0.0 5.4.4 12/08/09 09/16/13 45 1,72,573 – 2,17,328
ZedGraph 48 1.1 5.1.5 08/02/04 12/12/08 52 2,439 – 26,433

5.2 Terminology and Metrics

In this section, we introduce the terminology and metrics used in this work to characterize the changes and

removal of code clones. Some of the metrics and and criteria are adopted from earlier studies found in

the literature [44, 90, 94, 154]. For the purpose of our analysis, we categorize the evolving clone-groups in

accordance with the change patterns in the corresponding genealogies, as described in Chapter 2.

Clone Genealogy: Recall from Chapter 2 that a set of clone fragments that are clones of each other

form a clone-group. A clone genealogy refers to a set of one or more lineage(s) originating from the same

clone-group, whereas, a clone lineage is a sequence of clone-groups evolving over a series of releases of the

software system. Figure 2.4 shows several examples of clone genealogy.

Consistent and Inconsistent Change: Recall from Chapter 2 that if all clones in the clone-group

experience the same set of changes during the transition between releases, then such changes are characterized

as being a consistent change, otherwise the changes are regarded as being inconsistent.

Consistently Changed Clone-Group: If the genealogy of a clone-group has any consistent change

pattern(s) but does not have any inconsistent change patterns during evolution, it is classified as a consistently

78

changed clone-group. The clone-group associated with the second genealogy in Figure 2.4 is an example of

a consistently changed clone-group as there are consistent changes between versions (i.e., releases) Vk+1 and

Vk+2 and between versions Vk+2 and Vk+3 as well as between versions Vk+3 and Vk+4 while there is no

inconsistent change at all during the evolution of the clone-group.

Inconsistently Changed Clone-Group: If the genealogy of a clone-group has any inconsistent change

pattern(s) throughout the entire evolution period, it is characterized as an inconsistently changed clone-group.

The clone-group associated with the third genealogy in Figure 2.4 is an inconsistently changed clone-group

as there are inconsistent changes between versions (i.e., releases) Vk+1 and Vk+2 as well as between versions

Vk+2 and Vk+3.

Static, Alive, Dead Clone-Group: Static clone-groups are those which propagate through subsequent

releases having no textual change in the clones. A clone-group is called dead if it disappears before reaching the

final release under consideration, otherwise the clone-group is considered alive. The clone-groups associated

with the first, second and third genealogies in Figure 2.4 represents static, dead, and alive clone-groups

respectively.

Textual Similarity: The textual similarity between two code snippets S1 and S2, denoted by I(S1, S2), is

determined by calculating the identical lines with respect to their sizes, as defined by the following formula1.

I(S1, S2) =
2× |`1 ∩ `2|
|`1|+ |`2|

(5.1)

where `1 and `2 are the ordered sets of pretty-printed (i.e., normalized) lines in S1 and S2 respectively. |`1∩`2|
is the number of common ordered lines between `1 and `2, calculated using the longest common subsequence

(LCS) algorithm. The textual similarity of a clone-group G, denoted as I(G) is the average of the textual

similarities between all clone pairs in that group. Mathematically,

I(G) =

∑
Si,Sj∈G

I(Si, Sj)(|G|
2

) (5.2)

Entropy of Dispersion: We used an entropy measure to characterize the file level physical distribution

of the clones in a clone-group. Such an entropy measurement, sometimes referred to as Shannon entropy, is

commonly used in the area of Information Theory. In this work, the entropy of dispersion of the clones in

clone-group G is calculated using Equation 5.3 as follows:

entropy(G) =
∑
i∈FG

−pi log(pi) (5.3)

where, FG denotes the set of distinct files hosting the clones in clone-group G, and pi denotes the

probability of the clones being located in file i.

For example, if all the clone fragments reside in the same file, the dispersion entropy will be 0.0. If the

entropy is low, clones are densely located in only a few files. If the entropy is high, the clones are scattered

across different files.

1In the area of Information Retrieval, this similarity measurement is known as the Dice Coefficient.

79

Figure 5.1: gCad settings for clone genealogy extraction

5.3 Study Setup

To investigate the research questions outlined in Section 5.1, we study the clone genealogies across releases

of nine diverse open-source software systems (Table 5.1) written in Java, C, and C#.

In the selection of the subject systems, we followed a number of criteria. First, we tried to include software

systems that had reasonably large sizes and large number of releases. In computation of a system’s size, we

took into account only the source code lines (LOC) written in the particular programming language that the

software system is categorized in Table 5.1. We excluded comments, blank lines, and lines of code written

in any other programming languages. Second, in our study, we tried to include subject systems from diverse

application domains. Third, we preferred those open-source software systems, which were used in earlier

studies [154, 248, 249, 313] reported in the literature.

5.3.1 Extraction of Genealogies

For the extraction of clone genealogies, we used an extended version of gCad [249] clone genealogy extractor

that we developed. gCad can construct and classify genealogies of all three types (Type-1, Type-2, and Type-

3) of clones that we are interested in. Details of how gCad operates and computes clone genealogies can

be found elsewhere [249]. As per the need of this study, we significantly extended and customized the tool

with a carefully designed graphical user interface (GUI), and a set of appropriate features to compute the

necessary metrics. For the purpose of our study, we carefully chose a set of gCad’s configuration parameters

as shown in Figure 5.1.

80

For the detection of code clones, we selected the NiCad-2.6.3 [54, 55, 238] clone detector, which is a

state-of-the-art clone detection tool reported to be effective in detecting both exact (Type-1) and near-miss

(Type-2 and Type-3) clones with high precision and recall [240, 238]. gCad invokes NiCad to separately detect

clones from every release of each of the subject systems. In invoking the clone detector, some of the gCad

parameters are passed to NiCad to guide the process of detecting Type-1, Type-2, and Type-3 clones at the

chosen granularity (syntactic blocks for our study) and dissimilarity threshold (0.3 for our study).

The dissimilarity threshold (Figure 5.1) is a size-sensitive dissimilarity threshold that plays a vital role

in guiding NiCad in the detection of Type-3 clones. For our study, the dissimilarity threshold was set to 0.3,

which signifies that NiCad detects two code fragments as clones if at least 70% of their pretty-printed text

lines are the same (i.e., if at most 30% lines are different). The normalization option “blind-renaming” tells

NiCad to ignore the differences in the names of identifiers/variables, and thus it is a significant parameter for

the detection of Type-2 clones.

From the clone detection results obtained from NiCad, for each of the subject systems, we separately

constructed the clone genealogies using gCad. We operated gCad in ‘strict’ mode to construct and characterize

clone genealogies. In ‘strict’ mode, gCad captures and takes into account all types of changes in the source

code lines of clone-pairs, irrespective of whether those changes took place in their corresponding similar or

dissimilar lines of code. Details of how gCad operates in different modes can be found elsewhere [249].

5.3.2 Investigation

We examined all the dead genealogies to see how the clones were removed. We also examined how the

individual clone fragments changed during their evolution over a series of releases. Since, the inconsistent

changes to clones are believed to be a common phenomena that produce vulnerabilities in a system [313,

308, 312], we characterized the clone changes as consistent versus inconsistent. In addition, we captured

how frequently a clone-group changes during the evolution before its removal. For quantitative analysis, we

computed the necessary metrics according to the categorization described in Section 5.2.

5.4 Findings

The findings of our study are derived from qualitative and quantitative analyses of the changes and removal

of individual clone fragments. We also apply the statistical Mann-Whitney-Wilcoxon (MWW) test [6] with

α = 0.05, to determine the statistical significance of the findings. Using the Shapiro-Wilk test [6] and Q-Q

plot [6], we examined the distribution of the data, and found that some of the observations exhibited normal

distributions while some others did not. Therefore, we chose to use the MWW non-parametric test, which

does not assume the normal distribution of the data, and thus, is appropriate for data that exhibit or do not

exhibit normal distribution.

81

Table 5.2: Sizes of removed and alive clone-groups

Prog. Subject Avg. Sizes of Clone-groups

Lang. System Removed Alive

dnsjava 2.25 2.75

Java JabRef 2.31 4.17

ArgoUML 2.12 9.12

ZABBIX 2.31 4.53

C Conky 2.37 9.31

Claws Mail 2.88 2.95

CruiseControl 2.32 3.58

C# iTextSharp 2.21 5.80

ZedGraph 2.15 2.50

5.4.1 Size of the Clone-Groups

To capture the relationship between the number of fragments in a clone-group and clone removal, we computed

the average number of fragments in the removed clone-groups and that of the alive clone-groups for each of

the subject systems (Table 5.2). As seen in Table 5.2, for all the subject systems, the average size of the alive

clone-groups is higher than those of the removed clone-groups. During our manual investigation, we found

that the developers refactored clone-groups that had only two or three clone fragments. Similarly, we found

that in JabRef, there were 74 clone-groups having more than three fragments, and only four of them were

refactored. This gives the impression that developers are more inclined to remove smaller clone-groups. To

statistically verify this, we address the second research question RQ1, and formulate our null hypothesis as

follows.

H1
0 : The size of a clone group does NOT make a difference in clone removal in practice.

A MWW test (P = 0.35) fails to reject (as, P > α) the null hypothesis, which implies that the difference is

not statistically significant. Hence, we answer the research question RQ1 as follows.

Ans. to RQ1: The size of the clone-groups (in terms of the number of member clone fragments) does

not make a statistically significant difference in clone removal in practice.

Although, in our study, the sizes of the removed clone-groups (in terms of the number of clone fragments)

appears to be consistently lower than the alive clone-groups, this might have happened simply by chance in

the software systems in our study. A larger study with many software systems may be required to further

investigate the possibility of statistical significance of the pattern we found between the sizes of the clone-

groups and their removal.

82

Table 5.3: Average sizes (LOC) of clone fragments

Prog. Subject Removed Alive

S
D

=
S

ta
n

d
a
rd

D
ev

ia
ti

o
nLang. System Average SD Average SD

dnsjava 10.00 3.00 11.00 5.00

Java JabRef 17.00 15.00 13.00 9.00

ArgoUML 16.00 13.00 15.00 19.00

ZABBIX 26.00 25.00 21.00 21.00

C Conky 20.00 23.00 15.00 7.00

ClawsMail 15.00 9.00 16.00 18.00

CruiseControl 8.85 4.50 9.46 5.61

C# iTextSharp 13.99 13.62 10.76 11.00

ZedGraph 15.70 15.45 12.34 12.67

5.4.2 Size of the Clone Fragments

The sizes of the clone fragments can be expected to have a relationship with the refactoring effort, especially

when the candidate clone-group includes near-miss (Type-2 and Type-3) clones beyond Type-1.

To examine the relationship between clone removal and the LOC per clone fragment in the clone-groups,

we separately computed the average number of pretty-printed LOC per fragment for the removed clones as

well as for the alive clones. We also calculated the standard deviations for each of the measurements to

capture the degree of variations. The results are presented in Table 5.3.

As can be observed from Table 5.3, there are subtle differences in the sizes of the clone fragments of both

the removed and alive clone-groups. For six of the nine subject systems (ZabRef, ArgoUML, ZABBIX, Conky,

iTextSharp, and ZedGraph), the average sizes of clone fragments of removed clone-groups appear to be

significantly higher than those of the alive clone-groups. Hence, the anticipation of Kim et al. [152] saying –

developers are more interested in getting rid of larger clones – appears to be true.

Addressing the research question RQ2, we now formulate our null hypothesis as follows.

H2
0 : The size of the individual clones in terms of number of lines does NOT impact clone removal in practice.

A MWW test (P = 0.001) over the series of sizes for the removed and alive clones rejects (as, P < α) the

null hypothesis. From the analysis described above, we answer research question RQ2 as follows.

Ans. to RQ2: The size of the individual clones in terms of number of lines does have a statistically

significant impact on clone removal in practice, and larger clone fragments appear to be attractive for removal

in practice.

83

5.4.3 Entropy of Dispersion

In Table 5.4, we present the entropy of dispersion of both the removed and alive clones for all the subject

systems. From the developer’s perspective, refactoring/removal of co-located clones may require less effort

than that needed for refactoring clones scattered over the code base. This can be expected to hold true due

to several reasons. In the refactoring of scattered clones the developers might need to spend much time and

effort to navigate to, understand the contexts, and make careful modifications at different locations of the

code base.

In Table 5.4, we see that for each of the subject systems, the average entropy of dispersion for the

removed clones is much lower than that for the alive clones. This indicates those clone-groups whose member

clone fragments are closely located in the code base are relatively more attractive for refactoring/removal.

To determine whether the initial observation significantly supports the expectation, we again conducted a

MWW test with the null hypothesis as follows.

H3
0 : For a group of clones, the distribution of individual clones in the file system hierarchy does NOT impact

their removal in practice.

The hypothesis addresses the research question RQ3. A MWW test (P = 0.233) between the entropy values

for both the removed and alive clones (over all the systems) fails to reject (as, P > α) the null hypothesis.

This implies that there exists no relationship between the entropy of dispersion and clone removal in practice.

Therefore, we derive the answer to research question RQ3 as follows.

Ans. to RQ3: For a group of clones, the distribution of individual clones in the file system hierarchy

does not have a statistically significant impact on their removal in practice.

As we delved deeper through manual investigation, we found a strange phenomenon in the relationship

between entropy and the number of clone fragments that were removed. Most of the removed clone-groups

had two fragments, if their entropy was greater than zero, i.e., they were not really located in the same file.

For example, in JabRef and ZABBIX, developers refactored 37 and 43 clone-groups respectively, all of which

had entropy higher than zero. Among them only two clone-groups in JabRef and 10 clone-groups in ZABBIX

had three clone fragments, while the rest had only two fragments.

5.4.4 Change Patterns

Despite the realized advantages of code cloning, it is also true that code clones may have a significant

impact on software development and maintenance in several ways. First, the reuse by copy-pasting of any

code segment that already contains unknown faults, results in propagation of those faults to all the copies.

Second, when a change is made in a code fragment, consistent changes are often expected in all its clone

fragments, while any inconsistencies may introduce new faults. Third, if a bug is found in a certain code

fragment, there remains a possibility that similar bugs can be found in the clones of the fragment, and thus

may necessitate consistent propagation of that bug-fix to all the clones.

84

Table 5.4: Comparison of entropy of dispersion

Prog. Subject Clones

Lang. System Removed Alive

dnsjava 0.71 0.90

Java JabRef 0.53 0.98

ArgoUML 0.82 1.30

ZABBIX 0.35 0.53

C Conky 0.18 0.24

Claws Mail 0.30 0.70

CruiseControl 0.18 0.23

C# iTextSharp 0.22 0.38

ZedGraph 0.17 0.10

Table 5.5: Removal of clone-groups classified by change patterns

Prog. Subject Static Clone-Groups Consistently Changed CG Inconsistently Changed CG
Lang. System Total Removed [%] Total Removed [%] Total Removed [%]

dnsjava 60 27 45.00 8 3 37.50 49 27 55.10
Java JabRef 217 52 23.96 53 3 5.66 132 15 11.36

ArgoUML 1435 109 7.60 39 4 10.26 440 19 4.31
ZABBIX 166 88 53.01 61 18 29.51 109 35 32.11

C Conky 121 44 36.36 19 7 36.84 37 16 43.24
ClawsMail 445 58 13.03 172 7 4.07 304 7 2.30
CruiseControl 528 187 35.41 119 35 29.41 388 133 34.27

C# iTextSharp 1259 99 7.86 103 8 7.76 325 66 20.31
ZedGraph 225 161 74.22 33 12 36.36 79 45 56.96

85

Table 5.6: MWW tests over categories of changes

Change
No Change

Consistent Inconsistent

Types Change Change

No Change - P = 0.003 P = 0.158

Consistent
P = 0.003 - P = 0.042

Change

Inconsistent
P = 0.158 P = 0.042 -

Change

Table 5.7: MWW tests over removal of clones

Clone
Static

Consistently Inconsistently

Categories Changed Changed

Static - P = 0.31 P = 0.695

Consistently
P = 0.31 - P = 0.536

Changed

Inconsistently
P = 0.695 P = 0.536 -

Changed

Thus, whether the clones changed consistently, inconsistently, or remained static during the evolution of

a software system, may have implications in clone management in future releases. Therefore, we categorized

the clones based on whether they remained unchanged, or changed consistently or inconsistently, and what

percentage of such clones were actually removed during the evolution of the system. For each of the systems,

the total number of clones of each of these three categories and the percentage of them that were removed,

are presented in Table 5.5.

As we can see in Table 5.5, for each of the subject system, the number of static clone-groups is the highest

while the number of the consistently changed clone-groups is the lowest. To examine any trends in the

existence of static, consistently changed, and inconsistently changed clone-groups in the systems, we again

conducted MWW tests between each two of the three categories of changes (total number) occurred in the

clone-groups over all the systems. The results of the MWW tests are presented in Table 5.6, which suggest

significant difference in occurrence of the three categories of changes (as, P < α), except that the difference

in the number of inconsistent changes and no-changes are found to be statistically insignificant (as, P > α).

86

With respect to clone removal, from Table 5.5, we see that for six of the nine systems (JabRef, ZABBIX,

ClawsMail, CruiseControl, iTextSharp, and ZedGraph), the majority of the removed clones are static clone-

groups. The removal of inconsistently changed clone-groups were found to occur most often in two of the

systems (dnsjava and Conky), whereas, the removal of consistently changed clones dominated in ArgoUML.

A high-level perception from the results in Table 5.5 may indicate that the static clone-groups can be

more susceptible to removal. To verify such an observation, we carried out MWW tests between each pair

of the three categories of clone removal over all the systems. The results of the MWW tests, as presented

in Table 5.7, also suggest that there is no significant difference in the removal of static, consistently changed

and inconsistently changed clone-groups (as, P > α in all cases).

These observations lead to the answer to the research question RQ4 as follows.

Ans. to RQ4: The majority of the clones do not experience any changes during their evolution. Those

clones that experience changes, majority of those clone-groups undergo inconsistent changes. However, there

is no statistically significant relationship between any particular type (i.e., consistent or inconsistent) of

changes in the clones, and their removal at a later release.

5.4.5 Frequency of Changes

The frequency of changes to the clone-groups is an important criterion in clone management, since changing

source code can be expensive, while making consistent changes to clones may involve significant effort and

risks. Indeed, the modifications of a clone fragment needing effort, and the required effort can be multiplied

by the size of the corresponding clone-group, to make consistent changes to all clone fragments in the clone-

group. This is one of the areas where clone management tool support may contribute by facilitating clone

merging, or consistent change propagation.

Thus, we examined how frequently the clone-groups underwent changes before their removal. In Table 5.8,

we present the number of clone-groups that, before removal, underwent changes only once, twice, and more

than twice. As seen in the table, most of the removed clones were changed only once. For the clone-groups

that changed at least once, their average change frequency is less than two, over all the subject systems. From

our manual verification, we found that very few clone-groups underwent changes more than twice before their

removal. On the other hand, we also found many clone-groups remained alive although they experienced

minor or significant changes. However, we confined our focus to the changes of the removed clone-groups

to get a complete picture over the entire life-time of the clone-groups. Now, we derive the answer to the

research question RQ5 as follows.

Ans. to RQ5: Most clones do not undergo frequent changes before their removal.

5.4.6 Level of Granularity

The extract method refactoring pattern is perhaps the most highlighted technique for removing clones at

the granularity of syntactic blocks. Thus, we may expect evidence of many instances of block clone removal.

87

Table 5.8: Frequency of changes before removal

Prog. Subject Change Frequency

Lang. System 1 2 >2 Average

dnsjava 16 9 5 1.80

Java JabRef 11 4 3 1.72

ArgoUML 17 4 2 1.48

ZABBIX 30 16 7 1.74

C Conky 10 8 5 1.95

ClawsMail 9 2 5 1.57

CruiseControl 103 45 20 0.75

C# iTextSharp 62 11 1 0.50

ZedGraph 40 12 5 0.39

Alternatively, functions typically contain a somewhat complete implementation of certain features or program

logic and so it may be easier to remove/refactor clones at the granularity of entire function bodies, rather

than at the granularity of smaller syntactic blocks.

To determine whether there exist any relationships between clone removal and clone granularity, we

examined both levels of granularities – function/method and syntactic block. Note that the body of a

function also constitutes a block. Therefore, we distinguish true functions clones from the true block clones.

A true function clone fragment spans the entire body of a function, whereas a true block clone must not

constitute the entire body of a function.

Extended gCad is capable of differentiating true function clones from the true block clones. Any clone-

group that is composed of only true function clones is categorized as a group of function clones, whereas, clone-

groups consisting of only true block clones are categorized as groups of block clones. Separate genealogies

are constructed for the clones at these two levels of granularity.

Over all releases of each of the subject systems, the total number and proportions of both the groups of

function clones versus the block clones are presented in Table 5.9. The clone detection results for each of the

systems identified clone-groups that contained both true function clones and true block clones. Therefore, it

is not possible to categorize such a group as a group of only true function clones or only true block clones.

This is why the total number of clone-groups reported in Table 5.9 is lower than that of Table 5.5. Addressing

the research question RQ6, we now formulate our null hypothesis as follows.

H6
0 : The granularity (entire function bodies or syntactic blocks) of clones does NOT make any difference in

their removal in practice.

88

Table 5.9: Removal of clone-groups at the granularities of function and block

Prog. Subject Function Clones Block Clones

Lang. System Total Removed [%] Total Removed [%]

dnsjava 69 37 53.62 25 15 60.00

Java JabRef 204 41 20.09 110 21 19.09

ArgoUML 1183 97 8.19 305 20 6.55

ZABBIX 201 78 38.80 134 62 46.26

C Conky 115 35 30.43 59 30 50.84

Claws Mail 510 40 7.84 337 29 8.60

CruiseControl 889 354 39.82 1032 355 34.40

C# iTextSharp 999 186 18.62 1687 173 10.25

ZedGraph 229 162 70.74 337 218 64.69

A MWW test (P = 0.93) over the proportions of the removal of both true function and block clones fails to

reject (as, P > α) the null hypothesis.

Table 5.9 shows that developers remove both function and block clones as per their needs, as we do not

see significant differences between the proportions of removal of function clones and block clones. For ZABBIX

and Conky, the proportion of block clones removal is slightly higher. It seems that the clone removal rates

for the two larger systems, ArgoUML and Claws Mail are far lower than the smaller systems. On the other

hand, it appears that the developers of the relatively small systems dnsjava, ZABBIX, and Conky were more

aware of the clones and were active in removing them through refactoring. From manual investigation, we

found only one and two Type-1 function clones in dnsjava and Conky respectively. Although as many as

eight Type-1 function clones were found in ZABBIX, seven of them were removed during the evolution of the

system. Based on the above discussion, we now derive the answer to the research question RQ6 as follows.

Ans. to RQ6: In practice, the granularity (entire function bodies or syntactic blocks) of clones does not

make any statistically significant difference in their removal.

5.4.7 Textual Similarity

In Table 5.10, we present the average text similarities (actual and normalized) of the removed clones and

the alive clones for each of the subject systems. Indeed, the degree of textual similarity among the clone

fragments in a clone-group is important information as it corresponds to the differences between the clone

fragments. Refactoring a clone-group with many variations can require more effort than refactoring a group

of identical or very similar clones. Thus, the textual similarity for the clones in a clone-group can be expected

89

Table 5.10: Actual and normalized textual similarity of removed and alive clone-groups

Actual Textual Similarity Normalized Textual Similarity

S
D

=
S

ta
n

d
a
rd

D
ev

ia
ti

o
n

Prog. Subject Removed Clones Alive Clones Removed Clones Alive Clones

Lang. System Average SD Average SD Average SD Average SD

dnsjava 0.60 0.20 0.67 0.18 0.80 0.12 0.81 0.10

Java JabRef 0.76 0.18 0.68 0.18 0.85 0.13 0.82 0.11

ArgoUML 0.76 0.20 0.66 0.17 0.85 0.14 0.80 0.14

ZABBIX 0.72 0.19 0.73 0.17 0.83 0.16 0.83 0.11

C Conky 0.76 0.16 0.69 0.15 0.88 0.09 0.84 0.09

Claws Mail 0.73 0.20 0.65 0.22 0.87 0.12 0.82 0.15

CruiseControl 0.67 0.19 0.68 0.18 0.83 0.09 0.84 0.09

C# iTextSharp 0.72 0.22 0.66 0.19 0.86 0.11 0.84 0.12

ZedGraph 0.80 0.22 0.70 0.22 0.91 0.14 0.87 0.14

to be proportional to the necessary efforts for refactoring them. Taking these into consideration, we address

the research question RQ1, and formulate our null hypothesis as follows:

H7a
0 : Clone removal by the developers is NOT dictated by the similarity of program text (without normaliza-

tion) in the clone fragments.

From the table, we can see that the average actual textual similarity of removed clones for four systems

(JabRef, ArgoUML, Conky, and Claws Mail) is higher than that of alive clones, while the other two subject

systems (dnsjava and ZABBIX) exhibit slightly the opposite trend. A MWW test (P = 0.041), on the data of

actual textual similarity in the alive and removed clones, rejects (as, P < α) the null hypothesis H7a
0 , which

indicates statistically significant relationship between the textual similarity of clones and their removal.

Sometimes the actual textual similarity does not estimate the actual effort for refactoring. For example,

in case of different identifiers names in different clone fragments, textual similarity of a clone-group may be

very low although they are easily refactorable, especially when there is refactoring support from the IDEs

(Integrated Development Environments). That is why we also investigated the normalized textual similarity

by removing the identifier differences. If we look at the normalized text similarities of removed and alive

clones, we again see that the average normalized textual similarity for the removed clones is slightly higher

than the alive clones in those four systems. The trend is slightly the opposite for dnsjava, while for ZABBIX,

both the removed and alive clones exhibit equal average normalized textual similarity. With respect to the

normalized text similarities between the remove and alive clones, we formulate another hypothesis as follows:

H7b
0 : Clone removal by the developers is NOT influenced by the similarity of normalized program text in

the clone fragments.

90

A MWW test (P = 0.091) fails to reject (as, P > α) the null hypothesis H7b
0 , suggesting that there

is no statistically significant difference in the normalized text similarities between the removed and alive

clones. However, the P value in the case of normalized textual similarity is much lower than that of the

actual textual similarity, and this hints that there might be some influence of the differences in the names of

variables/identifiers over clone removal.

Combining the observations for the actual and normalized text similarities over the removed and alive

clones in the light of the two null hypotheses (H7a
0 and H7b

0), we can now derive the answer to the research

question RQ7 as follows.

Ans. to RQ7: The textual similarity in the source code of the clones does have statistically significant

effect in the removal of clones, and the differences in the names of the variable/identifiers play the major

role in this regard.

This finding indicates that Type-1 clones are most attractive to the developer for refactoring, and the

developers, in practice, are more inclined in refactoring Type-2 clones than refactoring Type-3.

5.4.8 Age

The information about the age (in terms of the number of releases the clone-groups remain alive before

removal) of clone genealogies can indicate how quickly the developers act to remove clones. In order to

examine this phenomenon, for each of the systems, we computed the age of each clone-group that was

removed in any of the subsequent releases.

In Figure 5.2, we present the proportion of clone-groups found to have been removed in a subsequent

releases of systems written in C#. We found similar trend in the systems written in C and Java. The majority

of the dead clones in five of the subject systems (ArgoUML, JabRef, ZABBIX, Conky, and ZedGraph) were

removed within the initial five to ten releases. This observation is consistent with that reported by Kim et

al. [154], suggesting that many of the clones are possibly volatile.

However, in all the systems, a good number clones remained alive over a long sequence of releases before

their removal. For example, 17% of the refactored clone-groups in ArgoUML remained alive in 43 subsequent

releases, while 35% of the clone-groups in Claws Mail propagated over 27 subsequent releases, before their

removal. Similar trends were found in other systems as well. From the above discussion, we answer the

research question RQ8 as follows.

Ans. to RQ8: During the evolution of the software systems, a few early releases experience significant

clone removal. Nevertheless, some clones propagated over a relatively long sequence of releases before they

were finally removed.

This finding is also in keeping with the answer to the research question RQ5 (Section 5.4.5), which

indicates that most of the clones do not undergo frequent changes before their removal. We suspect that

once a developer comes to know of a clone during its first change, this awareness might drive the removal of

the clone at a later release. This indicates an area where informed clone management can play a vital role.

91

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

55"

60"

65"

70"

1" 6" 11" 16" 21" 26" 31" 36" 41" 46"5 10 15 20 25 30 35 40 45

C
lo

ne
 R

em
ov

al
 (

%
)

ZedGraph

iTextSharp

CruiseControl

Systems written in C#

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Age (Releases)

Figure 5.2: Clone Removal in Subsequent Releases of C# Systems

5.5 Threats to Validity

In this section, we discuss possible threats to the validity of our study and how we mitigated their effects.

Construct Validity: Perhaps the best way to investigate change and evolution of clones is to study

of the individual clone fragments in terms of genealogies across versions of the system. As versions one

might choose programmers’ commit transactions or weekly/monthly snapshots of the code base, or the stable

releases of the system. A number of the earlier studies [90, 154] used the programmers’ commit transactions

or weekly/monthly snapshots of the code base, while many other studies [248, 249, 313] used software releases

as the versions.

Programmers often create clones for experimental purposes, which they remove shortly after creation [154].

Thus, daily, weekly or monthly snapshots can be too frequent to capture stable changes in the code base. In-

deed, commit transactions are more susceptible to this issue, in addition to their sensitivity to the developers’

commit styles [313]. However, when a version of a software is officially released, the source code is expected

to be in a stable form. Moreover, even a large number of weekly/monthly revisions may correspond to only a

few stable releases, whereas series of releases typically span a longer period of development time. Therefore,

for our study, we selected stable releases of the systems instead of commit transactions or snapshots at certain

time intervals.

92

Internal Validity: The internal validity of our study is subject to the accuracy in clone detection and

genealogy extraction. The NiCad clone detector used in our study, is reported to be effective in detecting

both exact (Type-1) and near-miss (Type-2 and Type-3) clones with high precision and recall [240, 238].

Moreover, our manual verification of random samples from the detected clones found no false positives. The

genealogy extractor gCad, used in our study, is also reported to be accurate in the computation of near-miss

clone genealogies [249]. Nevertheless, we carried out manual investigation to verify the correctness of the

genealogies and to fix any inconsistencies. Indeed, the manual assessment can be subject to human errors.

However, all the human participants of this study are faculty and graduate students carrying out research in

the area of software clones, and thus we believe that they have affluent expertise to keep the probable human

errors to the minimum.

External Validity: Our study is based on nine medium to fairly large open-source software systems,

and thus one may question the generalizability of the findings. However, for each of the subject systems, we

studied a significant number of releases, and we expect this to help minimize the threat to some extent. To

further mitigate the threat, we carefully chose the subject systems from different application domains, and

written in different programming languages.

Reliability: The methodology of this study including the procedure for data collection are documented

in this chapter. The subject systems are open-source, while the NiCad-2.6.3 clone detector and the extended

version of gCad genealogy extractor are also available online2. Therefore, it should be possible to replicate

the study.

5.6 Related Work

There has been considerable research in characterizing clone evolution and distinguishing clones of interest

for refactoring. Genealogy-based studies on clone evolution in general are discussed in Section 4.6.3. In

this section, we confine our discussion in those work that are particularly relevant to ours delineated in this

chapter.

A number of attempts have been made to distinguish potential clones for refactoring and removal. From a

manual analysis of 800 function/method level clones over six different open-source Java systems, Balazinska

et al. [20] proposed a taxonomy of function clones based on the differences and similarities in the program

elements. Based on the location of clones in the inheritance hierarchy, Koni-N’Sapu [158] proposed another

clone taxonomy and a set of object-oriented refactoring patterns for refactoring each category of code clones.

Later, Kapser and Godfrey [139] proposed a clone taxonomy based on the locations of clones in the file-system

hierarchy and (dis)similarities in the code functionalities.

Schulze et al. [258] argued that aspect-oriented refactoring (AOR) can be more appropriate than object-

oriented refactoring (OOR) in certain scenarios. They also proposed a code clone classification scheme to

2http://usask.ca/∼minhaz.zibran/pages/projects.html

93

support the decision of whether to use OOR or AOR for clone removal. Other techniques, such as design

patterns [19] and traits [213] were also attempted to identify and refactor clones of interest. Torres [278]

applied formal concept analysis and suggested that a classification of concepts containing duplicated code

can provide hints about which refactoring can be suitable. He applied a concept-lattice based data mining

approach to derive four categories of concepts containing duplicated code and suggested refactoring patterns

suitable for refactoring clones in each of the categories.

Higo et al. [104] proposed a software-metrics-based approach to identify potential clones that can be easier

to refactor using the extract method and pull-up method refactoring patterns. Variations of such metrics-

based approaches are realized in tools namely Gemini [280] and ARIES [104]. Choi et al. [49] carried out a

developer-centric study to determine the effectiveness of different combinations of metrics in distinguishing

clones of interest for refactoring.

None of the aforementioned work was based on code clone genealogies as ours, where we examine the

evolution of individual clone fragments to characterize the patterns of change and removal of clones. Based

on the experience from an ethnographic study on copy and paste programming practices, Kim et al. [152]

reported that “larger or frequently copied code fragments are good candidates for refactoring.” From our

study, we found evidence to partially support their conjecture. We found that clones that are larger in size,

in terms of the number lines of code, appear to be attractive for refactoring, but the size of the clone-groups

in terms of the number of clone fragments do not have significant impact on their removal, and most of the

clones do not experience frequent changes before their removal.

Based on a case study with two open-source Java systems, Tairas and Gray [269] reported that in some

cases clone refactorings were partially performed on only parts of the clones (i.e., sub-clones). However,

their focus was only on the occurrences of refactorings composed of the extract method refactoring pattern.

The objective of our work, as demonstrated in this chapter, was to investigate and characterize removal and

refactoring of clones not only through the extract method refactoring patterns, but also by all other possible

means.

Göde [90] conducted a case study over four systems, and investigated the extent clones were removed

from the systems. He found many instances of deliberate clone removal, and the majority of those removals

were performed by the extract method refactoring pattern. He further reported that the developers refactored

mostly the closely located clones, which is also consistent with our findings as presented in this chapter. The

study of Göde was based on only three metrics, and he concluded that more complex metrics such as change

frequency of clones should be examined to better understand the phenomenon. Our study significantly differs

from that of Göde. Based on clone genealogies over 228 releases of six software systems and using a wide

range of metrics and characterization criteria, we capture a broader picture of clone removal and changes in

open-source software systems.

