4,804 research outputs found

    The Transitivity of Trust Problem in the Interaction of Android Applications

    Full text link
    Mobile phones have developed into complex platforms with large numbers of installed applications and a wide range of sensitive data. Application security policies limit the permissions of each installed application. As applications may interact, restricting single applications may create a false sense of security for the end users while data may still leave the mobile phone through other applications. Instead, the information flow needs to be policed for the composite system of applications in a transparent and usable manner. In this paper, we propose to employ static analysis based on the software architecture and focused data flow analysis to scalably detect information flows between components. Specifically, we aim to reveal transitivity of trust problems in multi-component mobile platforms. We demonstrate the feasibility of our approach with Android applications, although the generalization of the analysis to similar composition-based architectures, such as Service-oriented Architecture, can also be explored in the future

    CONVERSION OF DOMAIN TYPE ENFORCEMENT LANGUAGE TO THE JAVA SECURITY MANAGER

    Get PDF
    With today\u27s prevalence of Internet-connected systems storing sensitive data and the omnipresent threat of technically skilled malicious users, computer security remains a critically important field. Because of today\u27s multitude of vulnerable systems and security threats, it is vital that computer science students be taught techniques for programming secure systems, especially since many of them will work on systems with sensitive data after graduation. Teaching computer science students proper design, implementation, and maintenance of secure systems is a challenging task that calls for the use of novel pedagogical tools. This report describes the implementation of a compiler that converts mandatory access control specification Domain-Type Enforcement Language to the Java Security Manager, primarily for pedagogical purposes. The implementation of the Java Security Manager was explored in depth, and various techniques to work around its inherent limitations were explored and partially implemented, although some of these workarounds do not appear in the current version of the compiler because they would have compromised cross-platform compatibility. The current version of the compiler and implementation details of the Java Security Manager are discussed in depth

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201

    High-level real-time programming in Java

    Full text link
    Real-time systems have reached a level of complexity beyond the scaling capability of the low-level or restricted languages traditionally used for real-time programming. While Metronome garbage collection has made it practical to use Java to implement real-time systems, many challenges remain for the construction of complex real-time systems, some specic to the use of Java and others simply due to the change in scale of such systems. The goal of our research is the creation of a comprehensive Java-based programming environment and methodology for the creation of complex real-time systems. Our goals include construction of a provably correct real-time garbage collec-tor capable of providing worst case latencies of 100 s, capa-ble of scaling from sensor nodes up to large multiprocessors; specialized programming constructs that retain the safety and simplicity of Java, and yet provide sub-microsecond la-tencies; the extension of Java's \write once, run anywhere" principle from functional correctness to timing behavior; on-line analysis and visualization that aids in the understanding of complex behaviors; and a principled probabilistic analy-sis methodology for bounding the behavior of the resulting systems. While much remains to be done, this paper describes the progress we have made towards these goals

    Candoia: A Platform and an Ecosystem for Building and Deploying Versatile Mining Software Repositories Tools

    Get PDF
    Research on mining software repositories (MSR) has shown great promise during the last decade in solving many challenging software engineering problems. There exists, however, a ‘valley of death’ between these significant innovations in the MSR research and their deployment in practice. The significant cost of converting a prototype to software; need to provide support for a wide variety of tools and technologies e.g. CVS, SVN, Git, Bugzilla, Jira, Issues, etc, to improve applicability; and the high cost of customizing tools to practitioner-specific settings are some key hurdles in transition to practice. We describe Candoia, a platform and an ecosystem that is aimed at bridging this valley of death between innovations in MSR research and their deployment in practice. We have implemented Candoia and provide facilities to build and publish MSR ideas as Candoia apps. Our evaluation demonstrates that Candoia drastically reduces the cost of converting an idea to an app, thus reducing the barrier to transitioning research findings into practice. We also see versatility, in Candoia app’s ability to work with a variety of tools and technologies that the platform supports. Finally, we find that customizing Candoia app to fit project-specific needs is often well within the grasp of developers
    • …
    corecore