94

5.7 Summary

This chapter presents a genealogy-based empirical study on the evolution of individual clone fragments to

characterize the changes and removal of exact (Type-1) and near-miss (Type-2 and Type3) code clones. We

examined a total of 329 releases from nine open-source software systems written in Java, C, and C#.

In the study, we addressed eight research questions, and derived answers to those with a combination of

qualitative and quantitative analyses as well as statistical tests of significance. The findings of our study

shed light on the conventional wisdom about clone evolution, in particular, derive useful insights into the

patterns of changes and removals of code clones in practice. We believe that the practical findings from this

study make significant contributions to the existing wisdom about clone evolution, refactoring, and removal,

which in turn, will be useful for devising effective tools and techniques for informed clone management.

From the study, we found that the sizes of the clone-groups (in terms of the number of member clone

fragments), or the granularity (i.e., functions or blocks) of clones, or their dispersion in the file-system

hierarchy do not have any significant effect on clone removal in practice. In terms of change patterns, we did

not find any relationships between clone removal and any particular type (i.e., consistent or inconsistent) of

changes. However, inconsistent changes are found to have dominated over consistent changes of code clones.

We also found that the majority of clones that were removed, did not experience frequent changes before

removal, and surprisingly, most of those clones underwent changes only once, before they were removed

from their respective systems. A few early releases of the software systems are found to have experienced

significantly more changes and removal of clones than the later releases.

During manual investigation, we discovered many instances of clones, which could be attractive for refac-

toring, but those were left alone, perhaps due to the lack of proper tool support for clone management

and refactoring, or those clones escaped from the attention of the developers, or they were deliberately ig-

nored by the developers considering the required effort to put within the tight development schedule. More

importantly, we found that highly similar or larger clone fragments appeared to be attractive for removal.

Indeed, larger clone fragments can appear more visible to the developer while the refactoring of highly

similar clone fragments can be easier, because refactoring of such clones deals with less variations in the

clone fragments. However, we do not have any evidence suggesting that the removal of very similar or larger

code clones can have higher positive impact on the software design than that from the removal of smaller

code clones or clones with higher levels of dissimilarities. In this regard, a clone refactoring scheduler can

play a vital role by suggesting a subset of most attractive clones for refactoring to maximize improvement in

software design quality while keeping the refactoring effort within reach. In the next chapter (Chapter 6),

we present our clone refactoring scheduler developed for this particular purpose.

95

Chapter 6

Refactoring Effort Estimation and Scheduling

“I believe there is no philosophical high-road in science, with epistemological signposts.
No, we are in a jungle and find our way by trial and error,

building our road behind us as we proceed.”
– Max Born

In Chapter 3, we presented our IDE-based tool for the clone detection, which is an inseparable part of clone

management. Once clones are identified, careful refactoring is what we need to remove unnecessary clones.

From the analyses of code clones and their evolution, as described in Chapter 4 and Chapter 5, we found that

some clones disappear during their evolution while many clones propagate through long series of subsequent

releases of the software system. Moreover, clone removal in practice was not found to be affected by the sizes

of the clone-groups, their granularity, or their distribution in the file-system hierarchy. Larger clone fragments

can appear to be easily visible candidates for refactoring while clone fragments with less dissimilarities can

be easier for refactoring. However, to make prudent decisions in choosing potential clones for refactoring one

must take into account the required efforts and possible effects of refactoring on the overall quality of the

source code. Addressing this issue, in this chapter, we present a new model for estimating refactoring efforts,

and a novel scheduler for wisely choosing candidate clones for refactoring.

This chapter is organized as follows. In Section 6.1, we elaborate the problem description and its context.

In Section 6.2, we identify the refactoring patterns that are suitable for code clone refactoring. In Section 6.3,

we describe our clone refactoring effort model. Section 6.4 discusses how the effect of refactoring can be esti-

mated by a developer. In Section 6.5, we describe the possible constraints on refactorings. In Section 6.6, we

present our CSOP (Constraint Satisfaction Optimization Problem) formulation of the refactoring scheduling

problem. In Section 6.8, we illustrate our empirical study to evaluate our refactoring scheduler and the effort

model. In Section 6.9, we discuss related work. Finally, in Section 6.10, we conclude the chapter.

6.1 Introduction

Although cloning is a common code reuse mechanism, code clones may also be detrimental in many cases [133,

142, 154, 222, 227, 274]. Nevertheless, in many cases, code clones are unavoidable or even desirable. Yet,

to prevent code inflation and reduce maintenance cost, the number of code clones should be minimized by

96

applying justified refactoring. However, refactoring is not free, rather it is often risky as it might introduce new

bugs and hidden dependencies. Moreover, not all clones can always be feasible targets of refactoring [44, 248].

Therefore, it is important to have a prioritized refactoring schedule of the potential refactoring candidates

(i.e., clones that are refactorable) so that the maintenance engineers can focus on a short list of refactoring

candidates considering the existing constraints, potential benefits, risks, and available resources.

There are many patterns [81, 80] for refactoring source code in general. Given a context, a refactoring

pattern describes a sequence of refactoring activities (i.e., modification operations) that can be performed

to improve code/design quality. However, not all of the refactoring patterns are directly applicable to code

clone refactoring. The applicability of a certain refactoring largely depends on the context (e.g., dependency

of the code fragment under consideration with the rest of the source code). Therefore, for code clones,

refactoring activities and the relevant contexts must to be identified in the first place. The consequences

of clone refactoring (e.g., impact on the code/design quality) should also be taken into account. The effort

required for applying certain refactoring on the code clones should also be minimized to keep the maintenance

cost within reach. The application of a subset of refactorings from a set of applicable refactorings may result

in distinguishable impact on the overall code quality. Moreover, there may be sequential dependencies and

conflicts among the refactorings, which lead to the necessity that, from all refactoring candidates a subset of

non-conflicting refactorings be selected and ordered for application, such that the quality of the code base is

maximized while the required effort is minimized [309].

Automated software refactoring is often performed with the aid of graph transformation tools [223], where

the available refactorings are applied without having been optimally scheduled [183]. The application order

of the semi-automated (or manual) refactorings is usually determined implicitly by human developers. How-

ever, developers’ efforts may be inefficient and error-prone, especially for large systems. While experienced

developers may do it well, inexperienced ones may build a poor/infeasible schedule. The challenge is likely

to be more severe when refactoring legacy systems or when a developer new to the code base must devise

the refactoring schedule. Therefore, automated (or semi-automated) scheduling for performing selection and

ordering of refactorings from a set of refactorings is a justified need. However, such a scheduling of code

clone refactoring is a NP-hard problem [37, 176, 183] and, thus, the complexity of a problem instance grows

exponentially for large systems having many code clones.

In this regard, this work makes two contributions. First, we introduce an effort model for estimating the

developers’ effort required to refactor code clones in procedural or object-oriented (OO) programs. Second,

taking into account the effort model and a wide variety of possible hard and soft constraints, we formulate

the scheduling of code clone refactorings as a constraint satisfaction optimization problem (CSOP) and solve

it by applying Constraint Programming (CP) techniques that aims to maximize benefits (measured in terms

of changes in the code/design quality metrics) while minimizing refactoring efforts.

To the best of our knowledge, ours is the first effort model for refactoring object-oriented source code and

we are the first to apply CP techniques in the scheduling of code clone refactorings. We choose to adopt CP

97

for two main reasons. First, CP is a natural fit for solving CSOPs such as scheduling problems. Second, this

technique integrates the strengths from both artificial intelligence (AI) and operations research (OR) and has

been shown efficient in solving CSOPs [24, 306].

To evaluate the effectiveness of our scheduler and the code clone refactoring effort model, we also conduct

an empirical study on six software systems written in Java. We find that our scheduler is capable of efficiently

computing the optimal refactoring schedule and our refactoring effort model offers significant help in the

estimation of the refactoring efforts.

Figure 6.1: Example of clone refactoring in VisCad: the method on the top-right corner is extracted
by generalizing the clone pairs (shaded blocks on the left)

6.2 Clone Refactoring

There have been immense research in software refactoring in general. Fowler et al. [81] initially proposed

a set of 72 software refactoring patterns and until recently the number has increased to 93 [80]. Those

patterns of refactorings in general are meant to get rid of different types of code smells (including duplicated

code) and to prevent software decay (i.e., loss of code/design quality) [4]. Based on a survey of existing

literature [104, 105, 156, 176, 257, 300] and our experience, we find that among those general software

refactoring patterns [81, 80], the following patterns are particularly suitable for code clone refactoring. Detail

about these refactoring patterns can be found elsewhere [81, 80].

98

• Extract method (EM) extracts a block of code as a new method and replaces that block by a

call to the newly introduced method. EM may cause splitting of a method into pieces. For code

clone refactoring, similar blocks of code can be replaced by calls to an extracted generalized method.

Figure 6.1 shows an example of the extract method refactoring.

• Pull-up method (PM) removes similar methods found in several classes by introducing a generalized

method in their common superclass. Figure 6.2(a) demonstrates a pull-up method refactoring through

a schematic diagram.

• Extract superclass (ES) introduces a new common superclass for two or more classes having sim-

ilar methods and then applies pull-up method. Extract superclass refactoring may be necessary when

those classes do not already have a common superclass and those classes can be brought under a com-

mon superclass. Figure 6.2(b) presents an a schematic diagram demonstrating the extract superclass

refactoring pattern.

• Extract utility-class (EU) is applicable in situations where similar functions are found in different

classes, but those classes do not conceptually fit to undergo a common superclass. A new class is

introduced that accommodates a method generalizing the similar methods that must be removed from

those classes. Figure 6.2(c) demonstrates extract utility-class refactoring through a schematic diagram.

A refactoring pattern is composed of a sequence of other refactoring patterns or low-level modification

operations such as identifier renaming, method parameter re-ordering, changes in type declarations, splitting

of loops, substitution of conditionals, loops, algorithms, and relocation of method or field, which may be

necessary to produce generalized blocks of code from near-miss (similar, but not exact duplicate) clones. For

the purpose of formulation, we use the term refactoring operators to denote both the composite refactoring

patterns and low-level modification operations.

For code clone refactoring, these refactoring operators will operate on groups of clone fragments (i.e.,

code blocks that are clones of each other) having two or more members. We refer to such clone-groups as the

refactoring operands or candidates. Thus, a refactoring activity (or simply, refactoring) r can be formalized

as:

r = 〈op, g〉,where op ∈ {EM,PM,ES,EU, ...}

and g is the clone-group on which the refactoring operator op operates. More than one refactoring operators

may be needed to refactor the same clone-group and, thus, a complete refactoring of a clone-group may

require more than one refactoring activity.

Let us consider a clone-group, g = {c1, c2, c3, . . . , cn}, where ci (1 ≤ i ≤ n) is a clone fragment inside

method mi, which is a member of class Ci hosted in file Fi contained in directory Di. Mathematically,

cyi my
i Cy

i Fy
i Di, for object-oriented code.

cyi my
i Fy

i Di, for procedural code.

99

Superclass

Subclass1

method1()

Subclass2

method2()

Superclass

method()

Subclass1 Subclass2

(a) Pull-up method
clone methods method1 of Subclass1 and method2 of Subclass2

are pulled up in their common superclass

Class1

method1()

Class2

method2()

Superclass

method()

Class1 Class2

(b) Extract superclass
clone methods method1 of Class1 and method2 of Class2 are pulled up

in a newly created common superclass

Class1

method1()

Class2

method2()

(c) Extract utility class
clone methods method1 of Class1 and method2 of Class2

are moved as a unified method into a third class,

UtilityClass

method()

Class1 Class2

Figure 6.2: Different object-oriented patterns for code clone refactoring

100

Where, the symbol y indicates a containment relationship. xyy means that x is contained in y, in other

words, y contains x. The relationship preserves transitive property, i.e., xyyyz ⇒ xyz. Thus, the set C(g)

of all classes hosting the clone fragments in g can be defined as:

C(g) = {Ci | ∀ ci ∈ g, cyi Ci} (6.1)

We use this notation in subsequent sections of this chapter, in particular, in formalizing the navigation effort

in Section 6.3.3.

6.3 Estimation of Refactoring Effort

The effort required for code clone refactoring is likely to depend on the type of refactoring operators and

operands. For example, applying the extract method refactoring pattern on exact duplicate code clones

will require less effort than that for applying it on near-miss code clones. Moreover, refactoring clone code

fragments that are scattered across different locations of the source code with respect to the file system or

inheritance hierarchy may require relatively more effort than that for refactoring clones residing cohesively

at a certain location of the source code. To address these issues, we propose a code clone refactoring effort

model, which, to the best of our knowledge, is the first model for the estimation efforts needed to refactor

code clones in procedural and object-oriented source code. We have formulated this effort model based on

our understandings, developed from a survey of existing literature [4, 65, 81, 80, 105, 198, 261] and our

experience in clone refactoring.

6.3.1 Context Understanding Effort

The applicability of refactoring on certain code clones is largely dependent on the context. The context

captures the relationship of a certain code fragment with the rest of the source code. Therefore, before

refactoring, the developer must understand the context pertaining to the refactoring candidate at hand.

Code clone refactoring may result in removal or relocation of code fragments that may span a block of code

or an entire method/function or even an entire class. Such removal or relocation of code fragments may cause

changes in the underlying inheritance hierarchy and method call-graph. Hence, for understanding the context

and the possible impact of changes, the developer must examine the caller-callee delegation of methods and

the inheritance hierarchy.

Effort for Understanding Method Delegation. A certain refactoring under consideration may cause

the clone fragment to move to a different location (e.g., class, package). Such a relocation may hinder the

visibility of any methods to which the clone fragment refers. Moreover, if a function clone is relocated, all

references to the original function must be updated accordingly. To understand the delegation of methods

involving the concerned code fragment ci ∈ g, the developer must understand the chain of methods that can

be reached from ci via caller-callee relationships. Let Mr(ci) be the set of all such methods. The developer

101

must also comprehend the set Mf (ci) of all the methods from which ci can be reached via caller-callee

relationships. Then, the set of methods to be investigated for understanding the delegation effort concerning

ci is determined as:

delegation(ci) = Mf (ci) ∪Mr(ci) ∪ {mi}. (6.2)

Hence, for understanding delegation concerning all the clone fragments in g, the set of methods required

to examine, becomes:

Delegation(g) =
⋃

ci∈C(g)

delegation(ci). (6.3)

Thus, for the clone-group g, the total effort for understanding method delegation can be estimated as:

Ed(g) =
∑

m∈Delegation(g)

LOC(m) (6.4)

where, LOC(m) computes the total lines of code in method m including the comments, but excluding all

blank lines.

Effort for Understanding Inheritance Hierarchy. Suppose that Cp(g) is the set of all lowest/closest

common superclasses of all pairs of classes in C(g)1. The developer must also understand those classes in

the inheritance hierarchy that have overridden (in subclasses) or referred to method mi containing any code

clone ci ∈ g. Let Cs(g) be the set of all such classes. Then, Ch(g) = {Cp(g)∪Cs(g)∪C(g)} becomes the set

of all classes required to be examined for understanding the inheritance hierarchy concerning the code clones

in g and the effort Eh(g) required for this can be estimated as:

Eh(g) =
∑

C∈Ch(g)

LOC(C). (6.5)

6.3.2 Effort for Code Modifications

To perform refactoring on the target clones, the developer must edit at different locations in the source code.

The effort needed to perform such edits can be captured in terms of token modifications and code relocations.

Token Modification Effort. Developer’s source code modification activities typically include modifica-

tions in the program tokens (e.g., identifier renaming). Let T = {t1, t2, t3, . . . , tk} be the set of tokens such

that a token ti ∈ T is required to be modified to t′i and the edit distance between ti and t′i is denoted as

δ(ti, t
′
i). Then, the total effort Et(g) for token modifications can be estimated as:

Et(g) =

k∑
i=1

δ(ti, t
′
i). (6.6)

1For any two Java classes Ci and Cj containing code clones ci and cj respectively, there may be at most one lowest common
superclass, as Java does not support multiple inheritance. Any Java class is a subclass of the Object class. If this Object class
is found to be the lowest common superclass of any pair of classes, this can be ignored, and those classes are considered to have
no common superclass.

102

However, the state-of-the-art IDEs (Integrated Development Environments) such as Eclipse and NetBeans

facilitate identifier/variable renaming simply by select-replace operations with the help of graphical user

interfaces. Thus, with the availability of such tool support, the edit distance δ(ti, t
′
i) can simply be replaced

by a constant µ. By default, µ = 1, but the developer can set a different value to µ as appropriate.

Code Relocation Effort. When developers must move a piece of code from one place to another, they

typically select a block of adjacent statements and relocate them all at a time. Hence, the code relocation

effort Er(g) can be estimated as:

Er(g) = |β|

where β is the set of all non-adjacent blocks of code that must be relocated to perform the refactoring. |β|
denotes the number of blocks in the set β.

6.3.3 Navigation Effort

Effort for source code comprehension, modification, and relocation is also dependent on the number of files

and directories involved and their distributions in the file-system hierarchy. To capture this effort, our model

includes the notion of navigation effort, En(g), calculated as follows:

En(g) = |Fd(g) ∪ Fh(g)|+ |Dd(g) ∪Dh(g)|+DCH(g) +DFH(g) (6.7)

where:

Fd(g) ={Fi | my
i Fi,mi ∈ Delegation(g)}

Fh(g) ={Fi | Cy
i Fi, Ci ∈ Ch(g)}

Dd(g) ={Di | Fy
i Di, Fi ∈ Fd(g)}

Dh(g) ={Di | Fy
i Di, Fi ∈ Fh(g)}

DCH(g) = max
Ci,Cj∈Ch(g)

{∂(Ci, Cj)}

DFH(g) = max
Fi,Fj∈Fd(g)∪Fh(g)

{ð(Fi, Fj)}

Here, DCH(g) refers to the dispersion of class hierarchy with ∂(Ci, Cj) denoting the distance between

class Ci and class Cj in the inheritance hierarchy. The distance between any two classes Ci and Cj is

computed based on an abstract directed graph where each node represent a class and their exists an edge

between each superclass and its subclass. Let Cp be the lowest common superclass of both Ci and Cj . Then,

∂(Ci, Cj) = max{pathLength(Ci, Cp), pathLength(Cj , Cp)}, where pathLength(Ci, Cp) is measured as the

number of edges in the shortest path from Ci to Cp. In Figure 6.3, the computation of distance between

classes is illustrated with an example. More detail about DCH(g) can be found elsewhere [104]. DFH(g)

is a similar metric that captures the dispersion of files with ð(Fi, Fj) denoting the distance between files Fi

and Fj in the file-system hierarchy.

103

Cp

C4 C5 C6 C7

C3C2C1

C8

C9 pathLength(C1, Cp) = 1

Cp is the lowest common
superclass of C1 and C6

pathLength(C6, Cp) = 2

= max {
 pathLength(C1, Cp),
 pathLength(C6, Cp)
 }
 = max {1, 2}
 = 2

(C1, C6)

Figure 6.3: Computation of distance between classes

6.3.4 Effort Model

Based on the criteria discussed before, the total effort E(g) needed to refactor clone-group g is estimated as:

E(g) = wd × Ed(g) + wh × Eh(g) + wt × Et(g) + wr × Er(g) + wn × En(g) (6.8)

where wd, wh, wt, wr, and wn are respectively the weights on the efforts for understanding method delegation,

understanding inheritance hierarchy, token modification, code relocation, and navigation. By default, they

are set to one, but the developer may assign different weights to penalize certain types of efforts.

6.4 Prediction of Refactoring Effects

The expected benefit from code clone refactoring is the structural improvement in the source code, which

should also enhance the software design quality. Obvious expected benefits include reduced source lines of

code (SLOC), less redundant code, to name a few. For procedural code, procedural metrics (e.g., SLOC,

Cyclomatic Complexity) as well as structural metrics (e.g., fan-in, fan-out, and information flow) can be

used to estimate software quality after refactoring. For object-oriented systems, these metrics can be sup-

plemented by object-oriented design quality models, such as QMOOD [22] or design quality metrics, such as

the Chidamber-Kemerer [47] metric suite. Quantitative or qualitative estimation of the effect of refactoring

on the quality metrics can be possible before the actual application of the refactoring [37, 176, 252, 262, 266].

Having chosen a suitable set of quality attributes; let Q = {q1, q2, q3, . . . , qη} be the set of quality attribute

values before refactoring and Qr = {q′1, q′2, q′3, . . . , q′η} be the estimated values of those quality attributes

after applying refactoring r. The impact of a certain refactoring r in code/design quality can be assessed by

104

Table 6.1: QMOOD formula for quality attributes (taken from [22])

Attribute Formula

Reusability = −0.25×DCC + 0.25× CAM + 0.5× CIS

+0.5×DSC

Flexibility = 0.25×DAM− 0.25×DCC + 0.5×MOA

+0.5×NOP

Understandability = −0.33×ANA + 0.33×DAM− 0.33×DCC

+0.33× CAM− 0.33×NOP− 0.33×NOM

−0.33×DSC

Functionality = 0.12× CAM + 0.22×NOP + 0.22× CIS

+0.22×DSC + 0.22×NOH

Extendability = 0.5×ANA− 0.5×DCC + 0.5×MFA

+0.5×NOP

Effectiveness = 0.2×ANA + 0.2×DAM + 0.2×MOA

+0.2×MFA + 0.2×NOP

comparing the quality attributes before and after performing that particular refactoring. Hence, the total

gain (or loss) in quality Qr from refactoring r can be estimated as:

Qr =

η∑
j=1

ϑj × (q′j − qj) (6.9)

where ϑj is the weight on the jth quality attribute. By default ϑj = 1, but the developers can assign different

values to impose more or less emphasis on certain quality attributes.

In our work, we use the QMOOD design quality model for estimating the effect of refactoring on object-

oriented source code. QMOOD is a prominent quality model for object-oriented systems, which is used by

other researchers [37, 183, 176]. We choose QMOOD because this quality model has the advantage that it

defines six high-level design quality attributes (Table 6.1) from the 11 lower level structural property metrics

(Table 6.2). Indeed, the sum of differences in Equation 6.9 may not be able to utilize the fullest benefit of

the quality model, but it serves our purpose.

6.5 Refactoring Constraints

Among the applicable refactorings, there may be conflicts and dependencies [198] besides their distinguishable

impacts on the design quality. The application of one refactoring may cause the operands of other refactorings

to disappear and thus may invalidate their applicability [37, 176, 198]. Besides such mutual exclusion on

conflicting refactorings, the application of one refactoring may also reveal new refactoring opportunities,

as suggested by Lee et al. [176]. We understand that these are largely due to the composite structure of

105

Table 6.2: QMOOD metrics for design properties (taken from [22])

Design Property Metric Description

Design size DSC Design size in classes

Complexity NOM Number of methods

Coupling DCC Direct class coupling

Polymorphism NOP Number of polymorphic methods

Hierarchies NOH Number of hierarchies

Cohesion CAM Cohesion among methods in class

Abstraction ANA Average number of ancestors

Encapsulation DAM Data access metric

Composition MOA Measure of aggregation

Inheritance MFA Measure of functional abstraction

Messaging CIS Class interface size

certain refactoring patterns, where one larger refactoring is composed of several smaller core refactorings [4].

For example, when extract superclass refactoring is applied, pull-up method is also applied as a part of it

(Figure 6.2(b)).

There may also be sequential dependencies between refactoring activities [176, 198]. Constraints of mutual

inclusion may also arise when the application of one refactoring will necessitate the application of certain

other refactorings [300]. Figure 6.4(a) presents an example of mutual inclusion constraint and Figure 6.4(b)

demonstrates a mutual exclusion constraint with an example. The organization’s management may also

impose priorities on certain refactoring activities [37], for example, lower priorities on refactoring clones in

the critical parts of the system. We identify such priorities as soft constraints in addition to the following

three types of hard constraints.

Definition 7 (Sequential dependency) Two refactorings ri and rj are said to have sequential depen-

dency, if ri cannot be applied after rj. This is denoted as rj 9 ri.

Definition 8 (Mutual exclusion) Two refactorings ri and rj are said to be mutually exclusive, if both

ri 9 rj and ri 8 rj holds. The mutual exclusion between ri and rj is denoted as ri = rj. Thus, ri = rj

implies both rj 9 ri and ri 9 rj.

Definition 9 (Mutual inclusion) Two refactorings ri and rj are said to be mutually inclusive, if ri is

applied, rj must also be applied before or after ri, and vice versa. This is denoted as ri ↔ rj.

The complete independence of ri and rj is expressed as ri⊥rj . For further detail about the refactoring

constraints with concrete examples, interested readers are referred to elsewhere [37, 176, 198, 300].

106

Option 1

Option 2

ClassA

method_A

ParentClassAB

ClassB

method_Bclone

ClassC

method_C

clone clone

ClassA

ParentClassAB

ClassB

SuperClassABC

method_ABC

ClassC

ClassA

ParentClassAB

ClassB

ClassC

UtilityClass

method_ABC

Extract Superclass

Extract
Utility Class

Mutually
exclusive

(a) Mutual inclusion
Pull-up of clone methods method_A1 and
method_B1 also needs pull-up of clone
methods method_A2 and method_B2

SuperClass

method_1

method_2

calls

ClassA ClassB

Pull-up methodsExtract superclass

ClassA

method_A1

method_A2

calls

clone

ClassB

method_B1

method_B2

calls
clone

(b) Mutual exclusion
Either choose option-1 (extract common superclass and pull-up method) or option-2 (extract utility class and extract a generalized
method to put in the newly introduced utility class, then let other classes use the refer to the utility class). The choice of option-1 or

option-2 may depend on design constraints/choices.

Figure 6.4: Mutual inclusion and mutual exclusion constraints on clone refactoring

107

6.6 Formulation of Refactoring Schedule

Upon identification of all the hard and soft constraints pertaining to a scheduling problem instance, computing

an optimal refactoring schedule to maximize code quality while minimizing efforts is a NP-hard problem [37,

176, 183]. Finding the optimum solution for a large instance of such a problem becomes practically too

expensive (time consuming) and, thus, a feasible optimal (near-optimum) solution is desired. However, the

problem is by nature a Constraint Satisfaction Optimization Problem (CSOP). A CSOP is a kind of problem

characterized by a set of constraints that must be satisfied and among all the feasible solutions, the best

possible solution is desired. A solution is said to be feasible if it satisfies all the constraints. A solution

is evaluated better than another based on an objective function, which a solver strives to optimize (i.e.,

maximize or minimize). We model the refactoring scheduling problem as a CSOP and solve it by applying a

constraint programming technique, which no one reported to have applied before.

Having identified the set R of potential refactoring activities, we define two decision variables Xr and Yr:

Xr =

0 if r ∈ R is not chosen

1 if r ∈ R is chosen

Yr =

0 if r ∈ R is not chosen

k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|. Thus, Xr captures whether a refactoring r is included in the schedule and Yr captures

the order of refactoring r in the selected schedule of refactorings. We also define a |R|×|R| constraint matrix

Z to capture the constraints and sequential dependencies between distinct refactorings ri and rj :

Zi,j =

0 if ri⊥rj
1 if ri = rj

+2 if rj 9 ri and ri ↔ rj

−2 if ri 9 rj and ri ↔ rj

+3 if rj 9 ri, but neither ri ↔ rj nor ri = rj

−3 if ri 9 rj , but neither ri ↔ rj nor ri = rj

Zi,j = −Zj,i or Zi,j = Zj,i = 1, for all 〈i, j〉. Let ρr be the priority on the refactoring r that operates on

clone-group gr. The CSOP formulation of the refactoring scheduling problem can be defined as follows.

maximize
∑
r∈R
Xrρr(Qr − E(gr)) (6.10)

108

subject to (with i 6= j),

Xr + Yr 6= 1, ∀ r ∈ R (6.11)

Xri + Xrj = 2⇒ Yri 6= Yrj , ∀ ri, rj ∈ R (6.12)

Zi,j −Zj,i > 0⇒ Yri < Yrj , ∀ ri, rj ∈ R (6.13)

Zi,j −Zj,i < 0⇒ Yri > Yrj , ∀ ri, rj ∈ R (6.14)

|Zi,j | = 1⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6.15)

|Zi,j | = 2⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (6.16)∑
r∈R
Xr ≤M (6.17)

Here, Equation 6.10 is the objective function for maximizing the code quality and minimizing the refactoring

effort while rewarding refactoring activities having higher priorities. One of the product term in the objective

function is Xr, which is equal to 1 only for selected refactorings, and for all other refactorings Xr equals to

0. Thus, the objective function takes into account the priority, quality, and efforts pertaining to only the

selected refactorings.

Equation 6.11 ensures that the decision variables Xr and Yr are kept consistent as their values are assigned.

If the refactoring r is not selected (i.e., Xr = 0), then Yr must also be 0, to denote that the refactoring r is

not assigned any position in the sequence of the scheduled refactorings. If the refactoring r is selected (i.e.,

Xr = 1), then Yr must not be zero, i.e., Xr + Yr 6= 1.

Equation 6.12 enforces that no two refactorings are scheduled at the same point in the sequence. Equa-

tion 6.13 and Equation 6.14 impose the sequential dependency constraints (i.e., ri 9 rj) on feasible schedules.

Mutual exclusion (i.e., ri = rj) and mutual inclusion (i.e., ri ↔ rj) constraints are enforced by Equation 6.15

and Equation 6.16 respectively. Equation 6.17 specifies that maximum M number of refactorings can be

chosen for scheduling. By defaultM = |R| butM can be set to a lower integer when a schedule of a certain

number of refactoring activities is desired, due to limitation of time, resource, or the like.

6.6.1 An Illustrative Example

Now, with an example, we further illustrate our formulation, especially the constraint matrix Z. Consider a

set of five refactorings R = {r1, r2, r3, r4, r5} having constraints as follows:

(i) r2 = r4 (i.e., r2 and r4 are mutually exclusive)

(ii) r4 9 r1 (i.e., r1 cannot be applied after r4)

(iii) r5 9 r3 (i.e., r3 cannot be applied after r5)

(iv) r3 ↔ r5 (i.e., r3 and r5 are mutually inclusive)

109

Table 6.3: Constraint matrix Z representing the constraints among the refactorings in R

r1 r2 r3 r4 r5

r1 +3

r2 1

r3 +2

r4 −3 1

r5 −2

Other than the above mentioned constraints, any two refactorings 〈ri, rj〉 ∈ R are independent (i.e., ri⊥rj).
The constraint (iii) and constraint (iv) above jointly enforces that if either of r3 and r5 is selected, the other

refactoring must also be selected and then r3 must also be scheduled before r5. According to the constraint-

specifications, a valid constraint matrix Z is shown in Table 6.3. The empty cells in the table are filled up

will zeros, which we omitted here for the purpose of better readability.

The constraint (i) is enforced by Equation 6.15. Here, Z2,4 = Z4,2 = 1. If both r2 and r4 are selected

then Xr1 + Xr2 = 1 + 1 = 2, which violates the constraint in Equation 6.15.

The constraint (ii) is imposed by the Equation 6.13 and Equation 6.14. Here, Z1,4 = +3 and Z4,1 = −3

and thus, Z1,4−Z4,1 = 6, which is higher than zero. Hence, Equation 6.13 imposes that Yr1 < Yr4 , and thus

r1 preceedes r4 in the schedule (if both are selected). Again, with respect to Equation 6.14, Z4,1−Z1,4 = −6,

which is less than zero and hence Yr4 > Yr1 is imposed. Thus, Equation 6.14, ensures that r4 follows r1 in

the schedule (if both are selected).

The constraint (iii) is satisfied in the same way the constraint (ii) is satisfied. Although in this case,

Z3,5 −Z5,3 = 4 and Z5,3 −Z3,4 = −4, the evaluation of negativity works the same way as does for satisfying

the constraint(ii).

Finally, the mutual inclusion in constraint (iv) is enforced by Equation 6.16. According to our current

example, |Zi,j | = |Zj,i| = 2. Hence, Equation 6.16 ensures that the remainder of (Xr3 + Xr5) divided by 2

must be equal to zero, which is possible only if Xr3 = Xr5 = 1 or Xr3 = Xr5 = 0, that means if both or

neither of r3 and r5 are selected. Thus, the constraint of mutual inclusion is satisfied.

6.7 Implementation

Based on the CSOP formulation of the scheduling problem, we developed a CP model using OPL (Optimiza-

tion Programming Language)2. For OPL programming, we used the IBM ILOG CPLEX Optimization Studio

12.2 IDE under an academic license. The IDE can be integrated with CPLEX Solver and CP Optimizer,

which are IBM’s optimization engines for solving optimization problems modeled in LP and CP respectively.

2OPL (Optimization Programming Language) is a relatively new modeling language for combinatorial optimization that
simplifies the formulation and solution of optimization problems.

110

Constraint programming (CP) combines techniques from AI and OR and it has been shown to be effective

in solving combinatorial optimization problems, especially in the area of scheduling and planning [24, 306].

Over the past decade, a separate conference series3 is held to host research to integrate and combine AI

and OR techniques in CP. CP allows a more natural and flexible way to express objective functions and

constraints where the functions and equations do not necessarily have to be strictly linear. Based on the

CSOP formulation of the scheduling problem, we also developed a CP model of the problem and for solving

it, invoked the CP Optimizer from inside the IBM ILOG CPLEX Optimization Studio 12.2 IDE.

The CP technique works as follows. Given a set of variables with their domains and a set of constraints

on those variables, first the domains of the variables are identified. Then, based on the given constraints, the

domains of the concerned variables are modified. When a variables domain is modified, the effects of this

modification are propagated through constraint propagation to any constraint involving that variable. For

each constraint, domain reduction detects inconsistencies among the domains of variables pertinent to that

constraint and removes inconsistent values. When a particular variable’s domain becomes empty, it may be

determined that the constraint cannot be satisfied and backtracking may occur undoing an earlier choice.

CP repeatedly applies constraint propagation and domain reduction algorithms to make the domain of each

variable as small as possible while keeping the entire system consistent. To find the optimal solution, the CP

technique may explore, in the worst case, all the feasible solutions and compare them based on the objective

function’s values.

For the purpose of evaluation, we also implemented Linear Programming (LP), genetic algorithm (GA),

and three variants of greedy algorithms for optimizing the automated scheduling of code clone refactorings.

Further details of about the LP, GA, and greedy scheduling techniques are presented in Section 6.8.4.

6.8 Empirical Evaluation

To evaluate our refactoring scheduler and the effort model, we conducted an empirical study on refactoring

six software systems developed (or under development) in our software research lab4. The subject systems

and their sizes in terms of source lines of code (SLOC) are described in Table 6.4. All the subject systems

shown in Table 6.4 are written in Java and the sizes of the systems in terms of SLOC exclude the comments

and blank lines. In particular, we designed the study to address the following two research questions:

RQ1: Given a set of refactoring activities and a set of constraints for them, can our refactoring scheduler

effectively compute conflict-free optimal scheduling of refactorings? The effectiveness of the technique is

measured by quantitative comparison with other techniques such as GA and LP. The conflict-freeness is

verified by manually checking for any constraint violation in the schedules computed by the scheduler.

3International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems (CPAIOR).

4Software Research Lab, Department of Computer Science, University of Saskatchewan, Canada,
http://www.cs.usask.ca/research/research_groups/selab

111

http://www.cs.usask.ca/research/research_groups/selab

Table 6.4: Software systems subject to the empirical study

Subject
SLOC Description

Systems

Mutation Framework 2,901
Ongoing extended implementation of the mutation framework

proposed by Roy and Cordy [240]

LIME [309] 3,494 A source code comparison engine

SimCad [279] 3,771 A clone detection tool

gCad [248, 249] 4,563 A clone genealogy extractor

VisCad [10, 9] 9,323 A tool for analysis and visualization of code clones

DomClone [228] 2,239 A domain information-based clone analysis (prediction) tool

RQ2: Is the code clone refactoring effort model (described in Section 6.3) useful in capturing and estimating

the efforts required for performing the refactorings? We address this exploratory research questions

by qualitative analysis of the observation on developers during the study and the developers’ feedback

through post-study questionnaires.

Typically, it is difficult and risky for developers to refactor a source code with which they are not famil-

iar [183]. However, it is the developers who are likely to know the best about the critical parts of the projects

that they develop and, thus, can better assess both the efforts and effects of refactoring and prudently assign

priorities on certain refactoring candidates. While the developers’ ability to assess the refactoring efforts and

effect for large and complex projects can still remain unreliable, for smaller systems, their ability should be

fairly reliable. Therefore, to evaluate our refactoring scheduler, we chose small projects (Table 6.4) developed

in our own research lab. The use of in-house software systems in the study not only facilitated manual

verification for correctness but also reduced the evaluation cost.

At the beginning of the study, we described to the developers the objectives of the study and provided

them with our refactoring effort model, as well as an initial list of refactoring operators that can be used

for code clone refactoring. Then, we explained a catalog of common software refactoring patterns [80] to

them and showed them how some of those can be applied for code clone refactoring. We also described the

QMOOD quality attributes to them and, upon discussion, came to a consensus to use the first six metrics

(Table 6.2) in our study. We all agreed that the rest of the metrics were too difficult to estimate through

subjective investigation, and no automated tool exists to compute them. Hence, we ignored the effect of code

clone refactoring on those metrics. To ignore them, the total gain in code/design quality (Section 6.4) was

computed having values of changes in those metrics set to zero. All the developers were graduate students

pursuing research in the area of software clones and thus possess some expertise in code clone analysis.

112

Table 6.5: Code clones in the systems under study

Subject Systems
Number of

Clone-groups Clone Fragments Total Refactorings

Mutation Framework 21 62 72

LIME 20 55 67

SimCad 16 42 64

gCad 28 91 93

VisCad 57 136 166

DomClone 21 56 77

Table 6.6: Demographic information about the developers used for refactoring effort/effect estimation

Age Software development experience

U
se

r

(in in industry in academia Known Programming Languages

years) (months) (months)

1 31 57 96 C, C++, Java, C#, Perl, Python, TXL, VB

2 34 30 156 C, C++, Java, Python, SQL

3 33 96 24 C, C++, Java, C#, Python

4 27 0 96 C, C++, Java, Visual C++, JavaScript

5 30 3 72 C, C++, Java, C#, TXL

6 35 0 144 C, C++, Java, VB, Scheme, Assembly, PHP, JavaScript

113

6.8.1 Clone Detection

The first and foremost activity towards code clone refactoring is the detection of code clones from the source

code. We used NiCad-2.6.3 [238] for detecting near-miss block clones of at least five lines in pretty-printed

format. We used the ‘blind-rename’ option of NiCad with UPIT (Unique Percentage of Items Threshold) set to

30%. The ‘blind-rename’ option instructs NiCad to ignore the differences in the names of identifies/variables

during comparison of the code fragments. UPIT is a size-sensitive dissimilarity threshold that sets NiCad’s

sensitivity to differences in the code fragments during the detection of near-miss code clones. For example,

if UPIT is set to 0% without the ‘renaming’ option, NiCad detects only exact clones (code clones that have

identical program text but may have variations in layouts); if the UPIT is 30% having the ‘renaming’ option

set, NiCad detects two code fragments as clones if at least 70% of the normalized pretty-printed text lines

are identical (i.e., if they are at most 30% different). In the detection of code clones, NiCad also ignores the

comments in the source code and reports code clones clustered into clone-groups based on their similarity.

6.8.2 Data Acquisition

The results of clone detection from the six subject systems were provided to the concerned developers, who

then further analyzed the detected clones and re-arranged the groups when necessary, based on the suitability

for refactoring within context according to their understanding. The demographic information about those

developers are presented in Table 6.6. For the analysis, the developers used VisCad [9, 10], a code clone

analysis and visualization tool developed in our research lab. For each of the systems, the number of clone-

groups and the number of distinct clone blocks involved in those groups are presented in Table 6.5, which

the developers identified as the potential candidates for refactoring.

Having the code clones organized into groups, the developers carried out further qualitative analysis

to determine the strategies for refactoring each clone-group (refactoring candidate). The identification of

a refactoring strategy, in particular, involved finding the appropriate refactoring operations, their order of

application, and mutual dependencies (if any). For each of the clone-groups chosen for refactoring, the de-

velopers wrote down the sequence of operations that they would perform to refactor that clone-group. In

determining the operations, the developers were free to choose any operations beyond the list of refactoring

operators they were initially provided. The right-most column of Table 6.5 presents the total number of

refactoring activities identified for each of the subject systems. The developers also noted down any restric-

tions in the ordering of the operations that must be followed to successfully refactor a clone-group. Any such

ordering restrictions between clone-groups were recorded as well.

As an example, in Figure 6.1, we present a clone-pair (shaded blocks on the left) with partial context

(surrounding code). The example is an excerpt from the source code of VisCad5. The developers chose

5The code is originally a part of diff-match-patch, an open-source library (available at http://code.google.com/p/google-
diff-match-patch/) that VisCad uses internally. We deliberately chose to present this simple example, so that anyone can easily
follow and verify.

114

Table 6.7: Example of operations and efforts for extract method

Operations for extract method Efforts

Produce signature of the target method 15

Copy clone fragment to the body of target method 1

Perform necessary modifications in the body 5

Replace clone fragments by calls to the extracted method 2

Total efforts 23

to refactor them by applying the extract method operation. The developers recorded further fine grained

operations and required efforts in order, as shown in Table 6.7. As explained by the developers, the effort

for producing the method signature was estimated by twice (for type and name) the number of parameters

to the method, plus three for method name, return type, and access modifier. Code modification effort was

estimated by the number of words (tokens) added, deleted, or modified.

As far as we are concerned, there is no existing tool for calculating refactoring efforts and ours is the first

conceptual model for this purpose, we relied on the developers’ opinions and wanted to see to what extent

our effort model was useful in estimating the effort of code clone refactoring. The developers were instructed

to estimate efforts required for each refactoring activity that they identified or for each of the clone-groups

as a whole they chose to refactor. Alhough they were provided the refactoring effort model, they were free

to apply their own understanding and analytical evaluations for the efforts estimation. As the developers

estimated refactoring efforts, at times, we observed and communicated with them to understand how they

were estimating the efforts for refactoring. We used our observations and the developers’ feedback for a

subjective evaluation of our effort model.

In the estimation of quality gains expected from the refactorings of code clones, we again relied on the

developers’ judgements, which we feel is important in this context. Using the QMOOD design property

metrics (Table 6.2), it was relatively easy for the developers to estimate the quality gain expected from the

refactoring of a clone-group. For example, to estimate the change in design size or complexity, the developers

did not compute the total number of classes or methods (before and after the refactoring) in the system,

they just estimated the changes in the number of classes or methods. For example, the refactoring scenario

presented in Figure 6.1 causes the complexity (number of methods) to increase by one and all other QMOOD

design property metrics under consideration remain unaffected.

Next, the developers were instructed to assign non-zero priorities between −5 (the lowest priority) and

+5 (the highest priority) to certain clone-groups that they considered important in terms of the necessity and

risks involved in refactoring them. The priorities were set to +1 for clone-groups that were left unassigned by

the developers. For each of the systems, the developers identified some intentional code clones in particular

parts of the systems. They considered some of them to be critical and preferred not to take the risk of

115

refactoring them. Taking the developers’ opinions into consideration, we could have excluded those from our

study. Instead, we assigned the lowest priority to them for examining how our scheduler handles them in the

scheduling process.

The developers’ estimation of refactoring efforts, effects, and the assignment of priorities are then used to

compute refactoring schedules in the evaluation of our code clone refactoring scheduler.

6.8.3 Data Normalization

As described before, both the estimation of expected change in code/design quality and the refactoring efforts,

as well as the priorities were sometimes set on refactoring of clone-groups as a whole. Thus, in situations

where the developers made those estimations for refactoring an entire clone-group, we equally distributed

those estimations to all the refactoring operations involved in refactoring that particular clone-group.

Recall that the scheduling of code clone refactoring activities can be optimized towards three dimensions:

minimizing the refactoring efforts, maximizing the refactoring benefits, and maximizing the satisfaction of

priorities. However, the ranges of values obtained along those dimensions were different. For example, the

priorities ranged between +5 and −5, whereas the values of total refactoring efforts varied between 4.0 and

47. To prevent our scheduler getting biased towards any of the individual dimensions, we first normalized

the values obtained for all the three dimensions using the following procedure.

Let S = {v1, v2, v3, . . . , vn} be a set of values, then:

norm(vi) =
vi

max{|v1|, |v2|, |v3|, . . . , |vn|}
, ∀vi ∈ S

where, norm(vi) denotes the normalized value of vi. The set S can be the set of values for all the refactorings

along any of the three dimensions. The normalization actually brings the magnitudes of all those values

between zero and one (i.e., 0 < |norm(vi)| ≤ 1) and thus minimizes the inter-dimension influence of the

magnitudes, while still preserving the relative ratios of magnitudes within dimensions. The emphasis on

the efforts compared to the qualities can be tweaked by setting higher or lower weights as described in

Equation 6.8.

For priorities, before applying the aforementioned normalization, we carried out an additional normaliza-

tion phase by adding +6 to each priority values. Thus, we removed any priority less than or equal to zero.

This removal was necessary as in our objective function, the difference between quality and effort is multiplied

by priorities and we must ensure that the multiplication negatives or multiplication by zero priority do not

take place.

6.8.4 Schedule Generation

For each of the systems subject to our study, we enumerated all the refactorings, accumulated them with the

normalized data, and organized them in an appropriate OPL format to feed to the schedulers for automated

computation of the refactoring schedules.

116

We evaluated our CP scheduling approach in four phases. In the first phase, we compared our CP

scheduler with three variants of a greedy algorithm. The second phase compared our CP approach with

genetic algorithm (GA) that was used by other researchers [37, 176]. In the third phase, we compared the

CP scheduling with a manual approach. Finally, the fourth phase compared the CP technique with the

LP approach. In our study, we used the default settings in the estimation of total effort and quality gain,

as described in Sections 6.3 and 6.4. For each of the subject systems, we first computed the refactoring

schedule using our CP approach and then applied GA, greedy, manual, and LP approaches (described later)

to compute schedules for the same set of refactorings.

The normalized data for each of the subject systems were separately fed to each of the schedulers. All

the schedulers were executed on an Apple “MacBookPro5,5” computer with Intel Core 2 Duo (2.26 GHz)

processor and 4 GB primary memory (RAM). The CP, LP, and greedy schedulers operated inside the IBM

ILOG CPLEX Optimization Studio 12.2 IDE running on Windows XP operating system. All the IDE

parameters were set to the defaults. The GA scheduler operated on the same computer but on a Mac OS

10.6.8 operating environment.

CP Scheduling

For each of the subject systems, the normalized data for each of the subject system were fed to our scheduler

as described in Section 6.6 and Section 6.7. The scheduler, upon obtaining the data in valid OPL format,

applies constraint propagation and domain reduction techniques [306] to generate the optimal solution as

instructed.

LP Scheduling

Linear programming (LP) is a mathematical programming technique for solving optimization problems. Over

the past few decades, LP has been widely used in the operations research (OR) community for dealing with

optimization problems. The basic idea is to formulate the problem as a linear programming problem and

solve it using linear programming algorithms, such as the simplex method, ellipsoid method, and interior-

point techniques [293]. A linear programming problem is a mathematical formulation of an optimization

problem defined in terms of an objective function and a set of constraints. The objective function is a linear

function of variables whose values are unknown and the set of constraints consists of linear equalities and

linear inequalities. The requirement of the linearity of the objective function and the constraint equations

as well as the solution technique are the most obvious traits that make LP distinct from CP. On the basis

of the CSOP formulation described in Section 6.6, we implemented an LP model of the scheduling problem

and invoked the CPLEX Solver for solving the LP model.

The CP implementation differs from the LP implementation in two ways: first, in the LP implementation,

all the constraints were expressed in terms of strictly linear equations, whereas in CP, we used CP-specific

OPL statements, all of which were not necessarily expressed in terms of linear equations. Second, the CP

117

and LP implementations included different instructions to explicitly specify whether to invoke the CP Solver

or the LP Solver of the IBM ILOG CPEX Optimization Studio 12.2.

To compute scheduling of refactorings for each of the subject systems, we invoked our LP scheduler, which

applied the mixed integer linear programming (MILP) technique for computing the schedules. MILP is a kind

of LP, where the variables can hold integer or floating point values only. Our LP scheduler, in consultation

with the CPLEX Solver, invokes the branch-and-cut algorithm, which in turn applies the simplex algorithm

to solve a series of relaxed LP subproblems and gradually converge to a strictly optimal solution. The simplex

algorithm operates by repeatedly applying linear algebraic techniques to solve systems of linear equations.

Further detail about the branch-and-cut and simplex algorithms can be found elsewhere [293, 306].

GA Scheduling

Genetic algorithm (GA) is a kind of evolutionary algorithm from the field of artificial intelligence (AI) for

solving optimization problems. In GA, a candidate solution is encoded as a sequence of values, called a

chromosome; a set of candidate solutions is called a population. The algorithm iterates over generations to

evolve a population towards better solutions through a number of operations such as crossover and mutation.

A fitness function is used to guide the evolution towards optimality. In our study, the objective of the GA

was set to select the best subset having maximum M members from the set R of all potential refactorings

(recall from Section 6.6) for each of the subject systems.

Encoding: For each system subject to our study, all the candidate refactorings were enumerated with

integers 1 through |R|. Having such an enumeration, a common approach is to represent the problem as

a binary Knapsack [37] problem and encode a solution as a binary string (Figure 6.5) of length |R|. A bit

in the string is 1, if and only if the corresponding refactoring is selected in the schedule. However, such an

encoding scheme cannot deal with order dependencies among the refactorings.

1 2 3 -1

1 0 1

|R||R|
1 0 01

Figure 6.5: Traditional encoding of a solution in a binary string

To capture the order dependencies, we devised a different encoding scheme. A candidate solution was

encoded in a chromosome ζ as a sequence of M integers, having their positions indexed with 1 through M,

as shown in Figure 6.6.

Having ζ[i] denoting the chosen refactoring at index i, the encoding scheme is as follows.

• ζ[i] = 0 implies that no refactoring is selected at the index i.

• ζ[i] = rk implies that rk is the ith refactoring in the schedule represented by ζ.

118

1 2 3 -1
r1 r2 r3 rM-1 r

Figure 6.6: Our encoding of a solution in a chromosome

• ζ[i] < ζ[j] and ζ[i] 6= 0 6= ζ[j] means that the refactoring at index i is scheduled before the refactoring

at index j.

• A solution encoded by the chromosome ζ is feasible, if any two chosen refactorings ζ[i] and ζ[j] satisfy

all the hard constraints. Otherwise, the solution is infeasible.

• A solution encoded by the chromosome ζ must not select the same refactoring more than once. That

is, ζ[i] 6= ζ[j] must hold if ζ[i] 6= 0.

Crossover Operation: The crossover operation, as shown in the Figure 6.7, randomly selects two chro-

mosomes ζp1 and ζp2 as parents, an index k as the point of crossover, and creates two offsprings ζc1 and ζc2

as follows,

ζc1 [i] = ζp1 [i], for i ∈ {1, 2, 3, . . . , k − 1}

ζc1 [j] = ζp2 [j], for j ∈ {k, k + 1, k + 2, . . . ,M}

ζc2 [i] = ζp2 [i], for i ∈ {1, 2, 3, . . . , k − 1}

ζc2 [j] = ζp1 [j], for j ∈ {k, k + 1, k + 2, . . . ,M}

1 2 3 -1
r1 r2 r3 rM-1 r

1 2 3 -1
R1 R2 R3 RM-1 R

k

k

1 2 3 -1
r1 r2 r3

k

1 2 3 -1
rM-1 r

k

rk

Rk

Rk RM-1 R

R1 R2 R3 rk

Crossover

Pa
re
nt
s

O
ffs
pr
in
gs

Figure 6.7: Crossover operation

A configurable parameter crossover rate defines what proportion of the population of chromosomes in

a certain generation will participate in crossover operation to produce offsprings. A crossover rate of 80%

119

indicates that 80% of the population participate in crossover operation leaving 20% survivors (unchanged

chromosomes).

Mutation Operation: The mutation operation on a chromosome ζ selects a random index k and replaces

the refactoring ζ[k] by another randomly-selected refactoring r ∈ R that is not already in the chromosome.

Mathematically, ζ[i] 6= r, ∀i ∈ {1, 2, 3, . . . ,M} holds before the mutation.

Fitness Function: The fitness function is defined by the objective function described by the Equation 6.10

in Section 6.6. The fitness function determines how good (fit) a solution is, as represented by a chromosome.

Population Generation: The genetic algorithm begins with an initial population and evolves from gener-

ation to generation. A population of P distinct solutions is randomly created using the procedure described

in Algorithm 2.

Algorithm 2 : Algorithm for Creating Population

Require: .M is the length of a chromosome

R← {1, 2, 3, . . . , |R|} . enumerations over all refactorings M≤ |R|
procedure CreatePopulation(P)

Sp ← {} . a set to accommodate all solutions

while |Sp| < P do

x← RandomSolution()

Sp ← Sp ∪ {x}
end while

return Sp

end procedure

procedure RandomSolution

ζ[]← {0, 0, . . . , 0} . array of M zeros

Sr ← R ∪ {0} . R is the set of all refactorings

for k ← 0 to M− 1 do

r ← randomly chosen, r ∈ Sr
ζ[k]← r

if r 6= 0 then

Sr ← Sr − {r}
end if

end for

return ζ

end procedure

120

Table 6.8: Parameters for genetic algorithm

Parameter Value

Population size ≈ 1.0 × choromosome-length

Mutation rate ≈ 1.0%

Crossover rate ≈ 80%

Elitism rate ≈ 30%

Genetic Evolution: The algorithm evolves according to the description in Algorithm 3. The genetic

algorithm and its evolution is characterized by a number of parameters. We executed the genetic algorithm

several times with different combinations of parameters. After tuning with different combinations, we chose

the combination that yielded the best performance (i.e., highest fitness) of the genetic algorithm. The chosen

values for the parameters, as presented in Table 6.8, are consistent with general recommendations [219]. For

each of the subject systems, we executed the GA scheduler five times. At each run, the scheduler executed

for an evolution time of 10,000 seconds (i.e., 2.78 hour) and we kept the best (fittest) solution produced in

the five runs. This run-time is much higher than those required for other scheduling approaches (e.g., CP,

LP).

Greedy Scheduling

Recall that we identified three dimensions (i.e., effort, quality, and priority) for optimizing scheduling of code

clone refactorings. Thus, we implemented (using OPL) three variants of a greedy algorithm, each aiming

to optimize along one of the dimensions (i.e., optimization criteria) disregarding the other two. The prime

objective of the Greedye approach is to compute schedules by minimizing refactoring effort while the Greedyp

and Greedyq approaches aim to maximize the satisfaction of priorities and quality gain, respectively. The

general greedy scheduling algorithm can be described in terms of a few simple steps. First, all the refactorings

are sorted in the descending order of the optimization criteria. Then, refactorings are chosen one by one

from the top of the sorted list as long as the new candidate does not conflict with any of the already chosen

refactorings.

Intuitively, the minimum refactoring effort (i.e., zero effort) can be achieved by scheduling no refactoring at

all. Therefore, in the application of the approach greedy towards refactoring efforts, we must set a minimum

number of refactorings that must be scheduled. To keep the approach greedy towards refactoring efforts

comparable with our CP technique, the minimum number of refactorings was set equal to the number of

refactorings scheduled by our CP scheduler. The values along all the three dimensions obtained from these

scheduling approaches are presented in Table 6.9.

121

Algorithm 3 : Genetic Algorithm

g ← 0 . generation set to 0

ζbest ← ∅ . null array

Sp ← CreatePopulation(maxpopulation)

repeat

g ← g + 1

Sp ← FilterInfeasibles(Sp) . drop infeasible solutions

Sp ← Sort(Sp) . sort in descending order of fitness

ζbest ← First(Sp) . record the best solution

Sp ← DropPoors(Sp) . drop poor solutions w.r.t. elitism rate

d← maxpopulation − |Sp|
if d is odd then

d← d+ 1

end if

Sn ← {}
for i← 1 to d

2 do

{ζp1 , ζp2} ← random chromosomes from Sp

{ζc1 , ζc2} ← CrossOver(ζp1 , ζp2)

Sn ← Sn ∪ {ζc1 , ζc2}
end for

for ζ ∈ Sn do

m← MutateChance(ζ) . chance of ζ to be mutated

if m ≥ mutationRate then

ζ ← Mutation(ζ) . mutate ζ

end if

end for

Sp ← Sp ∪ Sn
t← elapsedTime() . time duration of evolution

until (g ≥ maxgeneration) or (t ≥ maxtime)
return ζbest

122

Table 6.9: Comparison of automated scheduling approaches

Subject Scheduling Values at dimensions Quality P × Refac.
systems approaches Prior. Effort Quality −Effort (Q − E) chosen

Mutation
Framework

Greedyp 20.06 21.94 18.53 -3.41 -68.40 40
Greedye 9.63 6.06 10.04 3.98 38.33 20
Greedyq 18.16 21.82 19.64 -2.18 -39.59 42

GA* 21.27 19.99 18.46 -1.53 -32.54 36
LP 9.34 7.86 11.48 3.62 33.81 20
CP 9.34 7.86 11.48 3.62 33.81 20

LIME

Greedyp 22.42 21.12 19.93 -1.19 -26.68 47
Greedye 13.00 8.28 13.61 5.33 69.29 33
Greedyq 16.29 23.49 26.07 2.58 42.03 51

GA 10.17 15.71 15.21 -0.50 -5.09 33
LP 11.04 12.32 16.12 3.80 41.95 33
CP 11.04 12.32 16.12 3.80 41.95 33

SimCad

Greedyp 27.42 25.23 16.82 -8.41 -230.60 52
Greedye 13.23 7.12 13.7 6.58 87.05 25
Greedyq 23.57 24.64 30.18 5.54 130.58 51

GA* 19.33 17.18 20.95 3.77 72.87 32
LP 12.78 8.99 18.96 9.97 127.42 25
CP 12.78 8.99 18.96 9.97 127.42 25

gCad

Greedyp 19.65 21.62 20.00 -1.62 -31.83 41
Greedye 9.61 9.53 11.57 2.04 19.60 28
Greedyq 12.05 23.48 25.98 2.50 30.13 44

GA* 25.18 26.12 20.86 -5.26 -132.45 45
LP 6.70 15.19 17.99 2.80 18.73 28
CP 6.70 15.19 17.99 2.80 18.73 28

VisCad

Greedyp 36.14 32.57 25.71 -6.86 -247.92 66
Greedye 16.12 18.63 13.20 -5.43 -87.53 40
Greedyq 29.02 33.81 34.32 0.51 14.80 72

GA* 45.03 42.57 38.09 -4.48 -201.73 83
LP 15.02 16.20 22.32 6.12 91.92 41
CP 15.33 15.78 21.90 6.12 93.82 40

DomClone

Greedyp 37.64 28.06 23.77 -4.29 -161.48 62
Greedye 18.79 7.54 10.98 3.44 64.64 33
Greedyq 33.12 25.62 28.93 3.31 109.63 56

GA* 26.64 24.02 23.23 -0.79 -21.05 36
LP 19.14 13.33 23.35 10.02 191.78 35
CP 19.49 12.57 22.41 9.84 191.78 33

Here, Greedyp = approach greedy towards priority satisfaction,
Greedye = approach greedy towards effort minimization,
Greedyq = approach greedy towards quality gain,
*the computed schedule was infeasible
P × (Q− E) = Priotity × (Quality − Effort)

123

Table 6.10: Time and memory comparison of CP and LP scheduling

Subject Scheduling Resource Consumpsion

systems approaches Time (sec.) Memory

Mutation

Framework

LP 14.33 7.39 MB

CP 0.14 5.9 Mb

LIME
LP 185.69 6.45 MB

CP 0.20 5.2 Mb

SimCad
LP 54.09 12.40 MB

CP 0.97 9.4 Mb

gCad
LP 58.08 12.40 MB

CP 0.94 9.4 Mb

VisCad
LP 313.78 37.81 MB

CP 6.02 27.6 Mb

DomClone
LP 396.02 8.29 MB

CP 0.80 6.7 Mb

Here, MB = Megabyte, Mb = Megabit

Manual Scheduling

In the third phase of the evaluation, our goal was set to schedule roughly 25% of the total number of

refactorings for each of the subject systems. The developers of the concerned systems were instructed to

manually (or, in the way they would do it without help from any automated scheduler) produce a schedule as

best as they could. Manually solving a CSOP such as scheduling of code clone refactoring is a time-consuming

and difficult task, especially for medium to large problem instances. Therefore, we chose to schedule 25%

of the total number of refactorings to keep the problem instance small enough to be handled by the manual

approach. With the same goal (i.e., to schedule roughly 25% of all the refactorings), we executed our CP

scheduler.

The purpose of the manual approach was to confirm that manually solving a CSOP can be difficult and

the solution obtained from manual scheduling can be worse than an automated technique, such as CP. The

objective was to compare the produced schedules, given a set of constraints, estimation of refactoring efforts,

effects, and priorities. It was not necessary to actually carry out the those refactorings in the subject systems.

6.8.5 Findings

The values along the three optimization dimensions namely the satisfaction of priorities (
∑
r∈R Xrρr), re-

quired effort (
∑
r∈R XrE(gr)), and expected gain in software quality (

∑
r∈R XrQr), obtained from our CP

124

Manual CP Manual CP Manual CP Manual CP Manual CP Manual CP

14.04

9.29

9.88
8.05

15.33

10.04

5.016.14

7.48

2.15

8.93

5.73

13.02

5.61

12.0710.46

21.90

9.58
14.9413.38

7.976.83
10.469.16

(6.09)
(8.93)

(4.52)(6.68)

(15.78)
(10.36)

(13.19)(14)

(4.71)
(9.39)

(6.93)(8.18)

Mutation Framework LIME gCad VisCad SimCad DomClone

Effort needed

Expected quality gain

Satisfaction of priorities

B
as

el
in

e

Figure 6.8: Automated CP vs. manual scheduling

scheduling and manual scheduling, are presented in Figure 6.8. For an effective schedule, the values for

expected quality gain and satisfaction of priorities are expected to be high while the values for the efforts

needed are expected to be low. Hence, in the figure the heights of the bars above the baseline (round-ended

line) are expected to be high while the heights of the bars below the baseline are expected to be as low as

possible.

Table 6.9 presents values along all the three optimization dimensions obtained by separately running all

the automated schedulers for each of the subject systems in our study. Recall that the objective function as

stated in Equation 6.10 optimizes along these three dimensions. From our observations during the study and

the developers’ feedback, as well as the results presented in Table 6.9 and Figure 6.8, we can answer the two

research questions formulated before.

Answer to RQ1: Yes, given a set of refactoring activities and constraints among them, our
refactoring scheduler can effectively compute a conflict-free optimal schedule of refactorings.

As seen from Figure 6.8, for four of the subject systems (i.e., Mutation Framework, LIME, SimCad,

and DomClone), the refactoring schedules generated by our CP approach are consistently lower while the

expected quality gain and satisfaction of priorities are consistently higher compared to those for the manually

computed schedules. For gCad, both the CP and manual approaches performed almost equally well. In the

case of VisCad, the schedule computed by CP demands higher refactoring effort compared to the manually

computed schedule; however, the expected quality gain and satisfaction of priorities for the CP schedule are

much higher than those for the schedule computed by manual approach. Overall, it can be said that the CP

approach outperforms the manual approach.

For all the subject systems, as seen in Table 6.9, our CP scheduler and the LP scheduler compute the

optimal refactoring schedule by efficiently balancing the three optimization dimensions (i.e., effort, quality,

125

and priority). Again, the efforts are expected to be low while the quality gain and priorities are expected

to be as high as possible. For some of the smaller systems (Mutation Framework, LIME, and gCad), the

greedy approaches, especially the approach greedy towards refactoring efforts, closely competes with our

CP approach. For Mutation Framework and LIME, the approach greedy towards efforts can be perceived

(according to the third column from the right) to have performed even slightly better than our CP scheduler.

Again, for all the systems, the priorities and quality gain for the schedules computed by the approach

greedy towards priorities are consistently higher than those for the schedules computed by CP approach.

According to the second column from the right, the approach greedy towards priorities closely competes with

our CP scheduler for smaller systems such as LIME and SimCad, whereas for gCad, the approach greedy

towards priorities is found to have performed better than CP. However, the required efforts for those schedules

(computed by the approach greedy towards priorities) are also consistently much higher (two or three times

for most of the systems) than those for the schedules computed by the CP approach. These much lower

efforts can make the CP scheduler preferable.

Other than those few cases discussed above, for all the systems the CP and LP schedulers are found to

have significantly outperformed the other techniques. We also found that the schedules generated by the CP

approach exhibited higher values of the objective-function (i.e., Equation 6.10) compared to those computed

by the greedy approaches. As the sizes of the systems in terms of SLOC and the number of candidate

refactorings increases, the CP and LP schedulers outperform the greedy schedulers, which is visible for the

largest systems, VisCad and DomClone. Overall, the CP and LP schedulers perform better than the greedy

schedulers or at least as good as those schedulers.

The risks of refactorings can be best estimated through subjective analysis by the individuals who are

familiar with the underlying source code. Quantitative measurement of such risks would be very difficult,

if not impossible. However, the risks of refactorings can be expected to be positively proportional to the

number of refactorings. In this sense, the CP and LP schedulers also minimize the risks of refactorings, as

seen in the right-most column of Table 6.9, the optimal schedule obtained from our scheduler always includes

the least number of refactorings, compared to those from the GA and greedy schedulings.

As expected, our CP scheduler always outperformed manual scheduling for all the six subject systems

(Figure 6.8). The superiority in the optimality of the schedules (in terms of efforts, quality gain, and priorities)

obtained from our CP and LP schedulers, compared to manual scheduling, gradually increased as the sizes

of the systems and the number of candidate refactorings increased. Our CP scheduler took no more than

seven seconds in computing any of the refactoring schedules presented in this chapter, whereas, for manual

scheduling, the developers had to spend several hours depending on the number of refactoring candidates

and the constraints involved. Recall that at each run the GA scheduler executed for more than two hours.

Thus, in terms of run-time, the CP approach outperforms the manual, greedy, and GA approaches.

126

Special Note on GA

The performance of GA scheduling is found to be worse than all other automated scheduling techniques

in our study. Within the 2.75 hours evolution time, GA was able to produce feasible solution for only

LIME. For all other systems, the results of GA scheduling presented in the Table 6.9 correspond to infeasible

solutions. Given the refactoring scheduling problem instances for those subject systems, during our study,

we found that the GA technique executed for hours and found solutions, which were not feasible solution.

An explanation to this observation can be the fact that optimization problems with many constrains can

easily become GA-hard [59, 72], because crossover and mutation, the core operations of GA are based on

random selections, which do not guarantee for constraint satisfaction or optimization. Thus, traditional GA

may work for optimization problems with a few constraints, but GA approaches do not seem to work well

for CSOPs [72]. Above all, GA approaches are by nature time consuming and memory intensive.

CP vs. LP

As can be seen in Table 6.9, the results for both CP and LP are identical for all the subject systems, except for

VisCad and DomClone. This observation means that, for each of those systems, both CP and LP produced

equally optimal solutions and, thus, in terms of the quality (e.g., optimality) of the solutions both CP and

LP performed equally well.

For VisCad and DomClone, although the optimal schedules computed by CP and LP are different, the

values of the objective functions were found to be equal: 8.364 for VisCad and 6.03 for DomClone. There

were more than one equally optimal solutions, which allowed the CP and LP schedulers to choose different

solutions with the same objective values. However, the CP scheduler picked the solutions with the number of

chosen refactoring less than that of the LP scheduler. Thus, our CP scheduler mitigates the risk of refactoring

better than the LP scheduler. However, the subtle difference may not be statistically significant and a larger

study can verify this phenomenon with statistical confidence.

In Table 6.10, we present the time and memory consumption of both the CP and LP schedulers in the

computation of optimal scheduling of clone refactorings for each of the subject systems. As can be observed

in the table, the time and memory consumption of our CP scheduler is significantly less than that of the LP

scheduler. Therefore, we can conclude that the CP approach outperforms the LP approach in terms of both

run-time and memory consumption.

Addressing RQ2 for Evaluation of Effort Model

During the study, we observed the developers as they were manually estimating the efforts required to

refactor the code clones at hand and assigning priorities to the candidate clones. We encouraged them to

think aloud so that we could capture information about what and how they were thinking as well as what

kind of difficulties they were facing. As they completed their part, we collected feedback from them using

127

Table 6.11: Developers feedback on the Likert scale questions

Ques. Choice of answers and number of developers’ responses in brackets

IQ1 very easy (0) easy (0) somewhat difficult (0) difficult (2) very difficult (4)

IQ2

provided no somewhat quite very it was a

assistance (0) useful (0) useful (1) useful (3) necessity (2)

questionnaire with a fixed set of both close and open-ended questions. Other than the questions about the

developers’ background, the questionnaire included the following questions:

IQ1: How difficult was it to use the effort model in manually estimating the required efforts for refactoring

the clones?

IQ2: To what extent the effort model appeared useful to you in the estimation of the refactoring efforts?

IQ3: Is there anything that you think is missing and should be included in the effort model?

IQ4: Is there anything that you suggest to exclude from the effort model?

IQ5: Any other comments about the effort model?

The questions IQ1 and IQ2 were Likert scale questions. The possible answers to these questions and

the developers’ feedbacks are presented in Table 6.11. The questions IQ3, IQ4, and IQ5 were open-ended

questions. None of the developers responded to IQ3 and IQ4, which hints the completeness of our effort

model, at least from those developers’ perspective. Only one of them responded to IQ5 with a concise

comment saying, “Tool [support] needed [for calculation of such effort estimation].”

Upon collection of the developers’ feedback through the questionnaire, we further conducted a focus group

discussion session with all the developers to obtain their opinions about usefulness and potential improvements

of our effort model. During the focus group session, all the developers indicated that the model was useful

and it guided them in the estimation of the efforts. One of the developers further expressed that he would not

have any clues about how to estimate efforts without the help of the effort model. All the developers proposed

that an automated tool, offering accurate calculations according to the model, would be necessary to use the

effort model more accurately. Our observations of the developers (while they were estimating the refactoring

efforts) also support this proposition. Some of the developers argued that the effort model was useful for

quantitative estimation of refactoring efforts but it alone could not capture the risks involved in code clone

refactorings. However, everyone agreed that the effort model and the priority scheme in combination were

effective in capturing both the efforts and the risks.

Based on the subjective evaluation of the participant developers and their feedback, we can now answer

the RQ2 as follows:

Answer to RQ2: Yes, the code clone refactoring effort model (described in Section 6.3) is useful
in capturing and estimating the efforts required for performing the refactorings.

128

6.8.6 Threats to Validity

In this section, we point to the possible threats to the validity of our work and how we addressed those threats

to minimize their effects. Recall that the objective of our empirical study was twofolds: first, to evaluate our

refactoring effort model and, second, to evaluate our CP scheduler. Hence, we organize the discussion of the

threats along these two perspectives.

Construct Validity

Construct validity questions the correctness of the design of the study in terms of whether the data collection

and operational measures are used correctly to reflect the concepts studied. Ensuring construct validity is

typically challenging for studies involving human developers [235].

In our study, we relied on the developers’ qualitative evaluations in the estimation of both refactoring

efforts and effects. There is a possibility to question the individual developer’s ability to correctly estimate

those following our effort model. This work is based on our initial proof-of-concept proposal [307], where

the reviewers suggested to evaluate our refactoring effort model from the developers’ perspective. We also

understand that manual scheduling of refactorings may be too difficult for large systems but, for smaller

systems, the developers can be expected to do a fair job in estimating the efforts and risks involved in

refactoring the system. Hence, we intentionally chose in-house systems and their respective developers for

our study, which may appear as a bias.

In practical settings, it is often likely that refactorings, especially during the development phase, will be

performed by the concerned developers who are familiar with the source code. Thus, our choice of in-house

systems and their developers rather imitates the practical settings. Moreover, the subject systems, being

in-house and fairly small, allowed the developers to estimate the refactoring efforts and effects with a higher

probability of accuracy compared to that if we had used large open-source subject systems. Nevertheless,

we manually verified each developer’s refactoring solutions by performing a detailed inspection of the code

clones and surrounding source code in the subject systems. We did not rely only on observing the developers

while they were estimating the refactoring efforts. Through a questionnaire, we also collected the developers’

feedback about the effort model and further verified their feedback in a focus group session. As such, we have

a high confidence in the validity of the evaluation.

Our refactoring scheduler (the primary contribution of this work) is independent of how the refactoring

data are obtained. Given a set of refactorings along with their mutual constraints and priorities, as well as the

estimation of refactoring efforts and changes in code/design quality, how effectively our scheduler can compute

the optimal schedule is the question for evaluating the scheduler. Due to the unavailability of any baseline

approach or benchmark data, it was not possible to evaluate our scheduler in terms of precision (specificity)

and recall (sensitivity). Therefore, we chose to compare our CP scheduler with other approaches (i.e., greedy,

GA, LP, and manual) in terms of optimization values along the three dimensions (i.e., effort, quality, and

129

priority satisfaction) as well as in terms of runtime and memory consumption. We manually investigated

all the refactoring schedules obtained from our CP scheduler and confirmed correctness (i.e., feasiblity) in

terms of constraint satisfaction. The choice of in-house systems and their developers also facilitated manual

investigation of constraints satisfaction and optimality of the refactoring schedules computed by our scheduler.

Manual verification of optimality was difficult as it was difficult to manually produce an optimal schedule,

because the code clone refactoring scheduling problem is NP-hard [37, 183, 176]. However, we made efforts

to challenge the optimality of the produced solutions by attempting to further increase the objective values

by means of pseudo-random replacement of refactorings in the computed schedule. As we were not successful

in that endeavour, we became convinced that our CP scheduler indeed produced optimal solution.

Given that the problem is well-defined, the mathematical foundation behind the LP technique guarantees

to identify the optimum solution and so a head-to-head comparison between the schedules produced by the

CP and LP techniques enables an automated approach for mathematical verification of the optimality of the

schedules computed by the CP scheduler. As the schedules obtained from the CP scheduler were identical

(or having same objective values) to those computed by the LP scheduler, we can confidently conclude that

our CP scheduler indeed produced the optimum refactoring schedules for each of the subject systems in our

study.

Internal Validity

Internal validity is mostly concerned with the “possible errors in our algorithm implementations and mea-

surement tools that could affect outcomes” [221].

Our refactoring effort model requires some fine grained computations (e.g., token modification efforts in

terms of edit distances), which were not possible for the developers to perform by hand. For this reason,

during estimation of the refactoring efforts, the developers used our effort model as a guideline and followed

that as much as it was feasible. However, this use does not affect the functionality of our refactoring scheduler.

Rather, our observations and the developers’ expressions towards the need for realization of the effort model

in a software tool further indicate the necessity and effectiveness of our effort model.

In the estimation of the impact of refactoring on code/design quality, we used the six of the QMOOD

design property metrics and ignored the rest. Moreover, the impact of clone refactoring was estimated in

accordance with Equation 6.9. The weighted sum of differences in Equation 6.9 might have not been able to

capture the full benefits of the quality model. These are also threats to the study.

While the choice of the design property metrics does affect the estimation of refactoring effects it does

not affect the estimation of refactoring efforts based on our effort model. Indeed, the inclusion of all the

metrics may affect the scheduling approaches and produce different schedules, but we see no reason why this

may degrade the performance of our CP scheduler compared to the others. Nevertheless, carrying out a

follow-up study including all the QMOOD design property metrics can be worthwhile, which we plan to do

in the future.

130

In our study, we found that the GA approach did not perform well and produced infeasible solutions. Our

choice and implementation of the mutation and crossover operators may seem to be responsible. To minimize

this threat, we tweaked those operators in several ways and tuned the parameters to the GA algorithm in

separate runs. Then, we chose the best combination of parameters to use in our study. We believe that the

reason to the poor performance of the GA approach was that the large set of constraints actually made the

problem GA-hard [59, 72], as discussed in Section 6.8.5.

External Validity

External validity questions the generalizability of the results of a study across different experimental settings

with larger population not considered in the study.

The six subject systems used in our study are in-house and small to medium in size. All the six respective

developers are graduate students; among them two are Ph.D. students and the rest are M.Sc. students at

the end of their program. It is arguable that the population is not large enough and subject systems of the

study are not representatives of industrial or open-source systems while the developers may not represent the

industrial practitioners. Thus, our study may be subject to threats to external validity. However, the choice

of in-house systems and their developers helped us to minimize the threats to construct validity. Three (50%)

of the participants of the study had years of experience of working as developers in software industry. Thus,

the group of developers participated in our study represents a sample of programmers with different levels of

expertise. Therefore, we believe that our study achieves an acceptable level of external validity. The threats

to external validity can be further minimized by increasing the number and sizes of the subject systems,

choosing both industrial and open-source software for study, and involving developers with diverse levels of

expertise (i.e., beginner, intermediate, expert).

Reliability

The methodology of the study including the procedure for data collection are documented in this chapter.

The NiCad clone detector as well as the in-house software systems used in our study are available online6.

The data, the OPL implementation of our CP and LP scheduler, as well as the Java implementation of

genetic algorithm are also made available online7 for the interested parties. Therefore, it should be possible

to replicate the study.

6.9 Related Work

In this section, we discuss the previous research found in the literature that are relevant to our work on

the scheduling of clone clone refactoring as presented in this chapter. Other than ours, there are only

6http://www.cs.usask.ca/faculty/croy/
7http://usask.ca/~minhaz.zibran/pages/projects.html

131

http://www.cs.usask.ca/faculty/croy/
http://usask.ca/~minhaz.zibran/pages/projects.html

three works [37, 176, 183] found in the literature that attempted to deal with the scheduling of code clone

refactoring. Bouktif et. al. [37] formulated the refactoring problem as a constrained Knapsack problem and

applied a metaheuristic genetic algorithm (GA) to obtain an optimal solution. However, they ignored the

constraints that might exist among the refactorings. Lee et. al. [176] applied ordering messy GA (OmeGA),

whereas Liu et. al. [183] used a heuristic algorithm to schedule refactoring of bad smells in general. Both

of those works took into account the conflict and sequential dependencies among the refactoring activities,

but missed the constraints of mutual inclusion and refactoring effort. In Table 6.12, we summarize all the

possible constraints among clone refactorings and those that are taken into account in the aforementioned

three works as compared to ours.

Our work, as presented in this Chapter, significantly differs from all those work in two ways. First,

for computing the refactoring schedule, we applied constraint programming approach, which is different

from theirs. Second, we took into account a wide category of refactoring constraints and dimensions of

optimizations, some of which they ignored, as summarized in Table 6.12. Although Bouktif et. al. [37]

proposed a brief effort model for code clone refactoring, their model was for procedural code only, whereas,

our effort model is applicable to not only procedural but also to object-oriented source code, as it takes into

account diverse categories of efforts covering the constructs of an object-oriented system.

Table 6.12: Comparison of code clone refactoring schedulers

Bouktif et al. [37] Lee et al. [176] Liu et al. [183] Our Scheduler [312]

Approach GA OmeGA Heuristic CP

Refactoring effort
√ √

Quality gain
√ √ √ √

Sequential dependency
√ √ √

Mutual exclusion
√ √ √

Mutual inclusion
√

Priorities satisfaction
√

O’Keeffe et. al. [220] conducted an empirical comparison of simulated annealing (SA), GA and multiple

ascent hill-climbing techniques in scheduling refactoring activities in five software systems written in Java.

However, we used CP, which combines the strengths of both AI and OR techniques [24], and thus led to our

belief that CP would be a better choice for solving such scheduling problems. Indeed, from our empirical

study, we found that the CP approach outperformed both GA and Linear Programming (LP) techniques

in the scheduling of code clone refactorings. In our case, GA did not perform well because the refactoring

scheduling problem that we have addressed is much stricter with a wide range of hard constraints that might

have made the problem GA-hard [59, 72], as discussed in Section 6.8.5.

132

A number of methodologies [71, 156, 257, 258, 300] and metric based tools such as CCShaper [105] and

Aries [104] were proposed for semi-automated extraction of code clones as refactoring candidates. Several

tools, such as Libra [110] and CnP [114], were developed for providing support for simultaneous modification

of code clones. Clearly, an efficient scheduling of those refactoring candidates is missing in those tools.

6.10 Summary

In this chapter, we presented have our work towards conflict-aware optimal scheduling of code clone refac-

torings. To estimate the refactoring effort, we proposed an effort model for refactoring code clones in object-

oriented and procedural source code. Our clone refactoring effort model takes into account the efforts required

for understand the context, navigating across different parts of the code base, and altering different source

code components. Moreover, the risks of refactoring are captured in a priority scheme. To estimate the

impact of clone refactoring on the overall software quality we adopt the QMOOD [22] design quality model.

Considering a diverse category of refactoring constraints as well as the refactoring efforts, effects, and

priorities, we modelled the scheduling of code clone refactoring as a CSOP and implemented the model using

the CP technique. To the best of our knowledge, ours is the first effort model for refactoring object-oriented

source code and our CP approach is a technique that no one else in the past reported to have applied in this

context. Combining the strengths from both AI and OR, the CP approach has been shown to be effective in

solving scheduling problems [24, 306]. Our CP scheduler computes the conflict-free schedule making optimal

balance among the three optimization dimensions: minimized refactoring effort, maximized quality gain, and

satisfaction of higher priorities.

To evaluate our approach, we conducted an empirical study with six in-house software systems and their

developers. Through comparison with greedy, genetic algorithm (GA), linear programming, and manual

approaches, we showed that our CP scheduler outperformed those techniques. From the user-centric study,

our refactoring effort model was also found by the developers to be useful for estimating the efforts required

for code clone refactoring. Although our effort model is designed primarily for refactoring code clones in

object-oriented source code, with minor tuning, the model can be applied to clone refactoring in procedural

source code, or source code refactoring in general.

133

Chapter 7

Vision of Software Clone Management

“If you show people the problems and
you show people the solutions they will be moved to act”

– Bill Gates

Clone management is a vast area of research and contributions. The process of clone management can be

initiated with the detection of clones and then careful refactoring of wisely chosen clones can help minimizing

the number of clones and maintain code quality. The insights obtained from clone analyses can help making

wise choices and devising techniques and strategies for clone management. In the earlier chapters of this

thesis, we presented our contributions in these three most important areas of clone management. However,

we do not expect that this thesis brings “the end” of clone management research. Instead, based on an

extensive survey of the literature and our experience in the area, in this chapter, we present possibilities for

improvements that can be achieved by long-term research efforts from the community.

This chapter is organized as follows. In Section 7.1, we rehearse the motivation behind clone management

and expose the dearth of extensive surveys in the area. In Section 7.2, we describe the vagueness in the

definition of clones and indicate possibilities to address this issue. Section 7.3 introduces different aspects

of clone management activities along with the current state and future possibilities towards a versatile

clone management system. Section 7.4, presents the design space for an effective clone management tool.

In Section 7.5, we speculate whether clone management in the test code can help in managing clones in

production code as well. Section 7.6, we discuss the present state and possibilities towards the adoption of

clone management in industrial context. Finally, we conclude the chapter in Section 7.7 with a summary of

achievements and scopes along different dimensions of clone management activities.

7.1 Introduction

Since the emergence of software clones as a research area in early 1990s, significant contributions over years

made the field grow and become quite a mature area of research. Over the entire course of software clone

research there have been only two notable general surveys on clones. Koschke [162], in 2007, presented a

brief summary of the important findings about different aspects of software clones including cause-effect of

cloning, clone avoidance, detection, and evolution along with a set of open questions. In the same year, Roy

134

and Cordy [236] also published another survey containing a thorough review on those same areas with specific

focus on clone detection tools and techniques. A few recent surveys either focus on detection [232, 243] or

evolution of clones [222]. In this chapter, we provide an extensive survey on code clone research with strong

emphasis on clone management and point to future research directions in the area. We believe that years of

further research efforts from the community is necessary to reach a satisfactory state in clone management.

7.2 How Much is Clone?

Recall from chapter 2 (Section 2.1) that duplicate or similar code fragments are roughly known to be code

clones, but the definition of clone has remained more or less vague over the last decade. The vagueness is

reflected in the definition given by Ira Baxter, “Clones are segments of code that are similar according to

some definition of similarity (Ira Baxter, 2002) [162].” Such a definition is dependent on how similarity is

defined, and also raises question on how much of code can be regarded as a code segment. Clone research over

the past decade somewhat addressed these issues, and agreed on the categorizing definitions of code clone

presented in chapter 1. A number of similarity-based alternative definitions were also proposed by Mayrand

et al. [197], Balazinska et al. [20], Bellon et al. [35, 166], and Davey et al. [58], and Kontogiannis [159], but

they are not widely used.

While the definition of Type-1 and Type-2 clones are somewhat precise, the definition of Type-3 clones

still remains vague [162]. The definition does not precisely indicate how much differences in terms of addition,

modification, or deletion of statements are allowed in code segments to be regarded as Type-3 clones. The

practitioners commonly consider code segments as Type-3 clones when the difference in the statements remain

below a (dis)similarity threshold [15, 182, 238, 310]. However, a consensus on an appropriate value for such

a threshold is yet to be established [162].

Currently, a researcher’s definition of similarity is typically constrained by the program representation

and detection mechanism of his or her particular clone detector and, hence, varies from tool to tool and also

from parameter settings controlling a tool. A common definition is needed when empirical results are to

be compared, for instance, on effects of clones or on accuracy of clone detectors. The difficulty to reach a

consensus on a suitable definition, however, inevitably depends also on the purpose of the clone detection. A

definition of similarity will include the “value” of a clone for the given task (e.g., bug fixing or refactoring).

We do not foresee the advent of a unified definition, we rather expect that task-specific taxonomies of code

similarity will emerge in the future and studies will further differentiate contexts and purposes of clones.

7.2.1 Choice of Clone Granularity

According to the definition of clone (as presented in chapter 1) that is currently accepted in the community,

a pair of very small portion of code such as two identical identifiers, two similar statements, functions or

blocks each having only one statement can also be valid candidates for clones. However, those tiny code

135

segments cannot be real clones of pragmatic significance. Thus, the practitioners typically disregard those

code segments that are smaller than a given threshold. Again, due to the differences in the varying contexts

and techniques for clone detection, there has been no consensus in the community on such a threshold,

although minimum 20 to 30 tokens [154, 248] or three to five lines of code [242, 313, 308, 310] is a common

threshold used in practice.

We believe that the chosen granularity of the code segments should exhibit some characteristics so that the

detected clones at that granularity actually becomes useful from the maintenance perspective. In this regard,

we propose the following desired characteristics as inspired by our experience and the criteria proposed by

Giesecke [86].

Coverage: The set of all code segments should cover maximal behavioural aspects of the software.

Significance: Each code segment should possess implementation of significant functionality.

Intelligibility: Each code segment should constitute sufficient amount of code such that a developer can

understand its purpose with little effort.

Reusability: The code segments should feature a high probability for informal reuse.

A source file typically contains a large bulk of code (a Java source file may contain multiple classes,

interfaces, and so on). Alhough the set of all source files cover all behavioural aspects of the software,

informal reuse at file level is unlikely in a software system. Classes in object-oriented systems also satisfy

the coverage criterion, but they are also unlikely to be informally reused, as more elegant concepts such as

inheritance and delegation are there for their formal reuse.

Methods or blocks (a method body itself forms a block) cover almost all behavioural aspects, and those

that are missed (e.g., library/package inclusion, declaration and initializations) can be neglected [86]. Meth-

ods and blocks contain implementation of significant functionality that can be understood with less effort

than for an entire source file or class. Methods isolate functionality and so often do the blocks, and thus they

are likely to be informally reused, as there is no easy rigorous way to reuse methods from another context [86],

other than formally composing a library including the commonly accessed methods.

Code segments at the arbitrary statement level satisfy the coverage criterion, but not the other three

criteria. A sole statement or a short sequence of statements typically does not cover a unit of significant

functionality. The meaning of a statement, in general, is likely to be incomprehensible without considering

its context, and the context of the host block or function. Moreover, sequences of import/include state-

ments, declaration/initialization statements, or the sequences of statements spanning code boundaries such

as boundaries of two functions, classes, or blocks do not exhibit significant potential for reuse, rather those

should be ignored in many cases while dealing with code clones.

Thus, we suggest that code segments at the level of functions or blocks can be the most suitable granularity

for dealing with code clones, specially for maintenance in terms of reengineering and refactoring opportunities.

136

Giesecke [86] also proposed in favour of function as the most adequate level of clone granularity. Indeed,

block level granularity also covers functions, although it does not distinguish a block that constitutes an

entire function body from a block which does not. Driven by the same understanding, Higo et al. developed

CCShaper [109, 105] to post-process the clone detection result from CCFinder to extract block level clones as

the potential candidates for refactoring.

7.3 State and Vision of Clone Management

Indeed, clone management is a wide area of research and development. Current state of the art has to go a

long way to achieve an integrated, versatile, and flexible tool support for effective clone management. Based

on extensive literature survey [311] and our experience in the area, we envision a set of clone management

activities and workflow as presented in Figure 7.1.

Detection Documentation Tracking

Visualization

Analysis Recommendation

Refactoring
Scheduling

Refactoring
Operation

Refactoring
Verification

AnnotationPrevention

Figure 7.1: Clone management workflow

To manage clones, first they have to be identified. The result of clone detection forms clone documentation

that records the location of code segments and their clone relationships. If the code base changes due to

ongoing development, the changes and locations of the clones need to be tracked, and the documentation needs

to be updated accordingly. The clone documentation may be analyzed to determine justification of clones or to

find potential clones for removal. Clone visualization techniques can aid such analysis. Clones that are found

to have justified reasons to exist may be further documented and/or annotated. The candidates for refactoring

can be scheduled for modification and/or removal. Upon the application of refactoring operations, a follow up

verification step may examine if the refactoring caused any change in program behaviour, and in accordance,

may initiate roll-back and re-refactoring. Upon completion of refactoring, the clone documentation needs to

be updated for consistency. In the following sections, we describe the state of the art and scope for further

development in support for each of the clone management activities.

7.3.1 Clone Prevention

Clone-aware development practice can help avoiding creation of unnecessary clone clones. Programmers and

developers can be informed the impacts of clones and trained starting from the institutional course-work level

137

so that they can adopt a programming practice with minimal copy-paste. However, as described in chapter 1,

there may be unintentional clones without the awareness of the developers, and at times, one may have to

deliberately create clones for several reasons such as for keeping program components decoupled.

Ongoing research also reveals the notion of clones in software artifacts other than the source code [130],

such as clones in higher level code structure [25, 26] or high level concepts [195], clones in the models of formal

model based development [63, 64], in UML domain models [263], UML sequence diagrams [184], in the graph

based Matlab/Simulink models [224], and duplication in requirement specification documents [130, 131].

Clones in requirements documents may lead to duplicate implementation of very similar features if, for

example, similar use cases are given to different development teams to implement. In turn, this may result in

semantic code clones, or even code segments with very similar structure. Therefore, the detection of clones in

requirements specification artifacts could help avoiding clones in code, or to identify semantic clones, which

in turn could help to differentiate features from sub-features.

Similarly, clones in design models, especially in model-driven development, may also lead to clones in the

source code. Thus, the upfront detection of clones in design models might help to reconsider architectural

choices, and result in a leaner, more abstract and essential design resulting minimal code clones.

Early detection and removal of clones from software artifacts such as requirements documents and domain

models can prevent creation of clones in the source code, which otherwise could have been introduced if similar

or duplicate requirements or models are translated to source code. Large scale empirical studies are necessary

to further explore these possibilities.

7.3.2 Clone Detection

Until recently, various techniques for code clone detection have been proposed. The strength and weaknesses

of different clone detection techniques are discussed in Chapter 2 (Section 2.5). As mentioned before, many

clone detectors and prototype tools are available today. Still, little is known about the usefulness of the code

clones detected by different clone detectors. Furthermore, the comparative evaluation of the clone detectors

is still an open challenge [236, 243] as different tools often use different definitions of clones and we do not

have reliable reference benchmark to compare clone detection results. The variation in parameters for tuning

the clone detectors is another difficulty in head-to-head comparison of clone detectors [289]. Not to mention,

handing big data from large scale clone detection is a growing challenge for clone management and for many

other related applications [264].

Challenges in the Empirical Evaluation of Clone Detection Tools

Typically, the effectiveness (i.e., specificity and sensitivity) of a clone detection tool or technique is measured

in terms of precision (p) and recall (r),

p =
|Cs ∩ Cd|
|Cd|

, r =
|Cs ∩ Cd|
|Cs|

138

where Cd denotes the set of clones that a particular clone detection tool identifies, and Cs refers to the set

of clones actually existing in the source code. To empirically evaluate a clone detection tool, one needs to

compute these quantities. But how can one accurately find all the clones in a system? A reference corpus is

necessary to serve as the set of all clones in a system. To obtain this, manual investigation can be a solution

for small systems, but the time and effort needed for such a subjective analysis is likely to be impractical for

a fairly large system. However, the reference corpus needs to be large to be able to evaluate the scalability

of the clone detector under consideration. Therefore, in practice [279, 310], one or more clone detectors that

are already known to be effective are applied to detect clones from a system, and the union of all the sets

of clones reported by those tools is used as a reference corpus to examine the precision and recall of a clone

detection tool to be evaluated.

Using a similar idea, Bellon et al. [35] carried out a case study to compare the effectiveness of six clone de-

tectors (CCFinder, CloneDr, Dup, Duploc, Duplix and CLAN) representing different clone detection tech-

niques. Bellon’s study [35], which was performed more than six years ago, is still the most comprehensive

quantitative study on the comparative evaluation of clone detectors, and the reference benchmark produced

from the study is the only notable benchmark data available to date [163]. A similar but smaller scale study

was also conducted earlier by Bailey and Burd [13].

Bellon’s benchmark data was constructed as the union of the sets of clones reported by the clone detectors

subject to the study. Then the precision and recall for each tool were computed based on how many of the

benchmark clones a particular tool detected. Thus, the result was skewed in favour of those tools that

contributed more in the construction of the benchmark data. Moreover, only 2% clones of the reference set

were manually verified. Hence, there is a possibility that the benchmark data might have included significant

amount of false positives that could have been reported by those participating tools.

The Need for Reference Benchmark

The above discussion suggests that, a reliable large set of benchmark data1 is still necessary, and new tools

should be evaluated with the standard benchmark data before publication [162]. Both precision and recall

should be reported, since precision or recall alone draws a partial picture only. Moreover, both the runtime

complexity and memory efficiency should be reported, since these two criteria affect the scalability of a certain

technique. Theoretical runtime complexity only can be misleading, because high memory requirement may

cause time-consuming page swapping at the operating system level, and increase the execution time in

practice [245].

The creation of a reliable large benchmark data set with manually verified clones can be a mammoth task.

The tedious work of manual investigation and verification can be accomplished by collaborative efforts from

the community. The mutation framework of Roy, Cordy, and Svajlenko [240, 264] can also be used for the

1Similar to what available at http://math.nist.gov/MatrixMarket/ for use in comparative studies of algorithms for numerical
linear algebra.

139

http://math.nist.gov/MatrixMarket/

purpose by injecting a set of artificially created (and manually verified) clone fragments in various locations

of a certain code base, and the set of synthetic clones can serve the purpose of a reference benchmark.

Indeed, the vagueness in the definitions of clones may lead to disagreement in different human evaluators’

perception of clones, as found in the study of Walenstein et al. [286]. Therefore, the purpose of the benchmark

data should be defined first, and the definition of similarity should be formalized accordingly, as well as the

level of clone granularity. A purpose could be, for example, the evaluation of clone detection techniques for

clone maintenance and removal.

7.3.3 Clone Documentation

Most of the clone detectors record a code fragment (as well as a clone fragment) using the host file’s name

along with the range of line numbers [238], or the file-name along with character offset and length of the code

fragment [114]. However, different clone detectors report the results of clone detection in different formats

such as XML, HTML, and plain text. There are variations in the reported information as well. Some clone

detectors (e.g., CCFinder) record clone information in terms of clone pairs while some other clone detection

tools (e.g., NiCad) record information in terms of clone-groups consisting of two or more cloned code segments.

Such variations make it difficult for data exchange between clone detectors, which also adds to the challenges

in head-to-head empirical comparison of clone detectors. To minimize the differences in the presentation of

clone information, Harder and Göde [100] recently proposed the Rich Clone Format (RCF), an extendible

schema based data format for storage, persistence, and exchange of clone data.

Note that the description of code regions in terms of absolute locations in the host file can be invalidated

when changes in the file alters the line numbers, even if the changes are not inside the code/clone regions

of interest. To minimize this threat, in Wrangler, relative locations of program entities are used instead of

absolute locations [180]. The starting line number of each function in its host file is recorded, and with the

relative location, every function is considered to have started from line 1 at column 1. This was expected to

save clone regions from being invalidated due to the changes in the absolute locations.

Duala-Ekoko and Robillard [67, 69] proposed clone region descriptor (CRD) to describe clone regions

within methods in a way that is independent of the exact text of the clone region or its absolute location in

a file. The definition of CRD in extended BNF form is as follows:

< CRD > ::= < file >< class >< CM > [< method >]

< method > ::= < signature >< CM >< block > ∗

< block > ::= < btype >< anchor >< CM >

< btype > ::= ‘for’ | ‘while’ | ‘do’ | ‘if’ | ‘switch’ | ‘try’ | ‘catch’

Thus, CRD describes a code/clone region in terms of the distinguishing descriptions of the enclosing file,

class, method, block, and a corroboration metric (CM). The corroboration metric is simply the addition

140

of cyclomatic complexity and fan-out of the block. The < anchor > for a block is a distinguishing string

description for the block, and the derivation of the description is dependent on the type of the block. The

termination statement for a ‘loop’, the branching predicate for an ‘if’ block, and the switch expression for

a ‘switch’ statement is used as < anchor >. For a ‘try’ block, CRD uses the list of exception types caught

in ‘catch’ clauses associated with the block. For a ‘catch’ block, simply the type of the exception caught is

used as the < anchor >. Using the CRD scheme, Duala-Ekoko and Robillard developed CloneTracker [68]

for tracking the evolution of code clones detected by the underlying clone detector, SimScan.

However, such a scheme like CRD [67] has a number of limitations. First, small changes in the code

corresponding to the < anchor > (e.g., termination condition of loop, branching predicate of conditional

statements) will invalidate the CRD. Second, the scheme is vulnerable to nesting levels, and thus a simple

addition or removal of nesting level will invalidate the CRD. Third, the association of ‘else’ blocks with the

closest ‘if’ block prevents the CRD scheme differentiating between the two types of blocks. Most importantly,

the use of the CRD scheme did not save CloneTracker [68] from re-invoking the underlying clone detector

to identify possible changes in the clones, although the computational expense of re-detection was indicated

as one of the motivations behind the design of CRD.

What Needs to be Documented

The above discussion indicates that the line and column information, or the abstract level CRD-based doc-

umentation of clone regions are more or less vulnerable to changes in the source code. To overcome such

sensitivity to code change, marker based tagging support in IDEs such as Eclipse can be used for clone doc-

umentation. Such tagging of clones can provide built-in support for accommodating changes in the source

files [48]. Further investigation may be required to verify this possibility.

Note that all the clone detectors document clone regions with respect to their locations in the source

files only. Only the CRD scheme captures information about the classes hosting the clones, and only

CloneTracker [68] makes use of CRDs. However, CloneTracker itself is not a clone detector, rather it

computes CRDs from the clone detection results obtained from the SimScan clone detector.

We believe, in the documentation of clone regions, information about the location of clones in the program

elements (e.g., classes in object-oriented code) can be useful for the analysis and visualization of clones with

respect to the inheritance hierarchy. More discussion about this need is presented in Section 7.3.6.

Due to the diversity in the information and format of clone documentations adopted by different clone

detectors, there is a practical difficulty in data exchange and interoperability between different tools. In

Table 7.1, we identify a set of information that need to be included in clone documentation. Interoperability

among different tools can be attained if all clone detection/management tools include in clone documentation

these information in a common format. The set of information is chosen carefully not only to achieve

interoperability, other clone management activities are also taken into account. For example, the information

about the clone-groups can serve the developers in their decision for clone refactoring, while the evolutionary

141

Table 7.1: Information need to be recorded with clone documentation

Information Purpose

Core Information

File name and path To identify source file that contains the clone
line numbers To identify the start and end lines of the clone region
Class name To identify the host class containing the clone

Complementary Information

Character offsets For more precise identification of beginning and end of clone region
Tag/comment placeholder Justification about creation/preservation of the clone

Information About Clone-Group

Group size Number clones in the group
List of clones List of clones in the group
Parameters To identify where variability among the members occur

Evolutionary Information

Ancestor group Link between clone-groups in current and previous version of the system
Evolutionary group parameters To identify group level differences between a clone-group and its ancestor
Ancestor clone Link between clone fragments in current and previous version of the system
Evolutionary clone parameters To identify code fragment level differences between a clone and its ancestor

Tool Information

Tool name To identify the tool used for the creation or update of this clone documentation
Timestamp To identify the time when the clone documentation was created or last updated

information should help in tracing clone genealogies and changes in evolving clones. It is encouraging that a

similar initiative has been taken to develop a common model [143] for documenting clone detection results,

and a wiki2 has recently been created for open discussion on the topic.

7.3.4 Clone Tracking

During the development of an evolving software system frequent changes take place in the code base. Such

changes may introduce new code segments that might form new clones. Moreover, changes in source files may

invalidate the clone regions and clone relationships necessitating corresponding updates in the recording of

clone information. Such updates can be accomplished in two ways: Re-detection and incremental detection.

Re-detection

The detection of clones from the entire system may be invoked every time the code changes. This approach

may incur too much overhead as the detection of code clones in a fairly large system can be computationally

expensive. Hence, the approach is unlikely to be suitable for proactive clone management.

Incremental Detection

A better approach can be incremental detection, where only the source code in the modified portion of the

code base is examined for any clones and the outcome is accumulated with the previously preserved clone

detection results.

2http://www.softwareclones.org/ucm/

142

http://www.softwareclones.org/ucm/

Not many attempts were made towards incremental clone detection. The first attempt was made by

Göde and Koschke [88, 92]. They proposed a suffix tree based algorithm iClone [88, 92] for incremental

detection of clones in subsequent versions of a given system. As input, iClone needs sequences of revisions

of a program that is to be analyzed. In addition to the source code for each revision, iClones also needs a

separate file as input that summarizes, in Subversion3’s format, all the changes in the source files for every

two consecutive revisions.

In iClone, each source file is represented as a sequence of tokens extracted using lexical analysis, and

tokens are stored in a token table. For the detection of clone in the initial revision, a generalized suffix tree

(GST) is constructed for a large sequence of tokens obtained by concatenating token sequences from all the

source files. The paths from the root all the non-leaf internal nodes point to clones in the code [310]. The

GST is preserved and updated during the detection of clones in the remaining revisions. For the detection

of clones in revision i, only the files that are changed, added or deleted between revision i− 1 and revision i

are examined, and in accordance, the GST is updated.

iClone’s approach for clone tracking appears to be memory intensive [92, 116], due to the use and

maintenance of a large GST constructed from all tokens of the entire program. Moreover, the tokens of

each source file are stored in separate token table, and thus a large number of token tables are also needed

to be stored, which may also consume a significant amount of memory. Indeed, the suffix tree based clone

detection technique of iClone can detect Type-1 and Type-2 clones only, but not Type-3 [92, 310]. Besides,

the need for input a file summarizing changes between subsequent versions further limits the applicability

of the technique in the implementation of a clone management system having decentralized architecture.

However, the approach can be a suitable for clone tracking in a centralized clone management system, where

the source code is kept in a central Subversion repository and the code change information can easily be

made available.

Hummel et al. [116] proposed an index-based incremental clone detection approach. They demonstrated

their technique as a pipeline of three phases: preprocessing, detection, and post-processing. The preprocessing

and post-processing components were reused from ConQAT. The detection component introduces clone index,

the central data structure of their approach. The clone index is a list of tuples (file, statement index,

sequence hash, info), where, file is the name of the source file, statement index is the position in the sequence

of normalized statements for the file, sequence hash is an MD5 hash code computed over the chunk of n

normalized statements from the statement index, and info contains additional data such as the start and end

lines of the chunk of consecutive statements. The heart of the technique lies in the sequence hash; tuples with

the same sequence hash indicate possible clones containing at least n statements. Consecutive such clones

are further merged to report only maximal clones.

Similar to iClone, the technique of Hummel et al. is also limited in detecting Type-1 and Type-2 clones,

but not Type-3. The first step of the detection algorithm is to create, for each file, a list of duplicated chunks.

3http://subversion.tigris.org/

143

http://subversion.tigris.org/

For a large software system, preserving such lists can cause significant memory consumption and updating

those with the changes in the source code can incur significant computational overhead. The MD5 hashing

algorithm, specially for small n, might produce same hash value for different chunks of statement, and thus

may cause false positives in the clone detection [116]. The technique can also appear inefficient, when the list

of tuples are not maintained as a sorted list, while such maintenance may frequently invoke sorting overhead

whenever the source code changes.

Higo et al. [111] proposed a PDG-based incremental clone detection technique, where PDGs are generated

from the analysis of control and data dependencies in the program code. The PDGs are preserved in the

database, and clone detection is performed by approximate comparison of PDGs. The PDGs in the database

are kept in sync with the evolving source code by examining only the updated and newly created source files.

As mentioned in Section 2.5.1, PDG based techniques are computationally expensive and they often report

non-contiguous clones that may not be perceived as clones by a human evaluator.

Li and Thompson [180] enhanced the clone detection technique of Wrangler by introducing incremental

detection. The initial clone detection is performed in two steps. First, the source code is normalized and

parsed to produced AST (Abstract Syntax Tree). The AST is then annotated and serialized. Then a suffix

tree based approach is applied to the serialized AST for detecting the initial clone candidates. The second

step applies anti-unification technique to get rid of the false positives. The annotated AST is preserved,

which is updated whenever changes in the source code take place. The approach maintains a table, where the

annotated AST representation of each expression statement is preserved. The storage and update of the table

might cause significant memory consumption and computational cost. Moreover, the approach is limited in

the detection of only Type-1 and Type-2 clones in source code written in the functional programming language

Erlang.

The clone tracking approach of JSync [215, 216] appears to be computationally elegant. JSync preserves

the clone-groups and N buckets obtained from the initial clone detection. Since JSync is implemented as a

plugin to SVN, the change information of the source files are readily available, and based on that information

JSync can determine the fragments modified, added to, or deleted from the source code repository. JSync

then removes from the clone-groups those fragments that were changed or deleted. Then the LSH (Locality

Sensitive Hashing) technique is applied to the newly added and modified code fragments to place them in the

buckets. Then the fragments in each bucket are compared pair-wise to update the clone-groups. Thus, the

clone detection technique of JSync appears to be inherently incremental and consequently computationally

efficient for tracking clones.

Recently, Zhang et al. [303] proposed an approach to provide timely notification about relevant code

cloning events for different stakeholders through continuous monitoring of code repositories. They adopted

the incremental clone detection technique based on the CCFinderX clone detector. A similar system for

notifying the creation and changes of code clones was also proposed by Yamanaka et al. [296].

144

Table 7.2: Summary of tool support for incremental clone detection

Tool Technique
Integration Supported clone types

with IDE/VCS Type-1 Type-2 Type-3

iClone Preservation Separate
 #

[92] of suffix tree tool

Tool of Higo et al. Preservation Separate
G# G# G#

[111] of PDGs tool

Tool of Hummel et al. MD5 Hashing Integrated
 G# #

[116] and indexing with ConQAT

Wrangler AST, suffix-tree, Integrated with
 #

[180] anti-unification Eclipse, Emacs

JSync[215] AST, LSH, Integrated with
 G#

[216] feature vector subversion

Legends: = supported, G#= partially supported for a limited subset, #= not supported

In Table 7.2, we summarize the techniques and tools proposed for incremental clone detection. As can be

noted, all the tools have vivid limitations in dealing with Type-3 clones, and the storage of a high volume of

data has been a common issue with all the techniques. Further research in the area my inform techniques

for integrated incremental detection of clones including Type-3 with better storage efficiency. We envision

that other classes of techniques (cf., Chapter 2) will also have incremental variants as there is a clear need

for scalable, fast and near-miss incremental detection techniques for efficient clone management.

7.3.5 Clone Refactoring/Reengineering

The investigations of opportunities for clone based reengineering and refactoring of clones for their removal

have suggested techniques such as generics, design patterns, software refactoring patterns, and synchronized

modifications of code clones.

Generics and Templates

Basit el al. [28] investigated the potential of generics in removing code clones. They carried out two case

studies on the Java Buffer Library and the C++ Standard Template Library (STL). The Java Buffer Library

was found to have 68% redundant code, and using generics they were able to remove only 40% of them.

Although they performed little better for the C++ STL, they concluded that the constraints of language

constructs limit the applicability of generics in clone removal. They further hypothesized that meta level

parameterizations might perform better as they are relatively less restrictive than generics or templates.

145

The hypothesis on the potential of meta level parameterizations was addressed by Jarzabek and Li [121]

in a later study. They also used the Java Buffer Library for their case study. They applied a generative

programming technique using XVCL (XML-based Variant Configuration Language)4 to represent similar (but

not necessarily identical) classes and methods in generic and adaptable form. Using the technique they were

able to eliminate 68% of the code from the original Java Buffer Library.

Recently, Hotta et al. [112] proposed an approach to identify prospective pairs of function clones for

refactoring using the Form Template Method refactoring pattern. Their approach is based on the analysis

of clones detected using a PDG-based technique. However, the technique is applicable in a certain scenarios

where a number of constraints can be satisfied. For example, the pair of functions must have the same return

type and they must have been defined in different classes sharing a common base class [112].

Design Patterns

Balazinska et al. [21] attempted to replace code clones by applying the strategy design pattern for partial

redesign of software systems written in Java. The idea was to factorize commonalities in the cloned methods

and parameterize their differences to preserve the original behaviours, and then weave them through the

strategy design pattern. Their approach was realized in a tool named CloRT, and the reengineering technique

was applied to the source code of JDK 1.1.7 for empirical evaluation. However, the synchronized (thread

safe) methods were kept out of the study. The reengineering process merged the source code of 28 methods,

but created 84 new methods, and thus actually increased the line of code (LOC). Indeed, LOC can be a

fair estimation for the size of the code base, but not for design quality. Use of a design quality metric suite

could have been used to reflect the actual impact of the reengineering technique on the quality of the source

code. The use of other design patterns, such as the factory pattern may also produce similar result. Further

investigation is needed towards this possibility.

Traits

Traits [256] are a modularity mechanism that complements inheritance to facilitate an orthogonal means

of sharing functionality in object oriented classes. Traits can be considered as a language extension, and

essentially, a trait is a set of pure methods (methods that do not directly refer to any instance variable),

which can be used in a class or another trait simply by name. Traits can also be a potential mechanism for

removing duplicated code, when it becomes difficult due to restrictions from inheritance hierarchy. Murphy-

Hill et al. [213] applied the traits mechanism to remove duplicated code from the java.io library. Using 14

traits, they were able to get rid of 30 duplicated methods by refactoring 12 classes.

4http://xvcl.comp.nus.edu.sg/

146

http://xvcl.comp.nus.edu.sg/

Aspects

Aspects [150] and aspect-oriented techniques (AOT) support the modularization of features that cross-cut the

class hierarchy. AOT can be promising in improving modularization, which consequently may reduce code

clones. The behaviours that Murphy-Hill et al. [213] parcelled up into traits could also be put into different

aspects, and introduced into the target by a mechanism like intra-class declarations of AspectJ [213]. On the

contrary, Jarzabek and Li [121] argues that due to the lack of parameterization mechanism and constrained

composition rules, AOT in its pure form is not meant for elimination of redundancies. More investigation in

this regard is necessary, which might reveal interesting results and opportunities.

Synchronized Modification

Simultaneous editing has been a popular approach for applying the same editing operations to more than

one identical text-snippets.

An early work [200] on simultaneous editing incorporated the feature in a text processing system called

LAPIS [199]. LAPIS offers a library of built-in parsers and patterns for various kinds of text structure, including

HTML and Java source code. The user is enabled to select multiple regions of text (manually or by using

patterns) and perform simultaneous editing.

Toomim et al. [277] proposed to apply simultaneous editing to simultaneously edit duplicated code. They

called such editing as “linked editing”, and to support this inside editor, they developed CodeLink as an

extension to the XEmacs editor. The “linked editing” of CodeLink is functionally same as the “simultaneous

editing” of LAPIS. However, CodeLink saves the user from explicitly select multiple regions for edit as to

be done with LAPIS. Instead, in CodeLink the user manually selects two code segments to link them. Then

CodeLink applies a LCS (longest common subsequence) algorithm to map between the differences and simi-

larities in the code segments, and enables simultaneous editing in the duplicated regions. However, due their

dynamic programming implementation of the LCS algorithm, their approach appears to be memory intensive

and computationally expensive. For k clones, each of n tokens, the dynamic programming implementation

of LCS algorithm runs in O(nk) time. Moreover, CodeLink “does not always report the most intuitive set

of differences between any two code fragments” [277]. The support for linked/simultaneous editing is also

available in tools such as CPC [292] and CloneBoard [62].

Consistent Renaming

Programmers often perform modifications after copy-pasting a code fragment. Such modification typically

include renaming of identifiers according to the new context of the cloned code. IDEs like Eclipse provide

necessary support for consistently renaming an identifier and all its references within scope. Jablonski and

Hou developed CReN [117] as a plugin to Eclipse that can check for any inconsistencies in the renaming

of identifiers within a code fragment and suggest modifications for making the renaming consistent. They

further extended CReN and developed LexId [118], which supports consistent modification of the same parts

147

of different identifiers in a code segment. However, the consistent renaming support from these tools are

limited to within a single code fragment, unlike the linked/simultaneous editing between clone pairs [114].

Jacob et al. developed CSeR [119] by extending the Java editor of Eclipse to visualize the similarities and

differences while a programmer edits a copy-pasted code. Hou et al. combined CReN and CSeR into a single

toolkit named CnP [114], which they are developing towards support for proactive clone management based

on copy-paste clipboard activities.

Since JSync [215] is developed as a plugin to the SVN version control system, it can exploit the change

information between versions of Java source files to determine whether any changes occurred in cloned code

regions. For such a clone pair it maps between the nodes of ASTs of the corresponding code using a treed

algorithm, detects inconsistencies in the identifier renaming, and suggests for consistently renaming them.

This feature of JSync is very similar to that of the consistent renaming support of CReN [117]. JSync also

supports clone synchronization between clone pairs when one of the clones changed between version while

the other remained unchanged. Clone synchronization of JSync simply accommodates the changes from the

modified code fragments into the unchanged code. In case both the clone pairs changed between versions,

JSync suggests clone merging. For clone merging, JSync suggests to accommodate the changes from both

the clone fragments to each other, and any conflict is simply left to the user’s resolution. Moreover, the clone

synchronization support of JSync is limited to simple changes in the identifiers, control structures, literals,

and method calls. However, JSync also allows annotating clone pairs in case the developer wants to retain

the inconsistencies. Through an empirical evaluation, Nguyen et al. [215] reported that JSync can attain

83% precision in recommending change propagation between clone pairs. However, they did not report what

fraction of the clones were of Type-1, Type-2, or Type-3.

Refactoring Patterns

Fowler in his book [81], presented 72 patterns for refactoring object-oriented source code in general for the

removal of code smells. Over time the number of refactoring patterns has increased to 93, and a refactoring

catalog5 is maintained, which lists and describes them all. Earlier research [104, 105, 135, 156, 176, 257,

300, 307, 308] suggest that a subset of those general software refactoring patterns [81] are suitable for clone

refactoring, as we described in Chapter 6. Further detail about these refactoring patterns can be found at

the refactoring catalog and elsewhere [81].

Kerievsky [149] also proposed a chained constructor refactoring pattern6, which can also eliminate du-

plicated code from the constructors of the same class [214]. Other refactoring patterns that can be found

in the literature are some sort of variants or compositions of the aforementioned object-oriented refactoring

(OOR) patterns. Other than the OOR patterns, Schulze et al. [258] proposed three aspect oriented patterns

described as extract feature into aspect, extract fragment into advice, and move method from class to interface.

5Catalog of OO refactoring patterns: http://refactoring.com/catalog/
6Catalog of 27 refactoring patterns from J. Kerievsky’s book: http://industriallogic.com/xp/refactoring/catalog.html

148

http://refactoring.com/catalog/
http://industriallogic.com/xp/refactoring/catalog.html

Tool Support for Refactoring Patterns: Although a variety of potential refactoring patterns have

been identified for code clone refactoring, tool support for the automated or semi-automated application of

those refactoring operations has been quite limited. A number of semi-automated analytical techniques have

been proposed for finding candidate clones that are easier and suitable for refactoring. Such techniques are

described in Section 7.3.6. In this section, we focus on the techniques realized in tools for the modification

of the candidate clones in actual refactoring operations.

Limited support for the rename refactoring, extract method, extract superclass and pull-up method refac-

toring can be available from IDEs like Eclipse, when the necessary program element are manually identified

by human efforts. To aid refactoring of clones in object-oriented code written in C++, Fanta and Rajlich [75]

developed tool support for five high level restructuring features namely function insertion, function expulsion,

function encapsulation, renaming, and argument reordering. However, the implementation of those features

are very limited in operational scope. For example, the inserted function cannot be a member of any class,

cannot be overloaded, cannot be a template function, and cannot be called using pointer.

Wrangler [179] supports clone removal by folding expressions against a function definition in Erlang

programs. Folding searches in the program for instances of the right-hand side of the selected function clause,

and under the user’s control, it replaces them with applications of the function to the actual parameters. The

folding operation in functional languages is similar to the extract method refactoring in imperative languages.

CloneDR provides facility to automatically or interactively perform extract method refactoring by identi-

fying identical blocks of code and producing a parameterized function/method that generalizes the blocks.

Recall that CloneDR has limitation in detecting Type-3 clones [243], and the application of extract method

refactoring may be simpler for Type-1 and Type-2 clones, which is likely to be much more cumbersome for

Type-3 clones due to addition or deletion of statements at arbitrary locations of the clone fragments.

Verification of Clone Modification/Refactoring

Human effort in source code modification can be error prone. For example, while renaming identifiers in a

copied code, the programmer may mistakenly leave a name unchanged. The work of Jablonski and Hou can

be considered as a contribution in the verification of clone modification. Their tool CReN [117] can check

for any inconsistencies in the renaming of identifiers within a code fragment and suggest modifications for

making the renaming consistent.

JSync [215] also offers a similar facility. While CRen supports this validation right in the editor inside

Eclipse IDE, JSync performs the check at the server side, when the code is checked-in to the central repository.

Any identified inconsistency in the renaming of identifiers are reported back to the developer with suggestions

for attaining consistency.

By definition, refactoring should only alter the structure of the program without changing its behaviour.

Therefore, the automatic or semi-automatic refactoring of code clones should be followed by verification to

ensure that the refactoring did not change the program behaviour [309]. Automated test case generation and

149

automated adaptation of test cases to the refactored code (clones) may help in this regard. However, to the

best of our knowledge, no significant attempt is made towards this possibility.

7.3.6 Clone Analysis

Many studies have been conducted to explore the characteristics of existence and evolution of code clones

in software systems. While most of the work found in the literature are based on open-source software

systems, there is lack of studies in the industrial context. Clone analysis helps to find opportunities for

reengineering/refactoring code clones. Moreover, in depth studies on clone evolution can reveal the types of

changes and their impacts that different categories of clones experience during their evolution, and thus can

inform clone management by indicating what type of tool support is required for effective clone management

in practical settings.

Analysis of Clone Evolution

Software development and maintenance in practice follow a dynamic process. With the growth of the program

source, code clones also experience evolution from version to version. Many studies have been conducted to

date for understanding the overall evolution [7, 8, 89, 185, 313], stability of cloned code [18, 91, 113, 169, 170,

201, 202], the relation of clone evolution with software faults [23, 94, 259, 294, 295], and other characteristics

of clone evolution. While such high level studies inform the characteristic and impact of code cloning, more

lower level analyses that investigate the change patterns in the evolution of individual clone fragments can

suggest techniques for optimizing clone management including refactoring and removal. There is a recent

survey on clone evolution [222]. Hence, we keep this section brief with specific focus on the evolution of

individual clone fragments and their change patterns.

Recall from Chapter 2 (Section 2.6) that Kim et al. [153, 154] first introduced “clone genealogy” to

study the evolution of individual clone fragments. The categorization of clone genealogy and clone change

patterns mostly used in the literature are described in Chapter 2. Aversano et al. [11] further caracterized

the inconsistent change pattern into two categories:

Independent Evolution: In independent evolution, the clones of a clone-group, once changed inconsis-

tently, evolve independently across versions. Thus, independent evolution may cause branching with

multiple lineages in a genealogy. Figure 2.3 shows independent evolution of clone lineages originating

from version k of the software system.

Late Propagation: In late propagation, one or more clones in a clone-group may experience inconsistent

changes and may disappear from the clone-group in the next one or more versions, but at a later

version those clones re-appear in the clone-group. Figure 7.2 demonstrates late propagation, where the

clone fragment D disappears between transition from version Vk+1 to version Vk+2 and after two later

versions the clone fragment re-appears in the clone-group at version Vk+4 of the software system.

150

A

C

B
A

C

B

C

B

Clone-Group
D reappears in clone-group

Inconsistent change: D
D disappears from clone-group

A

D

C

B

Vk Vk+1 Vk+2 Vk+3 Vk+4

Clone
fragments

D

A
A

D

C

B

Figure 7.2: Late Propagation

Studies [18, 36] on clone change patterns revealed that inconsistent changes in clones sometimes caused

program faults. Moreover, late propagation is reported to have even more significant correlation with software

defects and thus concluded to be “more risky than other clone genealogies” [23].

Using the clone genealogy model, recently Saha [247] studied the change patterns in the evolution of

clones in five open-source software systems. Major findings from the study report some common properties

of frequently changed clone-groups, such as, cohesive clone-groups having small number of clones experienced

more changes than others. Intuitively, such clone-groups can be easier for modification/refactoring and

it is unlikely that the developers of those open-source systems used any tool support dedicated for clone

management. Thus the clone changes could have exhibited a very different pattern, had the developers

used proper clone management tool. The frequent changes to small cohesive clone-groups rather suggest the

necessity of tool support for dealing with especially the dispersed (a.k.a., diffused [82]) large clone-groups.

Scope for Improvements: Studies on clone change patterns using the genealogy-based model described

above can suffer from a number of issues. First, due to the threshold based similarity measure used in practice

for Type-3 clones, there remains an open question on the appropriate value for the threshold. Moreover, for

Type-3 clones, is it an appropriate practice to group Type-3 clones into disjoint sets? If not, the traditional

notion of genealogy cannot apply to Type-3 clones. Can we devise a more appropriate alternative?

Second, according to the clone genealogy characterization scheme described in Chapter 2 (Section 2.6),

a genealogy can be characterized as inconsistently changed if only a single clone over the entire length of

the genealogy experiences even a very minor inconsistent change. To draw a better picture, we may capture

formation such as, what portion of clones in clone-groups change in how many versions, and how large the

changes are.

Third, the definitions of dead/alive genealogies in terms of the last versions are subject to the choice of

versions. A different choice in the number of versions would have different last version. Moreover, consider

151

a genealogy originated at the second last version and extended to the last version, while another genealogy

originated from one of the very early versions and extended to the second last version and disappears at the

last version. The current genealogy model will categorize the first genealogy as alive, while the second as

a dead genealogy. Thus, we are missing important information about how long the genealogies propagate.

Hence, instead of characterizing as alive/dead genealogies, we might characterize genealogies in terms of what

portion of the series of versions the genealogies span, similar to the notion of succession-length of Zibran et

al. [313].

Finally, from the correlation between late propagation and software defects, can we really derive a causal

relationship concluding that late propagation is riskier than other clone genealogies? Inconsistent changes

are believed to often cause defects, and clones may disappear from a genealogy due to inconsistent changes.

Later modifications, which could be even bug fixing activities, may cause changes in a disappeared clone to

sync it back to its original clone-group. In such a scenario, late propagation actually contributes in repairing

the defect introduced from inconsistent changes. Thus, we believe, late propagation can really play a dual

role, and more studies are necessary to distinguish them.

Analysis to Find Clone Based Reengineering Opportunities

Early work [14, 30] proposed macro extraction by exploiting duplications in source code written in C and

C++. While those approaches pioneered clone refactoring research, they were focused on simple refactoring

in procedural code and did not tackle the issues that might raise in refactoring clones in object-oriented

context.

Ducasse et al. [71] proposed to use clone detection tools for guiding the refactoring of code clones. For the

detection of code clones in SmallTalk code, they used DUPLOC, a text-based clone detector that performs basic

string matching over the lines of source code. From the analysis of the identified duplicated code, they found

two cases where clone refactoring operations could be applied. Those two cases were simply two variations

of the well-known extract method [81] refactoring pattern.

For the identification of code clones as suitable candidates for refactoring, Balazinska et al. [19] proposed

clone analysis based on similarities and differences in the candidate code clones. They also suggested a

number of measurements for context analysis, which capture the relationships between a class and its member

methods, between a method and its member variables, as well as the caller-callee relationships among the

methods. Although their work focused on the refactoring of code clones in object-oriented systems, they

completely ignored the horizontal and vertical dependencies due to the inheritance hierarchy. Based on

a similar analysis, Zibran and Roy proposed a code clone refactoring effort model [308], which takes into

account all the relationships including the inheritance hierarchy.

Ueda et al. developed Gemini [280, 281], a graphical tool to aid clone analysis for corrective maintenance

of code clones. Gemini works on top of the CCFinder clone detector, and facilitates the visualization of

clones using scatter plot. It also computes a number of metrics (i.e., RAD, LEN, POP, DFL, RNR) to

152

capture various properties of the detected clones [106]. A metric-graph view enables the user to set upper

and lower bounds on each metric to filter out those clones that falls beyond the boundaries according to the

user’s interest [49, 105]. Since CCFinder cannot detect Type-3 clones, the functionality of Gemini stayed

limited in Type-1 and Type-2 clones only. However, they demonstrated that the Scatter Plot of Gemini

enabled the users’ subjective perception to visualize Type-3 (gapped) clones, without actually detecting

them automatically [282].

As CCFinder detects clones that can be any arbitrary lines of code in the code base, those often lack the

contextual cohesion necessary for effective refactoring. To minimize this issue with Gemini, Higo et al. added

to Gemini a feature called CCShaper [105, 109] that applies a parser-based technique (using JavaCC) to extract

the block clones from CCFinder’s clone detection result. The objective was to extract block clones which

might be easily merged by applying the extract method refactoring pattern. A tool named ARIES [104] was

also published, which combined the metric view of Gemini and the clone filtering feature of CCShaper as well

as introduced two additional clone metrics (i.e., NRV and DCH) beyond those previously existed in Gemini.

Method/function level code clones belonging to different clone-groups, at times, may have dependency in

terms of caller-callee or data sharing (reference or assignment) relationships. Yoshida et al. [300] called such

clones “chained clones”, and argued that all of such clones should be refactored at once. Thus, they extended

ARIES with a PDG based technique to identify such chained clones from the initially detected clones. Indeed,

due to the use of CCFinder as the backend clone detector, their automated technique can handle only Type-1

and Type-2 clones, but not Type-3.

Tairas and Gray [269], through an empirical study on two open source Java systems (JBoss and ArgoUML),

reported that in some cases clone refactoring was partially performed on only parts of the clones, and in most

cases those refactored clones were still further refactorable. However, they focused to investigate only the

occurrences of refactorings composed of the extract method refactoring pattern. Indeed, there are other types

of refactorings including small modifications (e.g., identifier renaming, addition/deletion of statement) in the

code fragments, which might have caused partial changes in the clones, as they found. Most importantly, they

observed changes by comparing clones between pairs of consecutive releases, and simply assumed that those

changes occurred due to refactoring. However, such an assumption may not hold true, as those small changes

may be caused by many reasons such as corrective or adaptive maintenance, or to change functionalities of

those code fragments. Moreover, “it is unlikely that developers of JBoss and ArgoUML used a clone detection

tool to identify clones” [269], or used any tool support for clone refactoring. This might be a plausible

reason why there were small changes in the clones that still remained refactorable from the perspective of

clone removal. This rather emphasizes the need for effective clone management tool support for software

maintenance.

Higo et al. developed Libra [110], a tool on top of the CCFinder clone detector to facilitate the detection

of clones of only a given code fragment, instead of detecting all clones from the entire given code base. They

argued that such a clone detection may be useful to find potential clones where simultaneous modifications

153

can be applied. Libra was not integrated with any IDE. Moreover, since it internally invokes CCFinder, it

cannot handle Tyep-3 clones. Lee at al. [175] used an algorithm based on feature-vector computation over

AST that finds the k most similar clones of a given code segment. But, their tool was not reported to have

integration with IDE. Zibran and Roy [310] developed a similar tool which is integrated with the Eclipse

IDE, and can find all the three types (Type-1, Type-2, and Type-3) of clones of a chosen code fragment.

Clone Taxonomies Based On Reengineering Opportunities

Analysis of diverse characteristics and properties of code clones in quest of reengineering opportunities led

to different taxonomies of code clones, and refactoring strategies for different categories of clones.

From a manual analysis of 800 function/method level clones over six different open-source Java systems,

Balazinska et al. [20] proposed a taxonomy of function clones based on the differences and similarities in the

program elements. Taking into account the location of clones in the inheritance hierarchy, Koni-N’Sapu [158]

proposed a clone taxonomy and a set of object-oriented refactoring patterns for refactoring each categories

of code clones. Tokunaga et al. [275] also suggested to develop a collection of code clone refactoring patterns

based on precise clone categorization.

Schulze et al. [258] argued that aspect-oriented refactoring (AOR) can be more appropriate than object-

oriented refactoring (OOR) in certain scenarios. They proposed a code clone classification scheme to support

the decision whether to use OOR or AOR for clone removal. However, any empirical evaluation of the ef-

fectiveness of their clone classification scheme or the clone removal procedure is not available. A similar

workflow for the detection and refactoring of code clones was proposed by Kodhai et al. [156], the implemen-

tation of which is not available, let alone any empirical evaluation. Torres [278] argued that classification of

concepts containing duplicated code can provide hints about which refactoring can be suitable. The applied

a concept-lattice based data mining approach to derive four categories of concepts containing duplicated code

and suggested refactoring patterns suitable for refactoring clones in each of those categories.

Taking into account both the locations of clones in the file-system hierarchy and (dis)similarities in the

functionalities, Kapser and Godfrey [139] proposed a taxonomy, which is often considered as the most ex-

tensive clone taxonomy to date [162]. To classify clones from non-cloned code, recently Yang et al. [297]

proposed a machine-learning approach which take into account the developers judgment about a particular

code is really a true clone or not. Despite the number of proposed clone taxonomies for reengineering oppor-

tunities, the state of the art still demands more investigation in this regard suggesting open questions [162]

for instance, can other properties such as cost, benefit, risk of refactoring be incorporated in a taxonomy?

7.3.7 Clone Visualization

For the purpose of finding and characterizing code clones suitable for refactoring, reengineering, or removal,

in depth analysis of the various properties of the clones and their context is required. Clone visualization has

been proven to be effective in aiding such analysis.

154

Visualization of Distribution and Properties of Clones

A major challenge in identifying useful cloning information is to handle the large volume of textual data

returned by the clone detectors. To mitigate the problem, a number of visualization techniques, filtering

mechanisms and support environments are proposed in the literature. Jiang et al. [125] categorized the

proposed clone presentation techniques based on two dimensions. The first dimension refers to the level at

which the entities are visualized (such as at the code segment level or file level or subsystem level). The

second dimension refers to the type of clone relation addressed by the presentation, that is, whether clones

are showed at the clone pair level or grouped into clone sets or super clones. A super clone is an aggregated

representation of multiple clone-groups residing in the same source code entity (e.g., file).

Johnson [128] used the popular Hasse diagram to represent textual similarity between files. Later, he also

proposed hyper-linked web pages to explore the files and clone-groups [129]. Cordy et al. [53] used HTML

for interactive presentation of clones where overview of the clone-groups is presented in a web page with

hyperlinks and users can browse the details of each clone-group by clicking on those links. Although such

representations offer quick navigation, they cannot reveal the high level cloning relations. A set of polymetric

views [234] were also proposed in the literature that permit encoding of a number of code clone metrics to

the visual elements.

Among various visualizations, scatter plot is quite popular and capable of visualizing inter-system and

intra-system cloning characteristics [52, 186]. However, the size of the scatter plot depends on the size of input

(e.g., size of the source code) rather than the amount of cloning. Thus, using a scatter plot for visualizing

cloning information of a large software system may become challenging due to the large size of the plot.

Moreover, non-contiguous sections that contain the same clone cannot be grouped together in scatter plot.

To overcome this, Tairas et al. [271, 272] proposed a graphical view of clones (also known as Visualizer view)

that represents each source file as a bar and clones within the files are represented with stripes. Clones

belonging to the same clone-group are encoded with same color.

Jiang et al. [124] extended the idea of cohesion and coupling to code clones and proposed a visualization

technique that uses shape and color to encode the metric values. They also developed a framework [124] for

large scale clone analysis and proposed another visualization, called a clone system hierarchical graph that

shows the distribution of clones in different parts (with respect to the file-system hierarchy) of a system.

Fukushima et al. [82] developed another visualization using graph drawing technique to identify diffused

(scattered) clones, where clone fragments are represented as nodes and the nodes corresponding to clone

fragments that are located in the same file are connected with edges to form a clone cluster. Nodes that

connect different clone clusters are called diffused clones, which have cloning relationships across different

files implementing different functions.

Gemini [281] is an example of a clone support environment that uses CCFinder for clone detection and

can visualize cloning relationship using scatter plots and metric graphs. Kapser and Godfrey developed

CLICS [140, 144], another tool for clone analysis. CLICS can categorize clones based on a clone taxonomy [139]

155

(previously proposed by Kapser and Godfrey) and can support query based filtering. However, the operability

of CLICS is limited to source code written in C/C++ and Java only.

Tairas et al. [272] developed an Eclipse plug-in that works with the clone detector CloneDR, and implements

the visualizer view along with a list view for presenting the detected clones. Clone Visualizer [305] is a

similar tool developed as an eclipse plug-in that works on top of the Clone Miner clone detection tool.

In addition to supporting clone visualization through stacked bar chart and line graph, Clone Visualizer

supports query based filtering. CYCLONE7 [100] is another tool that uses RCF (Rich Clone Format) [100]

file as input and supports single and multi-version program analysis and visualization. RCF is a data

exchange format capable of storing clone detection results. A separate viewer application named RCFVIEWER8

is also developed for the visualization of clone information stored in RCF format. Haupmann et al. [101]

proposed Edge Bundle View for the visualization of distribution of clones across subsystems and directories

of the software system. They implemented a prototype of the view on top of the quality assessment toolkit

ConQAT. Another implementation of the same view is found in a commercial clone detector, SolidSDD9.

Table 7.3 summarizes the various clone visualization techniques realized in different tools. As can be

noted, all the visualization techniques focus on visualization of clone pairs or clone-groups with respect to

their dispersion in the file-system hierarchy only. However, the cost-benefit analysis of code clone refactoring

must take into account the distribution of clones in the inheritance hierarchy [307, 308, 312]. Therefore, from

the perspective of clone removal or refactoring, the visualization of the clones with respect to the inheritance

hierarchy can offer useful insights, and future work in clone visualization should address this possibility.

Visualization of Clone Evolution

Visualization support can aid analysis of clone evolution, and thus different techniques and tools have been

proposed for visualizing properties of clone evolution including the genealogy model.

Adar and Kim [3] developed SoftGuess, a system for clone evolution exploration that supports three

different views. SoftGUESS is developed on top of GUESS [2], the graph exploration system, which models the

evolution of a software system using graphs. The genealogy browser of SoftGuess offers a simple visualization

of clone evolution where nodes represent clones, arranged from left to right, and the those that belong to

the same class are arranged vertically in the same position. Thus, each column represents a version. A

link between a pair of node reflects the predecessor and successor relationship during the evolution of the

software. The encapsulation browser shows how clones within a clone-group are distributed in different

parts of a system and how they fit in the hierarchical organization of the software system by visualizing the

containment relationship through a tree structure. Finally, the dependency graph describes how the nodes

(package, class or method) within a version are evolved from other nodes and how they evolve in the next

version. In addition, SoftGUESS also supports charting and filtering mechanisms based on Gython, a SQL

7http://softwareclones.org/cyclone.php
8http://www.softwareclones.org/
9http://www.solidsourceit.com/products/SolidSDD-code-duplication-cloning-analysis.html

156

http://softwareclones.org/cyclone.php
http://www.softwareclones.org/
http://www.solidsourceit.com/products/SolidSDD-code-duplication-cloning-analysis.html

Table 7.3: Summary of clone visualization techniques

Visualization Technique
Clone Clone Realized Integrated

Granularity Relation in Tool IDE

Tree Map File,
Clone Group

VisCad, ConQAT,
None

[9, 10, 234] Subsystem CyClone

Scatter/Dot Plot File,
Clone Pair

VisCad,
None

[9, 10, 102, 234, 281] Subsystem Gemini

System Model View File,
Clone Pair None None

[234] Subsystem

Clone System Hierarchical Tree File, Clone Pair,
Yes None

[124] Subsystem Clone Group

Hasse Diagram [128] File Clone group No None

Clone Group Family Enum. [234] File Clone group No None

Duplication Web [234] File Clone pair No None

Dependency Graph [140] Subsystem Clone Pair CLICS None

Hierarchical Dependency Graph
Subsystem Clone Pair VisCad None

[9, 10]

Clone Coupling and Cohesion [125] Subsystem Super Clone Yes None

Metric Graph Code
Clone Group Gemini None

[281] Segment

Clone Cluster View Code
Clone Group No None

[82] Segment

Hyper-Linked Web Page Code
Clone Group NiCad None

[53, 129] Segment

Clone Visualizer View File, Code
Clone Group

AJDT Visualizer Eclipse

[271, 272] Segment plug-in IDE

Stacked Bar Chart File, Code
Clone Group

Eclipse Eclipse

[305] Segment plug-in IDE

Line Chart File, Code
Clone Group Yes None

[305] Segment

Clone Scatter Plot File, Code
Clone Group No None

[234] Segment

Edge Bundle View File,
Clone Pair

ConQAT,
None

[101] Subsystem SolidSDD

157

type query language. However, SoftGUESS lacks an ‘overview’ feature and requires users’ interaction for

data reduction through queries. Although a query is a powerful mechanism to identify important patterns of

cloning, the formulation of queries could be difficult due to the cognitive efforts required from the developers.

The clone evolution analysis tool CYCLONE [100] offers five different views to analyze clone data stored in

a RCF file, where RCF is a binary format to encode clone data including the evolutionary characteristics.

The evolution view in CYCLONE visualizes clone genealogies that uses simple rectangles and circles to denote

software entities. Each circle represents a clone fragment arranged in a set of rows where each row represents

a particular version of the software. The clones that belong to the same clone-group are packed within a

rectangle. Finally, the evolution of a clone fragment across versions is presented with a connecting line. In

addition, the view employs colors to distinguish types and the changes in the clones. Although the view high-

lights many important evolutionary characteristics, the volume of data produced by the genealogy extractor

still limits its usefulness, and thus call for aggregation and filtering mechanisms. A similar visualization

support is available in VisCad [9], with additional flexibility of metric based filtering of genealogies.

Saha et al. [250] presented an idea for clone evolution visualization using the popular scatter plot. In

their proposed approach, scatter plots show the clone pairs associated within a pair of software units (file,

directory or package). The clone pairs are rendered with different colors depending on the type of clone

genealogies they are associated with. Selecting a clone pair through the users’ interaction (double clicking

on a clone pair in the scatter plot) shows the associated genealogy in a genealogy browser. The proposal

facilitates developers or maintenance engineers to identify evolutionary change patterns of the clone-groups

in a particular version and then provide a way to call for genealogy browser to dig deeper. However, the

approach does not provide overall characteristics of the genealogies, and neither an implementation of the

proposal nor an empirical evaluation of the technique is available yet. Moreover, due to the large number of

clone pairs, the identification and selection of useful patterns in such a scatter plot can be difficult, which is

why different variants of the traditional scatter plot appeared in the literature [52].

7.4 Design Space for a Clone Management System

In this section, we discuss different criteria that must be taken into account in making strategic and design

decisions for a versatile clone management system we envision.

7.4.1 Clone Management Strategies

For dealing with code clones, Mayrand et al. [196] proposed two concrete activities namely “problem mining”

and “preventive control”, which were further supported by a later study of Lague et al. [172]. Giesecke [86]

categorized them into compensatory and preventive clone management, respectively. Giesecke [86] suggested

that all clone management activities can be associated with on or more of the three categories: corrective,

preventive, and compensatory management.

158

Corrective clone management aims for removal of existing clones from the system. The objective of

Preventive clone management is to prevent creation of new clones in the system. Compensatory clone

management deals with applying techniques (such as annotation, documentation) for avoiding the negative

impacts of clones that are not removed from the system for some valid reasons. In practical settings, avoiding

clones may be impossible at times, and the expectation of a clone-free system can be unrealistic. Thus,

preventive clone management actually refers to proactive management [114, 115] that aims to deal with

the clones during their creation or soon after they are introduced. An opposite strategy, retroactive clone

management [48] adopts the post-portem approach [310], where clone management activities initiate after the

development process is complete up to a milestone.

Clone management in legacy systems can be the most appropriate for the post-mortem strategy. Indeed,

prevention is easier to cure. Therefore, proactive clone management is preferable to post-mortem approach.

While, ideally, all clones should be managed proactively, in practical settings, proactive treatment for all clones

may not be feasible or possible. Therefore, a versatile clone management system should focus on support for

proactive management, while at the same time, should also facilitate retroactive clone management [48].

7.4.2 Design Choices

Most clone detectors [137, 238, 122, 107] are implemented as stand-alone tools separate from IDEs (Integrated

Development Environments) and typically search for all clone in a given code base. While clone detection

from such tools can help clone management in post-mortem approach, researchers and practitioners [86,

99, 114, 115, 172, 215, 309, 310] believe that clone management activities should be integrated with the

development process to enable proactive management.

Hou et al. [115], during the on-going development of their clone management tool CnP [114], explored

the design space towards tool support for clone management. However, their work was tightly coupled with

the clone detection technique based on the programmers’ copy-paste operations. Thus, their findings are

limited in scope to the management of copy-pasted code, and most of the findings are not applicable to clone

management based on similarity based clone detection.

We identify three major dimensions and some sub-dimensions in the design space for a versatile clone

management system. These dimensions are inspired by our experience and the different clone management

scenarios reported by Giesecke [86].

Architectural Centrality

The need for the integration of clone management activities with the development process suggests that the

IDEs should include features to support clone management activities during the actual development phase.

While a programmer typically works inside an IDE running on her individual workstation, for fairly large

projects, specially in industrial settings, a team of developers collaboratively work on a shared code base

kept in a version control system (e.g., SVN, CVS) set up on a central server. Hence, the supports for clone

159

management activities can be implemented as features augmenting the local IDEs, or the functionalities can

be implemented at the central repository.

Decentralized Architecture: The clone management functionalities, when augment the features in local

IDEs, can enable the individual programmers to exploit the benefit of clone management. In the decentral-

ized scenario different developers can use different tools, and some programmers can get the flexibility to

completely or partially disregard clone management at their respective situations. Apparently, such a decen-

tralized implementation may completely disregard the existence of a central server, and enforces proactive

clone management before check-in to the shared repository. However, this necessitates additional require-

ment for establishing means for communication between distributed developers, as well as combining and

synchronizing clone information across all the developers.

Centralized Architecture: The centralized architecture inherently aims to support clone management in

distributed development process. The functionalities can be implemented as a client-server application on top

of central version control systems. Such a centralized clone management system may require greater effort

and offer less flexibility than a decentralized implementation [86]. Indeed, a client-server implementation

cannot support those individual programmers who work alone on their stand-alone local machines [310].

But, the centralized architecture may facilitate the integration of clone detection feature with the continuous

or periodic (e.g., diurnal) build process.

Triggering of Clone Management Activity

A clone management activity may be initiated by the practitioner, or such an activity may be triggered in

response to certain actions in the system. Thus, an activity can be human triggered or system triggered.

Human Triggered Initiative: A developer, after writing or modifying a piece of code, may invoke search

for its clones in the system, upon finding the clones, she may analyze and decide how to deal with them.

In such an ad-hoc triggering scenario, the developer, at times, may forget to perform the necessary clone

management. An instance of clone management activity may also be periodically scheduled in advance as

part of a larger plan of process activities, and clone management activities can be carried out following the

post-mortem approach on the current status of the code base.

System Triggered Initiative: The development environment can trigger clone management activities in

response to certain events, such as saving changes in the code, or check-in of modified code to the central

repository having the clone detection capability integrated with the build process. Such events may notify

and suggest the developer to perform the required clone management operations. However, care must be

taken so that those auto-generated notifications and suggestions do not irritate the developer or hinder her

normal flow of work.

160

Scope of Clone Management Activity

An instance of clone management activity may be clone-focused or system-focused. A clone-focused activity

deals with a narrow set of clones of a particular code segment of interest. On the contrary, a system-focused

clone management activity aims to deal with a broad collection of clones in the entire code base, or particular

portions of the system.

Detection

Documentation

Type-1

Type-2

Type-3

Type-4

Core
information

Additional
information

Interoperability

Analysis

Visualization

Tracking

Recommendation

Annotation

Refactoring
operation

Refactoring
Scheduling

Refactoring
verification

dispersion
in file-system

similarity
distribution in
inheritance
hierarchy

cost-benefit
analysis

diff

distribution in
inheritance
hierarchy

navigation
Type-1

Type-2

Type-3

Type-4

composite
refactoring

consistent
rename

clone-pair
merge

extract
method

basic with
persistence

Persistence with
tool support

automation

recommendation

consistent
rename

clone-pair
merge

authomated
schedulingauthomated

estimation of
cost-benefit

verify
renaming for
consistency

automated
test case

generation or
adaptation

Done well enough Attempted with some success Yet to achieve

Legends

dealing with
groups of 3 or
more clones

dealing with
groups of 3 or
more clones

Figure 7.3: Achievements and scopes along different dimensions of clone management activities

161

7.5 Clones in Test Code

Until recently, code clone research remained focused on production code (i.e., source code for implementation

of features according to requirement). However, for program verification and validation, test code is also

produced in parallel to the production code, and both of those type of source code constitute a code base.

This poses a number of open questions:

• Can it be beneficial to detect and manage clones in the test code as well?

• Is there any relationship between cloned code and their test code? Can the test code for the cloned

production code be expected to be clones as well?

• Can clone detection in the test code prevent creation of clones in the production code, specially in

test-driven development?

7.6 Industrial Adoption of Clone Management

Despite the active research on software clones and their impact on the development and maintenance of

software system, management of code clones is still far from wide industrial adoption. A reason to this could

be the unavailability of integrated tool support for versatile clone management. Or may be, the industry is

not well aware of the problem. Typically, the organizations in the software industry operate on a limited

budget and often in tight schedule, when the major objective becomes to be able to deliver the product to

the client in time. Cloning becomes an advantage in such scenarios; the immediate effect of code cloning is

rewarding, since cloning offers a reuse mechanism for low risk faster development process.

The possible negative impacts of code clones are generally deferred at later stage in the maintenance

phase, for instance, until a fault in the system is discovered, which might have been caused due to inconsistent

changes in the cloned code, or when it becomes difficult to manage the code base due its very large size. Many

software organizations have separate business agreement with the client to provide maintenance support for

their product over a defined period of time, for which the client makes additional payments.

Thus, from the business perspective, a software organization may have two phases of business: business

on product delivery and product maintenance. Indeed, code cloning is beneficial at the first phase, although

at the second phase there remains a possibility of increase in necessary maintenance effort due to code clones.

Since, the software company may consider the maintenance phase a separate cash-inflow business, they

might become apathetic in clone management, specially during the active development process. Therefore,

the adoption of clone management in the industry largely depends on their realization in the fact that some

initial effort in proactive clone management may significantly save later maintenance efforts.

What we as researchers need to show first is sufficient empirical evidence of real problems caused by clones.

We have made good progress in recent years here. Then we need to pro- vide usable working solutions. We

162

need to demonstrate their benefits in real case studies. Because benefits are expected to show up only in

the long run, we need long-term studies in realistic industrial settings. Such long-term industrial studies are

difficult to conduct, however.

Despite these difficulties, we see signs that clone management is gathering momentum in industry. There

are several clone detectors available as Eclipse plug-ins and only recently Microsoft introduced a clone man-

agement feature in Microsoft Visual Studio [57, 291]. There are several other industrial attempts as well

[284, 296] including a recent Dagstuhl seminar on the topic [29].

7.7 Summary

In Table 7.4, we present a number of research questions relevant to clone management. In the right-most

column, we present our opinion about the resolution status of each of the questions. We formulate this

presentation having been inspired by the outcome of the brainstorming session of the Second International

Workshop on Detection of Software Clones (IWDSC’03) in November 2003 [288]. On the basis of the outcome

from the brainstorming session, in the second column from the right, we present the resolution status of each

questions at that time (i.e., November 2003).

In Figure 7.3, we summarize the state of the art along the different dimensions code clone management

and scopes for further improvements. Although software clone research has gained quite some maturity over

the last decade, the majority of the work focused on the detection and analysis of code clones. Compared

to those, clone management has earned recent interest due to its pragmatic importance. Notably three

surveys [162, 222, 236] appeared in the literature, none of which focused on clone management, and thus a

survey on clone management was a timely necessity. This paper presents a comprehensive survey on clone

management and pin-points research achievements and scopes for further work towards a versatile clone

management system.

At the fundamental level, the vagueness in the definition of clones at times causes difficulties in formaliza-

tion, generalization, creation of benchmark data-set, as well as comparison of techniques and tools. A set of

task oriented definitions or taxonomies can address these issues. Most of the integrated tools have limitations

in detecting Type-3 clones, and the detection of Type-4 clones has still remained an open problem. Moreover,

most of the research on software clones so far emphasized clone analysis at different levels of granularity. A

variety of techniques for the visualization of clones and the evolution have been proposed. Surprisingly, while

clone analysis points to the importance of considering inheritance hierarchy for extracting clone reengineering

candidates, there is still not enough visualization support to analyze clones with respect to their existence in

the inheritance hierarchy.

Research on clone management beyond detection has mostly been limited to devising techniques to identify

clones that are easier to deal with. In ideal case, simple things should be made easy, while difficult things

possible. The state of the art demands more research in semi-automated tool support for clone refactoring

163

Table 7.4: Research questions and current solvable status in clone research

#
Issues

Cat.
Solved?

(asked as questions about knowledge) 2003 Now

1 What is the definition of a “clone” in source code and beyond?

d
efi

n
it

io
n

partly maybe

2 What are the categories of clones? no partly

3 Do we understand clones in source code written in diverse programming paradigms? no partly

4 Clones at which granularity can be appropriate for what purpose? no partly

5 Can we define clones at a level of abstraction higher than the source code? no partly

6 Can we define clones in artifacts (e.g., models, requirements) other than source code? no partly

7 Do we have standard difference measures for near-miss (especially for Type-3) clones? partly partly

8 Can we perform basic clone detection on procedural systems?

d
et

ec
ti

o
n

yes yes

9 Can we describe the differences between the detected clone fragments? no partly

10 Do we have IDE-integrated clone detection tools? maybe partly

11 Can/should we detect clones at an abstraction higher than the source code? no maybe

12 Can we detect syntactically similar clones? partly yes

13 Can we detect semantic (Type-4) clones? no no

14 Does the size of the system affect the rate of clone occurrence?

p
h

en
o
m

en
a

no no

15 Does the programming language/paradigm affect the creation of clones? no partly

16 Do we know the reasons/psychology behind the creation for clones? no partly

17 Does the development process affect the creation of clones? no partly

18 Does XP produce fewer clones? no partly

19 Which clone detection technique is good for what purpose?

ev
a
lu

a
ti

o
n no no

20 How to evaluate and compare the tools and techniques for clone detection and management? no partly

21 Do we have benchmark to compare tools and techniques for clone detection and management? partly partly

22 Do we have context-sensitive categorization of good and bad clones?

im
p

li
ca

ti
o
n no partly

23 What proportion of clones contribute in the creation and propagation of bugs? no partly

24 What is the stability of cloned code compared to non-cloned code? no no

25 Do we know what type of changes to the clones typically cause vulnerabilities? no partly

26 Can near-miss clones be traced through system evolution?

tr
a
ck

in
g no partly

27 Can we construct clone derivation histories? no no

28 Can we investigate the changes that a clone fragment experience during evolution? no partly

29 What can be done for effective clone management?

cl
o
n

e-
b

a
se

d
a
ct

io
n

s

no partly

30 Do we understand the costs/benefits of clone detection and removal? no partly

31 Should we care about clones in test code and auto-generated code? no no

32 Should we aggressively remove clones? no partly

33 Which clones should be refactored, kept, or encouraged? no partly

34 How can we refactor a group of more than two near-miss clones? no no

35 Can we automate refactoring well? no no

36 Can we annotate clones with justification, should we must keep them? no partly

37 What kind of tool support can help to minimize/prevent the creation of clones?

p
re

v
en

ti
o
n no partly

38 Can support from programming language/paradigm help to prevent clones? no no

39 Can customization of development process help in minimizing clone creation? no no

40 Do we know the business cases of clone management?

ec
o
n

o
m

ic
s no partly

41 Can we quantify the end-user value of clone management? no no

42 Do we have adequate economic models of clone management costs? no no

164

and cost-benefit analysis of clone removal/refactoring. For integrated clone management, JSync [215] offers

a relatively wider set of features compared to others. But, we see that the state of the art is still far from

integrated tool support, and more to be done towards a versatile clone management system. Perhaps, due

to the unavailability of such tools, there is not much developer-centric ethnographic studies on the patterns

of clone management in practice, as well as on the usability and effectiveness of tool support. This chapter

exposes such potential avenues where years of further research is necessary to create a better impact in the

community.

165

Chapter 8

Conclusion

“Nothing is impossible. Not if you can imagine it.
That’s what being a scientist is all about”

– Hubert Farnsworth

Duplication of source code is a common phenomenon in every software project in practice. Cloning indeed

helps to speed-up development process specially when project schedule remains tight. Moreover, code cloning

enables reuse of existing piece of code instead of risking to introduce program faults due to human errors

while writing the code from the scratch. Code cloning can also facilitate decoupling program units for their

independent evolution. Sometimes code clones can appear in the source code without the awareness of the

developers especially in distributed development environments. At times it can even be difficult (if not

impossible) to avoid clones due to limitations of programming language, underlying framework, APIs, or the

programming problem at hand.

Despite the advantages of code cloning, code clones can have detrimental impacts on the maintenance

of the software system. Redundant code can unnecessarily inflate the source code and cause increase in

resource consumption, which can be crucial for embedded systems and hand-held devices. Copying a piece of

code that contains any unknown bugs can propagate the bug to all those locations where the code is pasted.

Upon copy-paste the programmer may accidentally forget to make a necessary change and thus can introduce

program faults. During maintenance, the existence of code clones can impose an extra overhead to make sure

that a change in a piece of code is followed by consistent updates to all its copies.

Due to the dual role of code clones, we must detect and manage clones effectively to minimize the negative

impacts while obtaining the best out of code cloning. Earlier research in software clones primarily focused

on the detection of Type-1 and Type-2 clones and investigation of cloning characterstics for those types of

clones. Indeed, the detection of Type3 clones and large scale analysis of near-miss (Type-2 and Type-3) clones

from the management perspective were largely ignored or limited. This thesis focuses on the detection and

analysis of clones from the management perspective, and we deal with all three (Type-1, Type-2, and Type-3)

types of clones.

The remaining of the chapter is organized as follows. In Section 8.1, we present a brief summary of the

entire thesis. Section 8.2 points to the major contributions of this thesis. Section 8.3 discusses the limitations

of this thesis. Finally, Section 8.4 concludes the chapter with future research directions.

166

8.1 Summary

Clone management can start by first identifying the clones in the source code. Most of the existing clone

detectors are developed as tools separate from IDEs. However, for proactive clone management, clone de-

tection must be possible from inside IDE. Those few tools that are integrated with IDEs have limitations in

detecting Type-3 clones. Therefore, we have developed an IDE-integrated clone detector that can effectively

detect both exact (Type-1) and near-miss (Type-2 and Type3) clones. Our novel approach for clone detection

and the evaluation of our prototype tool implementation are presented in Chapter 3.

To understand the existence, evolution, and management implications of code clones in evolving software

systems, we then carried out a number of in-depth empirical studies in large scale. In terms of clone-density,

first we studied the proportion and evolutionary characteristics of clones in a large number of official releases

of diverse open-source software systems. In a follow-up study, we examined the cloning patterns in two

industrial web applications. Then, in a separate study, we looked deeper into the evolution of individual

clone-group using the clone genealogy model. From these studies, as presented in Chapter 4, we revealed

different patterns in the changes of code clone densities in the evolving software systems. While an increasing

trend in the number of clones was found to be dominant, there were variations, irregularities, and influence

of underlying programming languages or paradigms.

To further investigate the management implications of evolving clones, we carried out another in-depth

study as presented in Chapter 5. Again using the clone genealogy model, in this study, we examined how the

individual clone-groups change or disappear during their evolution over subsequent releases of the software

systems. Our study shed light in the existing wisdom and contradictions in the community about clone

management, and revealed the characteristics that make a certain type of code clones attractive candidates

for removal in practice. We also found many long-lived clones that could have been removed by refactoring.

Indeed, clone removal by refactoring can help to minimize the number of clones in the source code. While

refactoring involves efforts and risks, it also have impacts on the code quality. Moreover, refactorings may

have conflicts and dependencies. Considering all the constraints, the cost-effective selection of an optimal set

of candidate clones for refactoring is not a trivial task. This refactoring scheduling problem is addressed in

Chapter 6. For the estimation of clone refactoring efforts, we introduced a new effort model, and then we

presented our novel approach for conflict-aware optimal scheduling of code clone refactorings.

Although the work presented in Chapter 3 through Chapter 6 address the most important areas (i.e.

clone detection, analysis, and refactoring) of clone management, based on an extensive literature survey, in

Chapter 7, we have exposed scopes for improvements and further contributions in the area. In those avenues,

long-term research efforts are needed from the community to produce a versatile clone management solution

for use in the industry and research.

167

8.2 Contributions

While we have provided the details of our research in the earlier chapters, and presented an abridged summary

of the entire thesis in Section 8.1, here we outline the major contributions of this thesis as follows:

Integrated Support for Focused Search for Near-miss Clones: We have developed an IDE-integrated

tool for searching exact (Type-1) and near-miss (Type-2 and Type-3) clones as described in Chapter 3.

In the detection of Type-3 clones, we used a suffix-tree-based k-difference hybrid algorithm, which no

one before us applied in this context. Our clone detection approach combines the advantages of the

AST-based and text-based techniques, yet we avoid expensive string matching by incorporating Suffix-

tree and hash-based fingerprinting. To enable proactive clone management, we implemented our clone

search tool as a plug-in to the popular Eclipse IDE. Our clone search tool detects only the clones

of a particular code fragment of the developer’s choice, and thus avoids computations that otherwise

would have been involved had it detected all the clones from the entire code base. This focused clone

search is suitable for the developer’s active interaction with the source code during the development

or maintenance phase, and also saves the developer from too many reported clones detected from the

entire code base that a traditional clone detector would report otherwise. This particular work of ours

is published in ACM-SAC’2012 [310].

Understanding how Clones Are Managed in Practice: We have conducted exploratory studies that

reveal useful insights into the characteristics of clones, their changes and removal during evolution. The

first study as presented in Chapter 4 (Section 4.2) was the largest empirical study in on clone evolution

at the time it was published [313]. The follow-up empirical studies also appeared in peer-reviewed

refereed conferences [211, 248]. Our empirical study (Chapter 5) on the evolution and change patterns

of individual clones informs clone management by deriving useful insights into what type of changes

the individual clone fragments experience during their evolution. At the time the work was published

in ACM-SAC’2013 [314], this was the first genealogy-based study on clone evolution that included

Type-3 clones. An extension of the work was also invited and published in ACM Applied Computing

Review [315].

Our empirical studies on clone evolution generally remains unique from most other similar studies in

two ways. First, instead of studying versions (i.e., periodic snapshots or commit transactions) of the

software systems, we studied the official releases and thus captured stable changes in the clones during

their evolution over a longer period of time. Second, in our studies, we included subject systems of

diverse sizes from a variety of application domains and written in different programming languages.

Clone Refactoring Effort Model and Scheduler: We have developed a parameterized effort model and

a refactoring scheduler for cost-effective scheduling of code clone refactorings (Chapter 6). Ours is the

first effort model for the estimation of efforts needed to refactor clones in object-oriented source code.

168

The proof of concept of the effort model appeared in ICPC’2011 [307]. Our refactoring scheduler adopts

a constraint programming approach that no one reported to have applied before in this context. The

work is published in SCAM’2011 [308]. As one of the best papers, an extended version of our work was

invited and published in an special issue of IET Software Journal [312].

Based on our in-depth analysis of the existing literature and our experience, we have also identified

(Chapter 7) scopes for further research and development towards a versatile clone management system. A

part of the chapter appeared as a Vision Keynote in the IEEE CSMR-18/WCRE-21 Software Evolution Week

(SEW’14) [244].

8.3 Limitations

The limitations of the individual parts of this dissertation research are pointed out in the respective chapters.

Here, we further discuss the limitations of the work as a whole.

As mentioned in Section 1.1.2, the scope of this thesis is limited to Type-1, Type-2, and Type-3 clones in

the source code only. We have not dealt with semantic (Type-4) clones or clones in other software artifacts

such as models and requirement documents. Moreover, our work has remained limited to code clones at the

granularity of functions/methods and syntactic blocks only, although much of this work can easily be made

applicable for clones in other levels of granularities.

In the implementation of our clone search tool, we adopted a novel hybrid algorithm that exploits the

advantages of both AST-based and textual comparison based techniques. Nevertheless, like any other state-of-

the-art clone detectors, our clone search tool also has its strengths and weaknesses. The technique for clone

detection used in our tool is sensitive to reordering of statements (e.g., variable declaration statements).

AST-based tree matching techniques could have been considered as an alternative to avoid such sensitivity

to statement ordering. But tree matching can be computationally expensive. Moreover, minor differences

in the source code can result in large variations in the corresponding abstract syntax trees. Thus, clone

detection using AST-based tree matching suffers from low recall [13, 34, 35]. The “code preprocessing” part

of our clone detection technique is language-dependent, and the current implementation of our Eclipse plug-in

supports source code written in Java only. However, we also have a TXL-based command line version of our

tool that can deal with any programming language, if the TXL grammar for the language can be provided.

Although we have developed our clone search tool as a plug-in to the popular Eclipse IDE, the tool is still

in its prototype stage. There are scopes for investing more programming efforts for further fine tuning and

inclusion of additional features to make it an industry standard finished product.

In general, the empirical studies presented in this thesis might have suffered from the limitations of

the underlying tools and algorithms used for data collection and analysis. Although in the studies, we

included a large number of subject systems picked from diverse application domains and written in different

programming languages, those subject systems were mostly open-source except for the two web applications

169

used in the study presented in Section 4.4. This can be regarded as a limitation of this thesis. One may

question, to what extent the findings and clone management implications derived from those studies can be

expected to hold for industrial software systems. Although we made immense attempt, it was not possible

to get access to the source code of industrial (i.e., closed-source) software systems due to the proprietary and

security concerns from those organizations’ side.

The participants of the user-centric studies are collected using our acquantance and relationships with

them. Thus, there is a threat of bias that the participants might have deliberately or unintentionally per-

formed in favour of our tool or technique under evaluation. In addition, the manual verifications at all the

necessary scenarios are carried out by ourselves, which is also a threat to a possible bias. However, at every

manual verification stage, we strived to make neutral judgements and we also advised the participants of the

user studies to keep their performance unaffected from any possible bias.

8.4 Future Research Directions

Clone management is a wide area of research, which has recently drawn interested in the community. A

fairly rich clone management tool with necessary features is still not available and we believe, years of

research and development is needed towards this goal. We see two streams of future work. The first stream

encompasses further research to device tools and techniques for better clone management. In Chapter 7,

we have identified clone management activities, workflow, strategies, and pointed to avenues for further

development with respect to the state of the art. Other than those, our clone search tool can be improved

by incorporating different clone detection techniques and thus allowing the users to customize by choosing

detection techniques and tuning parameters according to their need. Our work can also be extended by

integrating our clone search tool with the refactoring scheduler, features for clone annotation, metaphor-

based clone visualization (with respect to the file system hierarchy as well as inheritance hierarchy), and

support for semi-automated clone refactoring beyond those refactoring supports that are already available in

a typical IDE. Integrated tool support can be more effective in supporting clone management [244, 270, 290].

The second stream of future work includes the application of clone detection and management techniques

in other areas and exploration of additional business values of clone management. The techniques for clone

detection, in particular, clone tracking and annotation can be applied for code provenance and origin analysis.

Clone detection in source code and binary executables can help in malware detection. The techniques for

detecting near-miss code clones can be applied for plagiarism detection, copy-right infringement, software

version merging, product line engineering, feature extraction, aspect mining, and resource allocation in job

schedulers. Tracking of code clones and their changes can contribute in recommending program co-changes.

Near-miss clone detection techniques have the prospect of being used in example-based code recommenders

to offer code completion in a scale larger (e.g., method or block completion) than simple API suggestions

that are generally available from IDEs. More research and prototyping are required to explore all these

possibilities.

170

References

[1] S. Abd-El-Hafiz. A metrics-based data mining approach for software clone detection. In Proceedings of
the Annual Computer Software and Applications Conference (COMPSAC), pages 35–41, 2012.

[2] E. Adar. GUESS: a language and interface for graph exploration. In Proceedings of the International
Conference on Computer Human Interactions (CHI), pages 791–800. ACM, 2006.

[3] E. Adar and M. Kim. SoftGUESS: Visualization and exploration of code clones in context. In Proceed-
ings of the International Conference on Software Engineering (ICSE), pages 762 –766, 2007.

[4] D. Advani, Y. Hassoun, and S. Counsell. Understanding the complexity of refactoring in software
systems: a tool-based approach. Int. J. Gen. Sys., 35(3):329–346, 2006.

[5] F. Al-omari, I. Keivanloo, C. Roy, and J. Rilling. Detecting clones across microsoft .net programming
languages. In Proceedings of the International Working Conference on Reverse Engineering (WCRE),
pages 405–414, 2012.

[6] D. Anderson, D. Sweeney, and T. Williams. Statistics for Business and Economics. Thomson Higher
Education, 10th edition, 2009.

[7] G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo. Modeling clones evolution through time series.
In Proceedings of the International Conference on Software Maintenance (ICSM), pages 273–280, 2001.

[8] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta. Analyzing cloning evolution in the linux kernel.
Information and Software Technology, 44(13):755 – 765, 2002.

[9] M. Asaduzzaman. Visualization and analysis of software clones. M.Sc. thesis, University of
Saskatchewan, Canada, 2011.

[10] M. Asaduzzaman, C. Roy, and K. Schneider. VisCad: flexible code clone analysis support for NiCad.
In Proceedings of the International Workshop on Software Clones (IWSC), pages 77–78, 2011.

[11] L. Aversano, L. Cerulo, and M. Di Penta. How clones are maintained: An empirical study. In Proceedings
of the European Conference on Software Maintenance and Reengineering (CSMR), pages 81 –90, 2007.

[12] M. Bahtiyar. JClone : Syntax tree based clone detection for java. Master’s thesis, Linnaeus University,
2010.

[13] J. Bailey and E. Burd. Evaluating clone detection tools for use during preventative maintenance. In
Proceedings of the International Conference on Source Code Analysis and Manipulation (SCAM), pages
36 – 43, 2002.

[14] B. Baker. A program for identifying duplicated code. Computing Science and Statistics, 24:49–57,
1992.

[15] B. Baker. On finding duplication and near-duplication in large software systems. In Proceedings of the
International Working Conference on Reverse Engineering (WCRE), pages 86 –95, 1995.

[16] B. Baker. Parameterized pattern matching: Algorithms and applications. Journal of Computer and
System Sciences, 52(1):28 – 42, 1996.

171

[17] B. Baker and U. Manber. Deducing similarities in java sources from bytecodes. In Proceedings of the
USENIX Annual Technical Conference (USENIX ATEC), pages 15–15, 1998.

[18] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells in software evolution. In Proceedings of the
International Conference on Software Maintenance (ICSM), pages 24–33, 2007.

[19] M. Balazinska, E. Merlo, M. Dagenais, and K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In Proceedings of the International Working Conference on Reverse
Engineering (WCRE), pages 98–107, 2000.

[20] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Measuring clone based reengi-
neering opportunities. In Proceedings of the IEEE Symposium on Software Metrics (METRICS), pages
292 –303, 1999.

[21] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Partial redesign of java software
systems based on clone analysis. In Proceedings of the International Working Conference on Reverse
Engineering (WCRE), pages 326–336, 1999.

[22] J. Bansiya and C. Davis. A hierarchical model for object-oriented design quality assessment. IEEE
Trans. on Softw. Engg., 28(1):4–17, 2002.

[23] L. Barbour, F. Khomh, and Y. Zou. Late propagation in software clones. In Proceedings of the
International Conference on Software Maintenance (ICSM), pages 273 –282, 2011.

[24] R. Barták. Constraint programming: In pursuit of the holy grail. In Proceedings of the 8th Annual
Conference of Doctoral Students (WDS), invited lecture, pages 1–10, 1999.

[25] H. Basit and S. Jarzabek. Detecting higher-level similarity patterns in programs. SIGSOFT Softw.
Eng. Notes, 30:156–165, 2005.

[26] H. Basit and S. Jarzabek. Towards Structural Clones: Analysis and semi-automated detection of design-
level similarities in software. VDM Verlag Dr. Müller, 2010.

[27] H. Basit, S. Puglisi, W. Smyth, A. Turpin, and S. Jarzabek. Efficient token based clone detection with
flexible tokenization. In Proceedings of the Joint Meeting on European software engineering confer-
ence (ESEC) and the ACM SIGSOFT symposium on the foundations of software engineering (FSE):
companion papers, pages 513–516, 2007.

[28] H. Basit, D. Rajapakse, and S. Jarzabek. An empirical study on limits of clone unification using
generics. In Proceedings of the 17th International Conference on Software Engineering and Knowledge
Engineering (SEKE), pages 109–114, 2005.

[29] I. Baxter, M. Conradt, J. Cordy, and R. Koschke. Software clone management towards industrial
application (dagstuhl seminar 12071). DagStuhl Report, 2(2):21–57, 2012.

[30] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract syntax trees.
In Proceedings of the International Conference on Software Maintenance (ICSM), pages 368–377, 1998.

[31] S. Bazrafshan. Evolution of near-miss clones. In Proceedings of the International Conference on Source
Code Analysis and Manipulation (SCAM), pages 74–83, 2012.

[32] S. Bazrafshan, R. Koschke, and N. Göde. Approximate code search in program histories. In Proceedings
of the International Working Conference on Reverse Engineering (WCRE), pages 109–118, 2011.

[33] M. Beard. Extending bug localization using information retrieval and code clone location techniques.
In Proceedings of the International Working Conference on Reverse Engineering (WCRE), pages 425
–428, 2011.

[34] S. Bellon. Vergleich von techniken zur erkennung duplizierten quellcodes. Diploma thesis, Universität
Stuttgart, 2002.

172

[35] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of clone
detection tools. IEEE Trans. on Softw. Engg., 33(9):577–591, 2007.

[36] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. Hassan. An empirical study on
inconsistent changes to code clones at release level. Science of Computer Programming, pages 1–17,
2010.

[37] S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A novel approach to optimize clone refactoring
activity. In Proceedings on the annual conference on Genetic and evolutionary computation (GECCO),
pages 1885–1892, 2006.

[38] G. Box and G. Jenkins. Time Series Analysis, Forecasting and Control. Holden-Day, Incorporated,
1990.

[39] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes. Language-independent clone detection
applied to plagiarism detection. In Proceedings of the International Conference on Source Code Analysis
and Manipulation (SCAM), pages 77 –86, 2010.

[40] M. Bruntink. Aspect mining using clone class metrics. In Proceedings of the 1st Workshop on Aspect
Reverse Engineering (WARE), pages 1–6, 2004.

[41] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwe. On the use of clone detection for
identifying crosscutting concern code. IEEE Trans. Softw. Eng., 31:804–818, 2005.

[42] D. Bruschi, L. Martignoni, and M. Monga. Code normalization for self-mutating malware. IEEE
Security and Privacy, 5:46–54, 2007.

[43] P. Bulychev and M. Minea. An evaluation of duplicate code detection using anti-unification. In
Proceedings of the International Workshop on Software Clones (IWSC), 2009.

[44] D. Cai and M. Kim. An empirical study of long-lived code clones. In Proceedings of the International
conference on Fundamental approaches to software engineering (FASE): part of the joint European
conferences on theory and practice of software (ETAPS), pages 432–446, 2011.

[45] D. Chatterji, J. Carver, and N. Kraft. Claims and beliefs about code clones: Do we agree as a
community? a survey. In Proceedings of the International Workshop on Software Clones (IWSC),
pages 15–21, 2012.

[46] D. Chatterji, J. Carver, B. Massengil, J. Oslin, and N. Kraft. Measuring the efficacy of code clone infor-
mation in a bug localization task: An empirical study. In Proceedings of the International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 20–29, 2011.

[47] S. Chidamber and C. Kemerer. A metric suite for object-oriented design. IEEE Trans. Softw. Eng.,
25(5):476–493, 1994.

[48] A. Chiu and D. Hirtle. Beyond clone detection. CS846 Course Project Report, University of Waterloo,
2007.

[49] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano. Extracting code clones for refactoring using com-
binations of clone metrics. In Proceedings of the International Workshop on Software Clones (IWSC),
pages 7–13. ACM, 2011.

[50] J. Cordy. Comprehending reality: Practical barriers to industrial adoption of software maintenance
automation. In Proceedings of the International International Workshop on Program Comprehension
(IWPC), pages 196–206, 2003.

[51] J. Cordy. Source transformation, analysis and generation in TXL. In Proceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Manipulation (PEPM), pages 1–11,
2006.

173

[52] J. Cordy. Live scatterplots. In Proceedings of the International Workshop on Software Clones (IWSC),
pages 79–80. ACM, 2011.

[53] J. Cordy, T. Dean, and N. Synytskyy. Practical language-independent detection of near-miss clones. In
Proceedings of the Conference of the Centre for Advanced Studies on Collaborative research (CASCON),
pages 1–12, 2004.

[54] J. Cordy and C. Roy. The nicad clone detector. In Proceedings of the International Conference on
Program Comprehension (ICPC), pages 219–220, 2011.

[55] J. Cordy and C. Roy. Tuning research tools for scalability and performance: the NiCad experience.
Science of Computer Programming, 79(1):158–171, 2014.

[56] A. Cuomo, A. Santone, and U. Villano. A novel approach based on formal methods for clone detection.
In Proceedings of the International Workshop on Software Clones (IWSC), pages 8–14, 2012.

[57] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie. XIAO: tuning code clones at hands of engineers
in practice. In Proceedings of the Annual Computer Security Applications Conference (ACSAC), pages
369–378, 2012.

[58] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley. The development of a software clone detector.
International Journal of Applied Software Technology, 1(3/4):219 – 236, 1995.

[59] Y. Davidor. Epistasis variance: A viewpoint on GA-hardness. In Proceedings of the Foundations of
Genetic Algorithms (FOGA), pages 23–35, 1990.

[60] I. Davis and M. Godfrey. Clone detection by exploiting assembler. In Proceedings of the International
Workshop on Software Clones (IWSC), pages 77–78. ACM, 2010.

[61] I. Davis and M. Godfrey. From whence it came: Detecting source code clones by analyzing assembler.
In Proceedings of the International Working Conference on Reverse Engineering (WCRE), pages 242
–246, 2010.

[62] M. de Wit. Managing Clones Using Dynamic Change Tracking and Resolution. M.Sc. thesis, Delft
University of Technology, 2008.

[63] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, and B. Schaetz. Model clone detection in
practice. In Proceedings of the International Workshop on Software Clones (IWSC), pages 57–64.
ACM, 2010.

[64] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J. Girard, and S. Teuchert. Clone
detection in automotive model-based development. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 603–612. ACM, 2008.

[65] R. DeLine, G. Venolia, and K. Rowan. Software development with code maps. ACM Commun.,
53(8):48–54, 2010.

[66] G. Di Lucca, M. Di Penta, and A. Fasolino. An approach to identify duplicated web pages. In
Proceedings of the Annual Computer Software and Applications Conference (COMPSAC), pages 481 –
486, 2002.

[67] E. Duala-Ekoko and M. Robillard. Tracking code clones in evolving software. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 158–167, 2007.

[68] E. Duala-Ekoko and M. Robillard. CloneTracker: tool support for code clone management. In Pro-
ceedings of the International Conference on Software Engineering (ICSE), pages 843–846, 2008.

[69] E. Duala-Ekoko and M. Robillard. Clone region descriptors: Representing and tracking duplication in
source code. ACM Trans. Softw. Eng. Methodol., 20:3:1–3:31, 2010.

174

[70] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting duplicated
code. In Proceedings of the International Conference on Software Maintenance (ICSM), pages 109 –118,
1999.

[71] S. Ducasse, M. Rieger, G. Golomingi, and B. Bym. Tool support for refactoring duplicated OO code.
In Proceedings of the European Conference on Object-Oriented Programming (ECOOP), Workshop
Reader, number 1743 in LNCS, pages 2–6. Springer-Verlag, 1999.

[72] A. Eiben, P. Raue, and Z. Ruttkay. Solving constraint satisfaction problems using genetic algorithms. In
Proceedings of the First IEEE Conference on Evolutionary Computation (CEC), IEEE World Congress
on Computational Intelligence, pages 542–547, 1994.

[73] W. Evans, C. Fraser, and F. Ma. Clone detection via structural abstraction. In Proceedings of the
International Working Conference on Reverse Engineering (WCRE), pages 150–159. IEEE Computer
Society, 2007.

[74] R. Falke, P. Frenzel, and R. Koschke. Empirical evaluation of clone detection using syntax suffix trees.
Empirical Softw. Engg., 13:601–643, 2008.

[75] R. Fanta and V. Rajlich. Removing clones from the code. Journal of Software Maintenance: Research
and Practice, 11(4):223–243, 1999.

[76] M. Farhadi. Assembly code clone detection for malware binaries. Master’s thesis, Concordia University,
Canada, 2013.

[77] J. Ferrante, K. Ottenstein, and J. Warren. The program dependence graph and its use in optimization.
ACM Trans. Program. Lang. Syst., 9:319–349, 1987.

[78] F. Fontana, M. Zanoni, A. Ranchetti, and D. Ranchetti. Software clone detection and refactoring.
ISRN Software Engineering, 2013:1–8, 2013.

[79] C. Forbes, I. Keivanloo, and J. Rilling. Doppel-code: A clone visualization tool for prioritizing global
and local clone. In Proceedings of the Annual Computer Software and Applications Conference (COMP-
SAC), pages 366–367, 2012.

[80] M. Fowler. Refactoring catalog, http://refactoring.com/catalog/, last access: Dec 2012.

[81] M. Fowler, K. Beck, J.Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison Wesley Professional, 1999.

[82] Y. Fukushima, R. Kula, S. Kawaguchi, K. Fushida, M. Nagura, and H. Iida. Code clone graph metrics
for detecting diffused code clones. In Proceedings of the Asia-Pacific Software Engineering Conference
(APSEC), pages 373 –380, 2009.

[83] M. Funaro, D. Braga, A. Campi, and C. Ghezzi. Combining syntactic and textual approach in clone
detection. In Proceedings of the International Workshop on Software Clones (IWSC), 2010.

[84] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 321–330, 2008.

[85] R. Geiger, B. Fluri, H. Gall, and M. Pinzger. Relation of code clones and change couplings. In Pro-
ceedings of the international conference on Fundamental Approaches to Software Engineering (FASE),
pages 411–425, 2006.

[86] S. Giesecke. Generic modelling of code clones. In Proceedings of the Dagstuhl Seminar Report on
Duplication, Redundancy, and Similarity in Software (DRSS), pages 1–23, 2007.

[87] S. Giesecke. Dupman - eclipse duplication management framework,
http://sourceforge.net/projects/dupman/, last access: Dec 2011.

[88] N. Göde. Incremental clone detection. Diploma thesis, University of Bremen, 2008.

175

[89] N. Göde. Evolution of type-1 clones. In Proceedings of the International Conference on Source Code
Analysis and Manipulation (SCAM), pages 77 –86, 2009.

[90] N. Göde. Clone removal: Fact or fiction? In Proceedings of the International Workshop on Software
Clones (IWSC), pages 33–40, 2010.

[91] N. Göde and J. Harder. Clone stability. In Proceedings of the European Conference on Software
Maintenance and Reengineering (CSMR), pages 65 –74, 2011.

[92] N. Göde and R. Koschke. Incremental clone detection. In Proceedings of the European Conference on
Software Maintenance and Reengineering (CSMR), pages 219–228, 2009.

[93] N. Göde and R. Koschke. Studying clone evolution using incremental clone detection. Journal of
Software Maintenance and Evolution: Research and Practice, pages 1–28, 2010.

[94] N. Göde and R. Koschke. Frequency and risks of changes to clones. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 311–320, 2011.

[95] M. Godfrey and Q. Tu. Evolution in open source software: A case study. In Proceedings of the
International Conference on Software Maintenance (ICSM), pages 131–142, 2000.

[96] M. Godfrey and L. Zou. Using origin analysis to detect merging and splitting of source code entities.
IEEE Trans. on Softw. Engg., 31(2):166–181, 2005.

[97] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer and Computational Biology.
Cambridge University Press, 1st edition, 1997.

[98] J. Harder and N. Göde. Modeling clone evolution. In Proceedings of the International Workshop on
Software Clones (IWSC), pages 17–21, 2009.

[99] J. Harder and N. Göde. Quo vadis, clone management? In Proceedings of the International Workshop
on Software Clones (IWSC), pages 85–86, 2010.

[100] J. Harder and N. Göde. Efficiently handling clone data: Rcf and cyclone. In Proceedings of the
International Workshop on Software Clones (IWSC), pages 81–82, 2011.

[101] B. Hauptmann, V. Bauer, and M. Junker. Using edge bundle views for clone visualization. In Proceed-
ings of the International Workshop on Software Clones (IWSC), pages 86–87, 2012.

[102] J. Helfman. Dotplot patterns: a literal look at pattern languages. Theor. Pract. Object Syst., 2:31–41,
1996.

[103] A. Hemel, K. Kalleberg, R. Vermaas, and E. Dolstra. Finding software license violations through binary
code clone detection. In Proceedings of the International Conference on Mining Software Repository
(MSR), pages 63–72, 2011.

[104] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Aries: Refactoring support environment based on code
clone analysis. In Proceedings of the IASTED (International Association of Science and Technology
for Development) International Conference on Software Engineering and Applications (SEA), pages
222–229, 2004.

[105] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring support based on code clone analysis.
Product Focused Software Process Improvement (PROFES), (LNCS 3009):220–233, 2004.

[106] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method and implementation for investigating code
clones in a software system. Inf. Softw. Technol., 49:985–998, 2007.

[107] Y. Higo and S. Kusumoto. Enhancing quality of code clone detection with program dependency graph.
In Proceedings of the International Working Conference on Reverse Engineering (WCRE), pages 315
–316, 2009.

176

[108] Y. Higo, K. Tanaka, and S. Kusumoto. Toward identifying inter-project clone sets for building useful
libraries. In Proceedings of the International Workshop on Software Clones (IWSC), pages 87–88, 2010.

[109] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On software maintenance process improve-
ment based on code clone analysis. In Product Focused Software Process Improvement (PROFES),
pages 185–197, 2002.

[110] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous modification support based on code clone
analysis. In Proceedings of the Asia-Pacific Software Engineering Conference (APSEC), pages 262–269,
2007.

[111] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto. Incremental code clone detection: A PDG-based
approach. In Proceedings of the International Working Conference on Reverse Engineering (WCRE),
pages 3 –12, 2011.

[112] K. Hotta, Y. Higo, and S. Kusumoto. Identifying, tailoring, and suggesting form template method
refactoring opportunities with program dependence graph. In Proceedings of the European Conference
on Software Maintenance and Reengineering (CSMR), pages 53–62, 2012.

[113] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is duplicate code more frequently modified than non-
duplicate code in software evolution?: an empirical study on open source software. In Proceedings of
the International Workshop on Principles of Software Evolution (IWPSE), pages 73–82, 2010.

[114] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for the proactive management of
copy-and-paste programming. In Proceedings of the International Conference on Program Comprehen-
sion (ICPC), pages 238–242, 2009.

[115] D. Hou, F. Jacob, and P. Jablonski. Exploring the design space of proactive tool support for copy-
and-paste programming. In Proceedings of the Conference of the Centre for Advanced Studies on
Collaborative research (CASCON), pages 188–202, 2009.

[116] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone detection: incre-
mental, distributed, scalable. In Proceedings of the International Conference on Software Maintenance
(ICSM), pages 1 –9, 2010.

[117] P. Jablonski and D. Hou. CReN: a tool for tracking copy-and-paste code clones and renaming identifiers
consistently in the IDE. In Proceedings of the OOPSLA (annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications) workshop on Eclipse Technology Exchange
(ETX), pages 16–20, 2007.

[118] P. Jablonski and D. Hou. Renaming parts of identifiers consistently within code clones. In Proceedings
of the International Conference on Program Comprehension (ICPC), pages 38–39, 2010.

[119] F. Jacob, D. Hou, and P. Jablonski. Actively comparing clones inside the code editor. In Proceedings
of the International Workshop on Software Clones (IWSC), pages 9–16, 2010.

[120] K. Jalbert and J. Bradbury. Using clone detection to identify bugs in concurrent software. In Proceedings
of the International Conference on Software Maintenance (ICSM), pages 1 –5, 2010.

[121] S. Jarzabek and S. Li. Unifying clones with a generative programming technique: a case study. Journal
of Software Maintenance and Evolution: Research and Practice, 18(4):267–292, 2006.

[122] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable and accurate tree-based detection
of code clones. In Proceedings of the International Conference on Software Engineering (ICSE), pages
96–105, 2007.

[123] L. Jiang, Z. Su, and E. Chiu. Context-based detection of clone-related bugs. In Proceedings of the
the joint meeting of the European software engineering conference (ESEC) and the ACM SIGSOFT
symposium on The foundations of software engineering (FSE), pages 55–64, 2007.

177

[124] Z. Jiang and A. Hassan. A framework for studying clones in large software systems. In Proceedings
of the International Conference on Source Code Analysis and Manipulation (SCAM), pages 203 –212,
2007.

[125] Z. Jiang, A. Hassan, and R. Holt. Visualizing clone cohesion and coupling. In Proceedings of the
Asia-Pacific Software Engineering Conference (APSEC), pages 467 –476, 2006.

[126] J. Johnson. Identifying redundancy in source code using fingerprints. In Proceedings of the Conference
of the Centre for Advanced Studies on Collaborative research (CASCON), pages 171–183, 1993.

[127] J. Johnson. Substring matching for clone detection and change tracking. In Proceedings of the Inter-
national Conference on Software Maintenance (ICSM), pages 120 –126, 1994.

[128] J. Johnson. Visualizing textual redundancy in legacy source. In Proceedings of the Conference of the
Centre for Advanced Studies on Collaborative research (CASCON), pages 32–41, 1994.

[129] J. Johnson. Navigating the textual redundancy web in legacy source. In Proceedings of the Conference
of the Centre for Advanced Studies on Collaborative research (CASCON), pages 16–25, 1996.

[130] E. Juergens. Research in cloning beyond code: a first roadmap. In Proceedings of the International
Workshop on Software Clones (IWSC), pages 67–68, 2011.

[131] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wagner, C. Domann, and J. Streit.
Can clone detection support quality assessments of requirements specifications? In Proceedings of the
International Conference on Software Engineering (ICSE), volume 2, pages 79 –88, 2010.

[132] E. Juergens, F. Deissenboeck, and B. Hummel. CloneDetective - a workbench for clone detection
research. In Proceedings of the International Conference on Software Engineering (ICSE), pages 603–
606, 2009.

[133] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones matter? In Proceedings of
the International Conference on Software Engineering (ICSE), pages 485–495, 2009.

[134] E. Juergens, B. Hummel, F. Deissenboeck, and M. Feilkas. Static bug detection through analysis of
inconsistent clones. In Workshopband SE Konferenz, pages 443–446, 2008.

[135] N. Juillerat and B. Hirsbrunner. An algorithm for detecting and removing clones in java code. In
Proceedings of the 3rd Workshop on Software Evolution through Transformation (SeTra), pages 63–74,
2006.

[136] T. Kamiya. Agec: An execution-semantic clone detection tool. In Proceedings of the International
Conference on Program Comprehension (ICPC), pages 227–229, 2013.

[137] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw. Eng., 28(7):654–670, 2002.

[138] C. Kapser. Toward an Understanding of Software Code Cloning as a Development Practice. PhD thesis,
University of Waterloo, Canada, 2009.

[139] C. Kapser and M. Godfrey. Aiding comprehension of cloning through categorization. In Proceedings of
the International Workshop on Principles of Software Evolution (IWPSE), pages 85–94, 2004.

[140] C. Kapser and M. Godfrey. Improved tool support for the investigation of duplication in software. In
Proceedings of the International Conference on Software Maintenance (ICSM), pages 305–314, 2005.

[141] C. Kapser and M. Godfrey. “Cloning considered harmful” considered harmful. In Proceedings of the
International Working Conference on Reverse Engineering (WCRE), pages 19–28, 2006.

[142] C. Kapser and M. Godfrey. “cloning considered harmful” considered harmful: patterns of cloning in
software. Empirical Software Engineering, 13:645–692, 2008.

178

[143] C. Kapser, J. Harder, and I. Baxter. A common conceptual model for clone detection results. In
Proceedings of the International Workshop on Software Clones (IWSC), pages 72–73, 2012.

[144] Cory J. Kapser and Michael W. Godfrey. Supporting the analysis of clones in software systems: A case
study. J. Softw. Maint. Evol., 18:61–82, 2006.

[145] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, and H. Iida. SHINOBI:
A tool for automatic code clone detection in the IDE. In Proceedings of the International Working
Conference on Reverse Engineering (WCRE), pages 313–314, 2009.

[146] I. Keivanloo, C. Roy, and J. Rilling. Java bytecode clone detection via relaxation on code fingerprint
and semantic web reasoning. In Proceedings of the International Workshop on Software Clones (IWSC),
pages 36–42, 2012.

[147] I. Keivanloo, C. Roy, and J. Rilling. SeByte: A semantic clone detection tool for intermediate languages.
In Proceedings of the International Conference on Program Comprehension (ICPC), pages 247–249,
2012.

[148] A. Kellens, K. Mens, and P. Tonella. A survey of automated code-level aspect mining techniques.
In A. Rashid and M. Aksit, editors, Transactions on aspect-oriented software development IV, pages
143–162. Springer-Verlag, 2007.

[149] J. Kerievsky. Refactoring to Patterns. Addison Wesley, 2004.

[150] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin. Aspect
oriented programming. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), volume 1241, pages 220–242, 1997.

[151] H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: memory comparison-based clone detector. In Proceedings
of the International Conference on Software Engineering (ICSE), pages 301–310, 2011.

[152] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of copy and paste programming
practices in OOPL. In Proceedings of the International Symposium on Empirical Software Engineering
(ISESE), pages 83–92, 2004.

[153] M. Kim and D. Notkin. Using a clone genealogy extractor for understanding and supporting evolution
of code clones. In Proceedings of the International Conference on Mining Software Repository (MSR),
pages 1–5, 2005.

[154] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone genealogies.
SIGSOFT Softw. Eng. Notes, 30(5):187–196, 2005.

[155] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika, and B. Saranya. CloneManager: A tool for detection
of type1 and type2 code clones. Information Processing and Management, 70:568–570, 2010.

[156] E. Kodhai, V. Vijayakumar, G. Balabaskaran, T. Stalin, and B. Kanagaraj. Method level detection and
removal of code clones in C and Java programs using refactoring. International Journal of Computer
Communication and Information System (IJCCIS), 2(1):93–95, 2010.

[157] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. In Proceedings of
the 8th International Symposium on Static Analysis (SAS), pages 40–56, 2001.

[158] G. Koni-N’Sapu. A scenario based approach for refactoring duplicated code in object oriented systems.
Diploma thesis, University of Bern, 2001.

[159] K. Kontogiannis. Evaluation experiments on the detection of programming patterns using software
metrics. In Proceedings of the International Working Conference on Reverse Engineering (WCRE),
pages 44 –54, 1997.

179

[160] K. Kontogiannis, R. DeMori, M. Bernstein, M. Galler, and E. Merlo. Pattern matching for design
concept localization. In Proceedings of the International Working Conference on Reverse Engineering
(WCRE), pages 96 –103, 1995.

[161] K. Kontogiannis, R. Mori, E. Merlo, M. Galler, and M. Bernstein. Pattern matching for clone and
concept detection. Automated Softw. Eng., 3(1/2):77–108, 1996.

[162] R. Koschke. Survey of research on software clones. In Proceedings of the Dagstuhl Seminar Report on
Duplication, Redundancy, and Similarity in Software (DRSS), pages 1–24, 2006.

[163] R. Koschke. Frontiers of software clone management. In Frontiers of Software Maintenance (FoSM),
pages 119 –128, 2008.

[164] R. Koschke. Large-scale inter-system clone detection using suffix trees. In Proceedings of the European
Conference on Software Maintenance and Reengineering (CSMR), pages 309–318, 2012.

[165] R. Koschke. Large-scale inter-system clone detection using suffix trees and hashing. J. of Software:
Evolution and Process, pages 1–23, 2013.

[166] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix trees. In Proceedings
of the International Working Conference on Reverse Engineering (WCRE), pages 253–262, 2006.

[167] J. Krinke. Identifying similar code with program dependence graphs. In Proceedings of the International
Working Conference on Reverse Engineering (WCRE), pages 301 –309, 2001.

[168] J. Krinke. A study of consistent and inconsistent changes to code clones. In Proceedings of the Inter-
national Working Conference on Reverse Engineering (WCRE), pages 170 –178, 2007.

[169] J. Krinke. Is cloned code more stable than non-cloned code? Proceedings of the International Conference
on Source Code Analysis and Manipulation (SCAM), 0:57–66, 2008.

[170] Jens Krinke. Is cloned code older than non-cloned code? In Proceedings of the International Workshop
on Software Clones (IWSC), pages 28–33, 2011.

[171] D. Krutz and E. Shihab. CCCD: Concolic code clone detection. In Proceedings of the International
Working Conference on Reverse Engineering (WCRE), pages 489–490, 2013.

[172] B. Lague, D. Proulx, J. Mayrand, E. Merlo, and J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In Proceedings of the International Conference on
Software Maintenance (ICSM), pages 314–321, 1997.

[173] G. Landau and U. Vishkin. Fast parallel and serial approximate string matching. J. Algorithms,
10(2):157–169, 1989.

[174] F. Lanubile and T. Mallardo. Finding function clones in web applications. In Proceedings of the
European Conference on Software Maintenance and Reengineering (CSMR), pages 379–286, 2003.

[175] M. Lee, J. Roh, S. Hwang, and S. Kim. Instant code clone search. In Proceedings of the ACM SIGSOFT
international symposium on Foundations of software engineering (FSE), pages 167–176, 2010.

[176] S. Lee, G. Bae, H. Chae, D. Bae, and Y. Kwon. Automated scheduling for clone-based refactoring
using a competent GA. Software - Practice and Experience, 41(5):521–550, 2010.

[177] S. Lee and I. Jeong. SDD: high performance code clone detection system for large scale source code.
In Proceedings of the annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA), pages 140–141, 2005.

[178] A. Leitão. Detection of redundant code using r2d2. Software Quality Control, 12:361–382, 2004.

[179] H. Li and S. Thompson. Similar code detection and elimination for Erlang programs. Practical Aspects
of Declarative Languages, 5937:104–118, 2010.

180

[180] H. Li and S. Thompson. Incremental clone detection and elimination for erlang programs. In Proceedings
of the International conference on Fundamental approaches to software engineering (FASE): part of the
joint European conferences on theory and practice of software (ETAPS), pages 356–370, 2011.

[181] J. Li and M. Ernst. CBCD: Cloned buggy code detector. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 310–320, 2012.

[182] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: finding copy-paste and related bugs in large-scale
software code. IEEE Transactions on Software Engineering, 32(3):176 – 192, 2006.

[183] H. Liu, G. Li, Z. Ma, , and W. Shao. Conflict-aware schedule of software refactorings. IET Software,
2(5):446–460, 2008.

[184] H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting duplications in sequence diagrams based on suffix
trees. In Proceedings of the Asia-Pacific Software Engineering Conference (APSEC), pages 269 –276,
2006.

[185] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Analysis of the linux kernel evolution using code
clone coverage. In Proceedings of the International Conference on Mining Software Repository (MSR),
page 22, 2007.

[186] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-large scale code clone analysis and visualization
of open source programs using distributed ccfinder: D-ccfinder. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 106–115, 2007.

[187] A. Lozano and M. Wermelinger. Assessing the effect of clones on changeability. In Proceedings of the
International Conference on Software Maintenance (ICSM), pages 227–236, 2008.

[188] A. Lozano and M. Wermelinger. Tracking clones’ imprint. In Proceedings of the International Workshop
on Software Clones (IWSC), pages 65–72, 2010.

[189] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating the harmfulness of cloning: A change based
experiment. In Proceedings of the International Conference on Mining Software Repository (MSR),
pages 18 –21, 2007.

[190] G. Lucca, M. Di Penta, and A. Fasolino. Clone analysis in the web era: An approach to identify cloned
web. In Proceedings of the IEEE Workshop on Empirical Studies on Software Maintenance (WESS),
pages 107–113, 2001.

[191] A. Lucia, R. Francese, G. Scanniello, and G. Tortora. Reengineering web applications based on cloned
pattern analysis. In Proceedings of the International International Workshop on Program Comprehen-
sion (IWPC), pages 132 – 141, 2004.

[192] A. Lucia, R. Francese, G. Scanniello, and G. Tortora. Understanding cloned patterns in web applica-
tions. In Proceedings of the International International Workshop on Program Comprehension (IWPC),
pages 333–336, 2005.

[193] A. Lucia, G. Scanniello, and G. Tortora. Identifying clones in dynamic web sites using similarity
thresholds. In Proceedings of the International Conference on Enterprise Information Systems (ICEIS),
pages 391–396, 2004.

[194] A. Mao, J. Cordy, and T. Dean. Automated conversion of table-based websites to structured stylesheets
using table recognition and clone detection. In Proceedings of the Conference of the Centre for Advanced
Studies on Collaborative research (CASCON), pages 12–26, 2007.

[195] A. Marcus and J. Maletic. Identification of high-level concept clones in source code. In Proceedings of
the International Conference on Automated Software Engineering (ASE), pages 107 – 114, 2001.

[196] J. Mayrand, B. Lague, and J. Hudepohl. Evaluating the benefits of clone detection in the software
maintenance activities in large scale systems. In Proceedings of the IEEE Workshop on Empirical
Studies on Software Maintenance (WESS), 1996.

181

[197] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function clones in a
software system using metrics. In Proceedings of the International Conference on Software Maintenance
(ICSM), pages 244 –253, 1996.

[198] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using graph transformation.
J. Softw. and Syst. Modeling, 6(3):269–285, 2007.

[199] R. Miller. Lightweight Structured Text Processing. PhD thesis, Carnegie Mellon University, 2001.

[200] R. Miller and B. Myers. Interactive simultaneous editing of multiple text regions. In Proceedings of the
General Track of USENIX Annual Technical Conference (USENIX), pages 161–174, 2001.

[201] M. Mondal, C. Roy, M. Rahman, R. Saha, J. Krinke, and K. Schneider. Comparative stability of
cloned and non-cloned code: An empirical study. In Proceedings of the ACM Symposium on Applied
Computing (SAC), SE Track, pages 1227–1234, 2012.

[202] M. Mondal, C. Roy, and K. Schneider. An empirical study on clone stability. ACM Applied Computing
Review, 12(3):20–36, 2012.

[203] M. Mondal, C. Roy, and K. Schneider. Automatic ranking of clones for refactoring through mining
association rules. In Proceeding of the IEEE CSMR-18/WCRE-21 Software Evolution Week (SEW’14),
pages 114–123, 2014.

[204] M. Mondal, C. Roy, and K. Schneider. A fine-grained analysis on the evolutionary coupling of cloned
code. In Proceedings of the 30th International Conference on Software Maintenance and Evolution
(ICSME 2014), pages 1–10 (to appear), 2014.

[205] M. Mondal, C. Roy, and K. Schneider. An insight into the dispersion of changes in cloned and non-
cloned code: A genealogy based empirical study. Science of Computer Programming, pages 1–48, 2014.

[206] M. Mondal, C. Roy, and K. Schneider. Late propagation in near-miss clones: An empirical study.
In Proceedings of the 8th International Workshop on Software Clones (IWSC 2014), pages 1–15 (to
appear), 2014.

[207] M. Mondal, C. Roy, and K. Schneider. Prediction and ranking of co-change candidates for clones.
In Proceedings of the 11th Working Conference on Mining Software Repositories (MSR 2014), pages
32–41, 2014.

[208] D. Mongomery, E. Peck, and G. Vinning. Introduction to Linear Regression Analysis. John Wiley &
Sons, Inc., 5th edition, 2012.

[209] D. Montgomery, C. Jennings, and M. Kulahci. Introduction to Time Series Analysis and Forecasting.
Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., 2008.

[210] B. Muddu, A. Asadullah, and V. Bhat. CPDP - a robust technique for plagiarism detection in source
code. In Proceedings of the International Workshop on Software Clones (IWSC), pages 39–45, 2013.

[211] T. Muhammad, M. Zibran, Y. Yamamoto, and C. Roy. Near-miss clone patterns in web applications:
An empirical study with industrial systems. In Proceedings of the Canadian Conference on Electrical
and Computer Engineering (CCECE), pages 1–6 (to appear), 2013.

[212] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Gapped code clone detection with
lightweight source code analysis. In Proceedings of the International Conference on Program Compre-
hension (ICPC), pages 93–102, 2013.

[213] E. Murphy-Hill, P. Quitslund, and A. Black. Removing duplication from java.io: a case study us-
ing traits. In Proceedings of the annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA), pages 282–291, 2005.

182

[214] S. Nasehi, G. Sotudeh, and M. Gomrokchi. Source code enhancement using reduction of duplicated
code. In Proceedings of the IASTED International Multi-Conference on Software Engineering, pages
192–197. ACTA Press, 2007.

[215] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Clone management for evolving
software. IEEE Trans. on Softw. Engg., 1(1):1–19, 2011.

[216] T. Nguyen, H. Nguyen, J. Al-Kofahi, N. Pham, and T. Nguyen. Scalable and incremental clone detection
for evolving software. In Proceedings of the International Conference on Software Maintenance (ICSM),
pages 491 –494, 2009.

[217] T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Cleman: Comprehensive clone group
evolution management. In Proceedings of the International Conference on Automated Software Engi-
neering (ASE), pages 451–454, 2008.

[218] T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Clone-aware configuration management.
In Proceedings of the International Conference on Automated Software Engineering (ASE), pages 123–
134, 2009.

[219] M. Obitko. Introduction to genetic algorithms, http://www.obitko.com/tutorials/genetic-
algorithms/recommendations.php, last access: January 2014.

[220] M. O’Keeffe and M. Ó Cinnéide. Search-based refactoring: an empirical study. J. Softw. Maint. Evol.:
Res. Pract., 20:345–364, 2008.

[221] A. Orso, N. Shi, and M. Harrold. Scaling regression testing to large software systems. SIGSOFT Softw.
Eng. Notes, 29(6):241–251, 2004.

[222] J. Pate, R. Tairas, and N. Kraft. Clone evolution: a systematic review. Journal of Software Maintenance
and Evolution: Research and Practice, pages 1–23, 2011.

[223] J. Pérez, Y. Crespo, B. Hoffmann, and T. Mens. A case study to evaluate the suitability of graph
transformation tools for program refactoring. Int. J. Softw. Tools Tech. Transfer, pages 183–199, 2010.

[224] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and T. Nguyen. Complete and accurate clone detection
in graph-based models. In Proceedings of the International Conference on Software Engineering (ICSE),
pages 276–286, 2009.

[225] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among a set of programs with JPlag.
Journal OF Universal Computer Science, 8:1016–1038, 2000.

[226] M. Rabin. Fingerprinting by random polynomials. Report TR-15-81, Center for Research in Computing
Technology, Harvard University, 1981.

[227] F. Rahman, C. Bird, and P. Devanbu. Clones: what is that smell? In Proceedings of the International
Conference on Mining Software Repository (MSR), pages 72–81, 2010.

[228] M. Rahman, A. Aryani, C. Roy, and F. Perin. On the relationships between domain-based coupling
and code clones: An exploratory study. In Proceedings of the International Conference on Software
Engineering (ICSE), NIER Track, pages 1265–1268, 2013.

[229] D. Rajapakse. An investigation of cloning in web applications. In Proceedings of the International
Conference on World Wide Web (WWW), pages 924–925, 2005.

[230] D. Rajapakse. Exploiting similarity patterns in web applications for enhanced genericity and maintain-
ability. PhD thesis, School of Computing, National University of Singapore, 2006.

[231] D. Rajapakse and S. Jarzabek. Using server pages to unify clones in web applications: A trade-off
analysis. In Proceedings of the International Conference on Software Engineering (ICSE), pages 116–
126, 2007.

183

[232] D. Rattan, R. Bhatia, and M. Singh. Software clone detection: A systematic review. Infor. and Soft.
Tech., 55(7):1165–1199, 2013.

[233] M. Rieger. Effective Clone Detection Without Language Barriers. PhD thesis, Institut fur̈ Informatik
und angewandte Mathematik, Germany, 2005.

[234] M. Rieger, S. Ducasse, and M. Lanza. Insights into system-wide code duplication. In Proceedings of
the International Working Conference on Reverse Engineering (WCRE), pages 100–109, 2004.

[235] M. Robillard, W. Coelho, and G. Murphy. How effective developers investigate source code: An
exploratory study. IEEE Trans. Softw. Eng., 30(12):889–903, 2004.

[236] C. Roy and J. Cordy. A survey on software clone detection research. Tech Report TR 2007-541, School
of Computing, Queens University, Canada, 2007.

[237] C. Roy and J. Cordy. An empirical study of function clones in open source software systems. In
Proceedings of the International Working Conference on Reverse Engineering (WCRE), pages 81–90,
2008.

[238] C. Roy and J. Cordy. NICAD: Accurate detection of near-miss intentional clones using flexible pretty-
printing and code normalization. In Proceedings of the International Conference on Program Compre-
hension (ICPC), pages 172–181, 2008.

[239] C. Roy and J. Cordy. Scenario-based comparison of clone detection techniques. In Proceedings of the
International Conference on Program Comprehension (ICPC), pages 153–162, 2008.

[240] C. Roy and J. Cordy. A mutation/injection-based automatic framework for evaluating code clone
detection tools. In Proceedings of the International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pages 157–166, 2009.

[241] C. Roy and J. Cordy. Are scripting languages really different? In Proceedings of the International
Workshop on Software Clones (IWSC), pages 17– 24, 2010.

[242] C. Roy and J. Cordy. Near-miss function clones in open source software: an empirical study. J. of
Softw. Maintenance and Evolution: Research and Practice, 22(3):165–189, 2010.

[243] C. Roy, J. Cordy, and R. Koschke. Comparison and evaluation of code clone detection techniques and
tools: A qualitative approach. Sci. Comput. Program., 74:470–495, 2009.

[244] C. Roy, M. Zibran, and R. Koschke. The vision of software clone management: Past, present, and
future. In CSMR-18/WCRE-21 Software Evolution Week (SEW’14), pages 18–33, 2014.

[245] V. Rysselberghe and S. Demeyer. Evaluating clone detection techniques from a refactoring perspective.
In Proceedings of the International Conference on Automated Software Engineering (ASE), pages 336
– 339, 2004.

[246] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. Detecting code clones in binary executa-
bles. In Proceedings of the 18th international symposium on Software testing and analysis (ISSTA),
pages 117–128, 2009.

[247] R. Saha. Detection and analysis of near-miss clone genealogies. M.Sc. thesis, University of
Saskatchewan, 2011.

[248] R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, and K. Schneider. Evaluating code clone genealogies
at release level: An empirical study. In Proceedings of the International Conference on Source Code
Analysis and Manipulation (SCAM), pages 87–96, 2010.

[249] R. Saha, C. Roy, and K. Schneider. An automatic framework for extracting and classifying near-miss
clone genealogies. In Proceedings of the International Conference on Software Maintenance (ICSM),
pages 293 –302, 2011.

184

[250] R. Saha, C. Roy, and K. Schneider. Visualizing the evolution of code clones. In Proceedings of the
International Workshop on Software Clones (IWSC), pages 71–72, 2011.

[251] R. Saha, C. Roy, K. Schneider, and D. Perry. Understanding the evolution of type-3 clones: an
exploratory study. In Proceedings of the International Conference on Mining Software Repository
(MSR), pages 139–148, 2013.

[252] H. Sahraoui, R. Godin, and T. Miceli. Can metrics help to bridge the gap between the improvement
of OO design quality and its automation? In Proceedings of the International Conference on Software
Maintenance (ICSM), pages 154–162, 2000.

[253] H. Sajnani and C. Lopes. A parallel and efficient approach to large scale clone detection. In Proceedings
of the International Workshop on Software Clones (IWSC), pages 46–52, 2013.

[254] H. Sajnani, J. Ossher, and C. Lopes. Parallel code clone detection using mapreduce. In Proceedings of
the International Conference on Program Comprehension (ICPC), pages 261–262, 2012.

[255] A. Santone. Clone detection through process algebras and java bytecode. In Proceedings of the Inter-
national Workshop on Software Clones (IWSC), pages 73–74, 2011.

[256] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behaviour. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP), volume 2743 of
LNCS, pages 327–339. Springer Berlin / Heidelberg, 2003.

[257] S. Schulze and M. Kuhlemann. Advanced analysis for code clone removal. In Proceedings of the
Workshop on Software Reengineering (WSR), pages 1–2, 2009.

[258] S. Schulze, M. Kuhlemann, and M. Rosenmüller. Towards a refactoring guideline using code clone
classification. In Proceedings of the 2nd Workshop on Refactoring Tools (WRT), pages 6:1–6:4, 2008.

[259] G. Selim, L. Barbour, W. Shang, B. Adams, A. Hassan, and Y. Zou. Studying the impact of clones
on software defects. In Proceedings of the International Working Conference on Reverse Engineering
(WCRE), pages 13 –21, 2010.

[260] D. Shawky and A. Ali. Modeling clones evolution in open source systems through chaos theory. In
Proceedings of the International Conference on Software Technology and Engineering (ICSTE), pages
V1–159 – V1–164, 2010.

[261] J. Sillito, G. Murphy, and K. Volder. Asking and answering questions during a programming change
task. IEEE Trans. Softw. Eng., 34(4):434–451, 2004.

[262] F. Simon, F. Steinbrucker, and C. Lewerentz. Metrics based refactoring. In Proceedings of the European
Conference on Software Maintenance and Reengineering (CSMR), pages 30–38, 2001.

[263] H. Störrle. Towards clone detection in UML domain models. In Proceedings of the 4th European
Conference on Software Architecture (ECSA): Companion Volume, pages 285–293, 2010.

[264] J. Svajlenko, C. Roy, and J. Cordy. A mutation analysis based benchmarking framework for clone
detectors. In Proceedings of the International Workshop on Software Clones (IWSC), pages 8–9, 2013.

[265] N. Synytskyy and J. Cordy. Robust multilingual parsing using island grammars. In Proceedings of the
Conference of the Centre for Advanced Studies on Collaborative research (CASCON), pages 266–278,
2003.

[266] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance design quality through meta-
pattern transformations. In Proceedings of the European Conference on Software Maintenance and
Reengineering (CSMR), pages 183–192, 2003.

[267] R. Tairas and J. Gray. Phoenix-based clone detection using suffix trees. In Proceedings of the 44th
Annual Southeast Regional Conference (ACM-SE 44), pages 679–684, 2006.

185

[268] R. Tairas and J. Gray. Get to know your clones with CeDAR. In Proceedings of the annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications (OOPSLA),
pages 817–818, 2009.

[269] R. Tairas and J. Gray. Sub-clone refactoring in open source software artifacts. In Proceedings of the
ACM Symposium on Applied Computing (SAC), pages 2373–2374, 2010.

[270] R. Tairas and J. Gray. Increasing clone maintenance support by unifying clone detection and refactoring
activities. J. of Info. and Softw. Tech., 54(12):1297–1307, 2012.

[271] R. Tairas, J. Gray, and I. Baxter. Visualization of clone detection results. In Proceedings of the
OOPSLA (annual ACM SIGPLAN conference on Object-oriented programming, systems, languages,
and applications) workshop on Eclipse Technology Exchange (ETX), pages 50–54, 2006.

[272] R. Tairas, J. Gray, and I. Baxter. Visualizing clone detection results. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 549–550, 2007.

[273] M. Thomsen and F. Henglein. Clone detection using rolling hashing, suffix trees and dagification: A
case study. In Proceedings of the International Workshop on Software Clones (IWSC), pages 22–28,
2012.

[274] S Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta. An empirical study on the maintenance
of source code clones. Empirical Software Engineering, 15:1–34, 2010.

[275] M. Tokunaga, N. Yoshida, K. Yoshioka, M. Matsushita, and K. Inoue. Towards collection of refac-
toring patterns based on code clone classification. In Proceedings of the Asian Conference on Pattern
Languages of Programs (AsianPLoP), pages 86–91, 2011.

[276] W. Toomey. Ctcompare: Code clone detection using hashed token sequences. In Proceedings of the
International Workshop on Software Clones (IWSC), pages 92–93, 2012.

[277] M. Toomim, A. Begel, and S. Graham. Managing duplicated code with linked editing. In Proceedings of
the IEEE Symposium on Visual Languages and Human Centric Computing (VLHCC), pages 173–180,
2004.

[278] R. Torres. Source code mining for code duplication refactorings with formal concept analysis. M.Sc.
thesis, Vrije Universiteit Brussel, Belgium, 2004.

[279] M. Uddin, C. Roy, K. Schneider, and A. Hindle. On the effectiveness of simhash for detecting near-
miss clones in large scale software systems. In Proceedings of the International Working Conference on
Reverse Engineering (WCRE), pages 13 –22, 2011.

[280] Y. Ueda, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Code clone analysis tool. In
Proceedings of the International Symposium on Empirical Software Engineering (ISESE), volume 2,
pages 31–32, 2002.

[281] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance support environment based on
code clone analysis. In Proceedings of the IEEE Symposium on Software Metrics (METRICS), pages
67–76, 2002.

[282] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On detection of gapped code clones using gap
locations. In Proceedings of the Asia-Pacific Software Engineering Conference (APSEC), pages 327 –
336, 2002.

[283] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.

[284] R. Venkatasubramanyam, S. Gupta, and H. Sing. Prioritizing code clone detection results for clone
management. In Proceedings of the International Workshop on Software Clones (IWSC), pages 30–36,
2013.

186

[285] V. Wahler, D. Seipel, J. Wolff, and G. Fischer. Clone detection in source code by frequent itemset
techniques. In Proceedings of the International Conference on Source Code Analysis and Manipulation
(SCAM), pages 128 –135, 2004.

[286] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia. Problems creating task-relevant clone detec-
tion reference data. In Proceedings of the International Working Conference on Reverse Engineering
(WCRE), pages 285–294, 2003.

[287] A. Walenstein and A. Lakhotia. The software similarity problem in malware analysis. In Proceedings of
the Dagstuhl Seminar Report on Duplication, Redundancy, and Similarity in Software (DRSS), pages
1–10, 2006.

[288] A. Walenstein, A. Lakhotia, and R. Koschke. The second international workshop on detection of soft-
ware clones (IWDSC’03), workshop report. In ACM SIGSOFT Software Engineering Notes, volume 29,
pages 1–5, 2004.

[289] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for better configurations: a rigorous approach
to clone evaluation. In Proceedings on the Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), pages 455–465, 2013.

[290] W. Wang and M. Godfrey. We have all of the clones, now what? toward integrating clone analysis
into software quality. In Proceedings of the International Workshop on Software Clones (IWSC), pages
88–89, 2012.

[291] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei. Can i clone this piece of code here? In
Proceedings of the International Conference on Automated Software Engineering (ASE), pages 170–179,
2012.

[292] V. Weckerle. CPC: an eclipse framework for automated clone life cycle tracking and update anomaly
detection. Master’s thesis, Freie Universität Berlin, Germany, 2008.

[293] W. Winston. Operations Research Applications and Algorithms. Duxbury Press, Belmont, California,
USA, 3rd edition, 1994.

[294] S. Xie, F. Khomh, and Y. Zou. An empirical study of the fault-proneness of clone mutation and clone
migration. In Proceedings of the International Conference on Mining Software Repository (MSR), pages
149–158, 2013.

[295] S. Xie, F. Khomh, Y. Zou, and I. Keivanloo. An empirical study on the fault-proneness of clone
migration in clone genealogies. In CSMR-18/WCRE-21 Software Evolution Week, page 10, CSMR-
18/WCRE-21 Software Evolution Week.

[296] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano. Applying clone change notification system
into an industrial development process. In Proceedings of the International Conference on Program
Comprehension (ICPC), pages 199–206, 2013.

[297] J. Yang, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Classification model for code clones based on
machine learning. Empirical Software Engineering, pages 1–31, 2014.

[298] W. Yang. Identifying syntactic differences between two programs. Softw. Pract. Exper., 21:739–755,
1991.

[299] N. Yoshida, T. Hattori, and K. Inoue. Finding similar defects using synonymous identifier retrieval. In
Proceedings of the International Workshop on Software Clones (IWSC), pages 49–56, 2010.

[300] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On refactoring support based on code
clone dependency relation. In Proceedings of the IEEE Symposium on Software Metrics (METRICS),
pages 16–25, 2005.

187

[301] Y. Yuan and Y. Guo. Cmcd: Count matrix based code clone detection. In Proceedings of the Asia-
Pacific Software Engineering Conference (APSEC), pages 250–257, 2011.

[302] Y. Yuan and Y. Guo. Boreas: an accurate and scalable token-based approach to code clone detection. In
Proceedings of the International Conference on Automated Software Engineering (ASE), pages 286–289,
2012.

[303] G. Zhang, X. Peng, Z. Xing, S. Jiang, H. Wang, and W. Zhao. Towards contextual and on-demand
code clone management by continuous monitoring. In Proceedings of the International Conference on
Automated Software Engineering (ASE), pages 497–507, 2013.

[304] G. Zhang, X. Peng, Z. Xing, and W. Zhao. Cloning practices: Why developers clone and what can
be changed. In Proceedings of the International Conference on Software Maintenance (ICSM), pages
285–294, 2012.

[305] Y. Zhang, H. Basit, S. Jarzabek, D Anh, and M. Low. Query-based filtering and graphical view
generation for clone analysis. In Proceedings of the International Conference on Software Maintenance
(ICSM), pages 376 –385, 2008.

[306] M. Zibran. A Multiphase Approach to University Course Timetabling. M.Sc. thesis, University of
Lethbridge, Lethbridge, AB, Canada, 2007.

[307] M. Zibran and C. Roy. Conflict-aware optimal scheduling of code clone refactoring: A constraint
programming approach. In Proceedings of the International Conference on Program Comprehension
(ICPC), pages 266 – 269, 2011.

[308] M. Zibran and C. Roy. A constraint programming approach to conflict-aware optimal scheduling of
prioritized code clone refactoring. In Proceedings of the International Conference on Source Code
Analysis and Manipulation (SCAM), pages 105–114, 2011.

[309] M. Zibran and C. Roy. Towards flexible code clone detection, management, and refactoring in IDE. In
Proceedings of the International Workshop on Software Clones (IWSC), pages 75–76, 2011.

[310] M. Zibran and C. Roy. IDE-based real-time focused search for near-miss clones. In Proceedings of the
ACM Symposium on Applied Computing (SAC), SE Track, pages 1235 – 1242, 2012.

[311] M. Zibran and C. Roy. The road to software clone management. Technical Re-
port 2012-03, Department of Computer Science, University of Saskatchewan, Canada,
http://www.cs.usask.ca/documents/techreports/2012/TR-2012-03.pdf, 2012.

[312] M. Zibran and C. Roy. Conflict-aware optimal scheduling of code clone refactoring. IET Software,
7(3):167–186, 2013.

[313] M. Zibran, R. Saha, M. Asaduzzaman, and C. Roy. Analyzing and forecasting near-miss clones in
evolving software: An empirical study. In Proceedings of the International Conference on Engineering
of Complex Computer Systems (ICECCS), pages 295–304, 2011.

[314] M. Zibran, R. Saha, C. Roy, and K. Schneider. Evaluating the conventional wisdom in clone removal: A
genealogy-based empirical study. In Proceedings of the ACM Symposium on Applied Computing (SAC),
SE Track, pages 1123–1130, 2013.

[315] M. Zibran, R. Saha, C. Roy, and K. Schneider. Genealogical insights into the facts and fictions of clone
removal. ACM Applied Computing Review, 13(4):30–42, 2013.

188

Appendix A

Publications Out of This Dissertation Research

What follows is a list of publications that are outcome of the research presented in this thesis. I am the
prime contributor in all the publications except for the two ([b5], [b11]), where I am not the primary author,
but I made significant contributions in those works as well. For the joint work, the contributions made by
myself and the co-authors are clarified in Section A.1.

a. Refereed Journal Contributions:

[a1] M. F. Zibran and C. K. Roy. Conflict-aware Optimal Scheduling of Code Clone Refactoring. Journal
of IET Software, 7 (3): 167–186, 2013.

[a2] M. F. Zibran, R. K. Saha, C. K. Roy, and K. A. Schneider. Genealogical Insights into the Facts and
Fictions of Clone Removal. ACM Applied Computing Review, 13 (4): 30–42, 2013.

b. Refereed Conference and Workshop Contributions:

[b3] C. K. Roy, M. F. Zibran, and R. Koschke. The Vision of Software Clone Management: Past, Present,
and Future. In IEEE CSMR-18/WCRE-21 Software Evolution Week (SEW’14), Vision Keynote, pp.
18–33, Belgium, 2014.

[b4] M. F. Zibran, R. K. Saha, C. K. Roy, and K. A. Schneider. Evaluating the Conventional Wisdom
in Clone Removal: A Genealogy-based Empirical Study. In the 28th ACM Symposium On Applied
Computing (ACM-SAC 2013), pp. 1123–1130, Portugal, 2013 (invited at the Journal of ACM Applied
Computing Review).

[b5] T. Muhammad, M. F. Zibran, Y. Yamamoto, C. K. Roy. Near-miss Clone Patterns in Web Appli-
cations: An Empirical Study with Industrial Systems. In the 26th Annual Canadian Conference on
Electrical and Computer Engineering (CCECE 2013), pp. 1–6, 2013, Canada.

[b6] M. F. Zibran and C. K. Roy. IDE-based Focused Search for Near-miss Clones. In the 27th ACM
Symposium On Applied Computing (ACM-SAC 2012), pp. 1235–1242, Italy, 2012.

[b7] M. F. Zibran and C. K. Roy. A Constraint Programming Approach to Conflict-aware Optimal
Scheduling of Prioritized Code Clone Refactoring. In the 11th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM 2011), pp. 105–114, USA, 2011 (one of the seven
best papers invited at a special issue of the IET Software Journal).

[b8] M. F. Zibran and C. K. Roy. Conflict-aware Optimal Scheduling of Code Clone Refactoring: A Con-
straint Programming Approach. In the student symposium of the 19th IEEE International Conference
on Program Comprehension (ICPC 2011), pp. 266–269, Canada, 2011.

[b9] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy. Analyzing and Forecasting Near-miss
Clones in Evolving Software: An Empirical Study. In the 16th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2011), pp. 295–304, USA, 2011.

[b10] M. F. Zibran and C. K. Roy. Towards Flexible Code Clone Detection, Management and Refactoring
in IDE. In the 5th ACM International Workshop on Software Clones (IWSC 2011), pp. 75–76, USA,
2011.

[b11] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. Roy, and K. A. Schneider. Evaluating Code Clone
Genealogies at Release level: An Empirical Study. In the 10th IEEE International Conference on Source
Code Analysis and Manipulation (SCAM 2010), pp. 87–96, Romania, 2010.

189

c. Technical Report, Posters, Tool Demonstrations, and Presentations:

[c12] M. F. Zibran and Chanchal K. Roy. The Road to Software Clone Management: A Survey, Technical
Report 2012-03, pp. 1–62, Department of Computer Science, University of Saskatchewan, Canada,
2012.

[c13] M. F. Zibran. Diagnosis and Treatment of Code Clones. In poster symposium of the 27th IEEE
International Conference on Software Maintenance (ICSM 2011), USA, 2011.

[c14] M. F. Zibran and C. K. Roy. Code Clones: Etiology, Effects, and Treatment. In the CSER (Con-
sortium for Software Engineering Research) 2011 Spring Meeting (poster session), Ontario, Canada,
2011.

[c15] M. F. Zibran and C. K. Roy. Cloning in Software: Why, When, and How?. In the College of Arts
and Science Graduate Students Poster Symposium, University of Saskatchewan, Canada, 2011.

[c16] M. F. Zibran and C. K. Roy. Flexible Code Clone Detection and Management in IDE. In the
Technology showcase of the 20th Annual Conference (CASCON 2010), Centre for Advanced Studies
Research, IBM Canada Software Laboratory, Canada, 2010.

The publications [b6] and [c16] constitute the majority of Chapter 3. The empirical studies appeared
in [b5], [b9], and [b11] are compiled in Chapter 4. Chapter 5 corresponds to the publications [a2] and [b4].
Chapter 6 compiles the work appeared in [b8], [b7], and [a1]. A proof-of-concept of the work (Chapter 6) was
published in [b8], a matured state of the same work appeared in [b7], and an extended version of the work
was published in [a1]. Chapter 7 is composed of an analytical survey [c12] of the existing literature, part
of which also appeared in [b3]. The research idea of the entire thesis appeared in the doctoral symposium
of ICSM’ 2011 [c13], which helped us in validating significance the problem addressed in this thesis. The
publications [b10], [c14], and [c15] are also related to this thesis as a whole.

A.1 Co-authorship

The research presented in this thesis is my own, conducted under the supervision of Chanchal K. Roy. Ideas
and techniques that are not products of my own work are duly cited, or, in cases where citations are not
available, are presented using language that indicates they existed prior to this work. Small parts of the
research presented in this thesis involved joint work with other researchers to make co-authored publications.

The majority of the clone-density based empirical study, as presented in Chapter 4, was published in
ICECCS’2011 [b9] in co-authorship with Ripon K. Saha and Muhammad Asaduzzaman. I am the sole con-
tributor in initial formulation of the idea, data collection, and analysis involved in the work. While preparing
the paper, the co-authors helped in organizing the write-up and correcting presentation flaws. The studies
briefly presented in Section 4.3 and Section 4.4 appeared in SCAM’2010 [b11] and CCECE’2013 [b5] respec-
tively. In both these works, I contributed in the analysis, writing, and shaping the results into publishable
research papers.

In the genealogy-based study as described in Chapter 5, we used extended version of gCad [249] for
the extraction and characterization of evolving clones. Ripon K. Saha was the original author of the basic
gCad [249], and he contributed by providing the source code of his tool, which I further extended significantly
for the purpose of the study. I carried out the empirical study including study design, data collection,
analysis as well as organization and presentation of the write-up for the published papers [b4], [a2]. Kevin
A. Schneider contributed by proof-reading the papers and providing suggestions for improvements.

Chapter 7 of the thesis is compiled on the basis of my extensive survey on the existing literature [c12]. As
mentioned before, a part of the chapter appeared as a Vision Keynote paper in the IEEE CSMR-18/WCRE-
21 Software Evolution Week (SEW’14) [b3]. Rainer Koschke helped in preparing the paper out of the work
by providing suggestions for the improvement of the organization of the paper.

Other than the aforementioned contributions of the co-authors of my papers, the entire work presented
in this thesis is the outcome of my own research carried out under the supervision of Chanchal K. Roy.

190

Appendix B

User Manual for Our Clone Search Tool

As described in Chapter 3, our clone search tool is capable to detecting both exact (Type-1) and near-miss
(Type-2 and Type-3) clones of a chosen code fragment that the user selects from the IDE’s editor. Details
about the different types of code clones are presented in Chapter 2. We named our tool as CloMan. The
name is formed by concatenating the prefix (i.e., clo) of the word ‘clone’ and the prefix (i.e., man) of the
word ‘management’. Note that the main objective of our tool is to support proactive clone management
by facilitating focused clone search. CloMan is developed as a plugin to the popular Eclipse IDE. Here, we
describe how to install and use our tool. In Section B.1, we present step-by-step procedure for the installation
of our tool. Section B.2 presents how the user can tune the tool by setting different configuration parameters.
Finally in Section B.3, we describe how this tool can be effectively used for searching clones in the source
code.

B.1 Installation

Our Eclipse plugin (CloMan), is available for installation from its Update Site at
http://www.usask.ca/∼minhaz.zibran/tools.

For installation, please follow the following steps. Each step is demonstrated with the help of screenshots
where the locations of the user’s input/choice are marked with red rectangles.

Figure B.1: Step 1 of installation

Step 1: Choose Help from Eclipse’s menu and then select Install New Software , as shown in Figure B.1.

Step 2: The completion of step 1 brings the installation window as shown in Figure B.2. Press the Add...
button to add a new Update Site.

Step 3: The completion of step 2 brings up a dialog box asking for the Name and Location of the Update

Site to add. Fill-up the text boxes according to the following specification and press the Ok button.

191

http://www.usask.ca/~minhaz.zibran/tools

Figure B.2: Step 2 of installation: add a new Update Site

192

Figure B.3: Step 3 of installation: filling in information for new Update Site

193

Name: Anything to describe the Update Site (e.g., Clone Detector of Minhaz Zibran)

Location: http://www.usask.ca/∼minhaz.zibran/tools

Step 4: Upon completion of step 3, the installation window populates with available tools for installation,
as shown in Figure B.4.

4(a) Select the check-box by the tool’s name CloMan

4(b) Press the Next > button at the bottom of the installation window

Step 5: Upon completion of step 4, the installation window switches to the next step (Figure B.5) for you
to review items and finalize installation.

5(a) Make sure the tool’s name (i.e., CloMan), its Version and Id are displayed. Select the tool’s name.

5(b) Review the details of the plugin to be installed shown in the ‘Details’ text-area.

5(c) Click on ‘More..’ below the ‘Details’ text-area. This will bring up another dialog box for reviewing
the Copyright (Figure B.6), General Information (Figure B.7), and License Agreement (Figure B.8).

Review the information and press the Ok button. The dialog box disappears.

5(d) Press the Next > button at the bottom of the installation window

Step 6: Upon completion of step 5, the installation window switches to the new window (Figure B.9) to
allow you review (and accept/reject) the license agreement.

6(a) Please carefully read the license agreement and select the radio-button with label “I accept the
terms of the license agreement”

6(b) Press the Finish button and wait for the installation to complete.

B.2 Customization

Our tool CloMan allows a set of customization options to the user through Eclipse’s Preferences page.

1. From Eclipse’s main menu, choose Eclipse . It brings a drop down menu as shown in Figure B.10.

Open Eclipse’s Preferences page by selecting Preferences... from the drop down menu.

2. Find and select out tool’s name (i.e., CloMan) from the left side of the Eclipse’s Preferences page, as
shown in Figure B.11. All the available customization options are displayed on the right side of the

page. Set values of the different tuning parameters according to your choice, and press the Ok button
to make the customization in effect.

B.3 Usage

The usage of our tool is fairly intuitive. To invoke focused clone search, take the following steps:

1. Select a code fragment from the editor as the seed for search and click the right mouse-button. This
will bring a popup menu as shown in Figure B.12.

2. Choose the Find Clones menu item from the popup menu (Figure B.12) to initiate clone detection.

194

http://www.usask.ca/~minhaz.zibran/tools

Figure B.4: Step 4 of installation: tool selection

195

Figure B.5: Step 5 of installation: choice review

196

Figure B.6: Step 5(c) of installation: reviewing the Copyright information

197

Figure B.7: Step 5(c) of installation: reviewing the General Information

198

Figure B.8: Step 5(c) of installation: reviewing the License Agreement

199

Figure B.9: Step 6 of installation: acceptance of license agreement

Figure B.10: Step 1 of customization: opening Eclipse’s Preference page

200

Figure B.11: Step 2 of customization: tuning CloMan’s parameters

201

Figure B.12: Usage of our clone search tool CloMan

Figure B.13: Step 1 of bringing up the Clone View

202

Figure B.14: Step 2 of bringing up the Clone View

The result of clone search is presented in Clone View as shown in Figure B.12. The detected clones are
presented as a list sorted in the descending order of their similarity with the fragment that was selected as
the seed for the focused search. Double click on any item of the list to view the corresponding clone fragment
in the editor.

In case you don’t find the Clone View, make it appear by doing the followings.

1. Choose the Window , then from the appearing drop down sub-menu, choose Show View . This brings

a second drop-down sub-menu, from which you should select Other , as shown in Figure B.13. A Tree
View window appears as shown in Figure B.14.

2. Find and expand the CloMan Category node in the Tree View window. This should expose a child

node Clone View, which you should select.

3. Press the Ok button at the bottom of the Tree View window.

203

Appendix C

OPL Model of The Refactoring Scheduler

The constraint programming (CP) model of our clone refactoring scheduler as written in OPL (Optimiza-
tion Programming Language) is presented below.

using CP;

// data variables

int nRefactor = ...;

int nTarget = ...;

range myRange = 1..nRefactor;

float efforts[myRange] = ...;

float qualityGain[myRange] = ...;

float priorities[myRange] = ...;

int dependencies[myRange][myRange] = ...;

// decision variables

dvar int+ x[myRange]in 0..1;

dvar int+ y[myRange] in 0..nTarget;

// impose time-limit if required

// execute{cp.param.timeLimit=2;}

// objective function

maximize //find optimal

sum(i in myRange) x[i] * priorities[i] * (qualityGain[i] - efforts[i]);

// constraints

subject to {

// if x[i] = 1, y[i] > 0, and vice versa

forall (i in myRange)

x[i] * y[i] >= x[i];

// y[i] != y[j], unless y[i]=y[j]=0

forall(i, j in myRange: i != j)

y[i] != y[j] || y[i]==0;

// sequential dependencies

forall(i, j in myRange: i != j)

if (dependencies[i][j] - dependencies[j][i] > 0)

y[i] < y[j] || y[j] == 0;

// mutual exclusion

forall(i, j in myRange: i != j)

if(abs(dependencies[i][j]) == 1)

x[i] + x[j] <= 1;

204

// mutual inclusion

forall(i, j in myRange: i != j)

if(abs(dependencies[i][j]) == 2)

x[i] + x[j] == 2 || x[i] + x[j] == 0;

// max number of refactoring that can be selected

// sum(i in myRange) x[i] <= nTarget;

};

// post-processing

execute{

var totalEffort = 0.0;

var totalGain = 0.0;

var totalSelect = 0;

var priorSat = 0.0;

for(var i in myRange) totalEffort = totalEffort + x[i]*efforts[i];

for(var j in myRange) totalGain = totalGain + x[j]*qualityGain[j];

for(var k in myRange) totalSelect = totalSelect + x[k];

for(var m in myRange) priorSat = priorSat + x[m]*priorities[m];

writeln("Satisfied priority = ", priorSat);

writeln("total effort = ", totalEffort);

writeln("total gain = ", totalGain);

writeln("total selection = ", totalSelect);

};

205

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction and Motivation
	Problem Definition and Scope
	The Problem
	Scope

	Research and Contributions
	Outline of the Thesis

	Background
	Definition of Code Clone
	Clone Relationship
	Clone Granularity
	Intentional and Accidental Clones

	Patterns of Cloning
	Negative Impacts of Code Clones
	A Real World Incident

	Clone Management
	Clone Detection
	Strengths and Weaknesses of Clone Detection Techniques

	Clone Genealogy
	Clone Genealogy Extraction
	Genealogy-based Clone Change Patterns

	Summary

	Integrated Clone Search
	Introduction
	Clone Detection
	Code Preprocessing
	Source Code Fingerprinting
	Creation of Suffix Tree
	Finding Largest Common Subsequences
	Approximate Matching

	K-difference Hybrid Algorithm
	Preprocessing of Suffix Tree
	Hybrid Dynamic Programming

	Evaluation
	Algorithmic Complexity
	Usability and Customization
	Empirical Evaluation

	Related Work
	Summary

	Analysis of Existence and Evolution of Clones
	Introduction
	Analyzing and Forecasting Near-miss Clones
	Clone-density and its Correlation Coefficient
	Forecasting Clone-density
	Subject Systems
	Clone detection
	Findings

	Genealogy-based Investigation of Clone Propagation
	Clones in Industrial Web Applications
	Threats to Validity
	Related Work
	Analysis of Clones and their Evolution
	Study of Clones in Web Applications
	Genealogy-based Study of Clones

	Summary

	Investigation of Clone Change Patterns
	Introduction
	Terminology and Metrics
	Study Setup
	Extraction of Genealogies
	Investigation

	Findings
	Size of the Clone-Groups
	Size of the Clone Fragments
	Entropy of Dispersion
	Change Patterns
	Frequency of Changes
	Level of Granularity
	Textual Similarity
	Age

	Threats to Validity
	Related Work
	Summary

	Refactoring Effort Estimation and Scheduling
	Introduction
	Clone Refactoring
	Estimation of Refactoring Effort
	Context Understanding Effort
	Effort for Code Modifications
	Navigation Effort
	Effort Model

	Prediction of Refactoring Effects
	Refactoring Constraints
	Formulation of Refactoring Schedule
	An Illustrative Example

	Implementation
	Empirical Evaluation
	Clone Detection
	Data Acquisition
	Data Normalization
	Schedule Generation
	Findings
	Threats to Validity

	Related Work
	Summary

	Vision of Software Clone Management
	Introduction
	How Much is Clone?
	Choice of Clone Granularity

	State and Vision of Clone Management
	Clone Prevention
	Clone Detection
	Clone Documentation
	Clone Tracking
	Clone Refactoring/Reengineering
	Clone Analysis
	Clone Visualization

	Design Space for a Clone Management System
	Clone Management Strategies
	Design Choices

	Clones in Test Code
	Industrial Adoption of Clone Management
	Summary

	Conclusion
	Summary
	Contributions
	Limitations
	Future Research Directions

	References
	Publications Out of This Dissertation Research
	Co-authorship

	User Manual for Our Clone Search Tool
	Installation
	Customization
	Usage

	OPL Model of The Refactoring Scheduler

