13 research outputs found

    Dimensionality reduction and hierarchical clustering in framework for hyperspectral image segmentation

    Get PDF
    The hyperspectral data contains hundreds of narrows bands representing the same scene on earth, with each pixel has a continuous reflectance spectrum. The first attempts to analysehyperspectral images were based on techniques that were developed for multispectral images by randomly selecting few spectral channels, usually less than seven. This random selection of bands degrades the performance of segmentation algorithm on hyperspectraldatain terms of accuracies. In this paper, a new framework is designed for the analysis of hyperspectral image by taking the information from all the data channels with dimensionality reduction method using subset selection and hierarchical clustering. A methodology based on subset construction is used for selecting k informative bands from d bands dataset. In this selection, similarity metrics such as Average Pixel Intensity [API], Histogram Similarity [HS], Mutual Information [MI] and Correlation Similarity [CS] are used to create k distinct subsets and from each subset, a single band is selected. The informative bands which are selected are merged into a single image using hierarchical fusion technique. After getting fused image, Hierarchical clustering algorithm is used for segmentation of image. The qualitative and quantitative analysis shows that CS similarity metric in dimensionality reduction algorithm gets high quality segmented image

    Hierarchical fusion using vector quantization for visualization of hyperspectral images

    Get PDF
    Visualization of hyperspectral images that combines the data from multiple sensors is a major challenge due to huge data set. An efficient image fusion could be a primary key step for this task. To make the approach computationally efficient and to accommodate a large number of image bands, we propose a hierarchical fusion based on vector quantization and bilateral filtering. The consecutive image bands in the hyperspectral data cube exhibit a high degree of feature similarity among them due to the contiguous and narrow nature of the hyperspectral sensors. Exploiting this redundancy in the data, we fuse neighboring images at every level of hierarchy. As at the first level, the redundancy between the images is very high we use a powerful compression tool, vector quantization, to fuse each group. From second level onwards, each group is fused using bilateral filtering. While vector quantization removes redundancy, bilateral filter retains even the minor details that exist in individual image. The hierarchical fusion scheme helps in accommodating a large number of hyperspectral image bands. It also facilitates the midband visualization of a subset of the hyperspectral image cube. Quantitative performance analysis shows the effectiveness of the proposed method

    Visualization of hyperspectral images on parallel and distributed platform: Apache Spark

    Get PDF
    The field of hyperspectral image storage and processing has undergone a remarkable evolution in recent years. The visualization of these images represents a challenge as the number of bands exceeds three bands, since direct visualization using the trivial system red, green and blue (RGB) or hue, saturation and lightness (HSL) is not feasible. One potential solution to resolve this problem is the reduction of the dimensionality of the image to three dimensions and thereafter assigning each dimension to a color. Conventional tools and algorithms have become incapable of producing results within a reasonable time. In this paper, we present a new distributed method of visualization of hyperspectral image based on the principal component analysis (PCA) and implemented in a distributed parallel environment (Apache Spark). The visualization of the big hyperspectral images with the proposed method is made in a smaller time and with the same performance as the classical method of visualization

    Superpixel nonlocal weighting joint sparse representation for hyperspectral image classification.

    Get PDF
    Joint sparse representation classification (JSRC) is a representative spectral–spatial classifier for hyperspectral images (HSIs). However, the JSRC is inappropriate for highly heterogeneous areas due to the spatial information being extracted from a fixed-sized neighborhood block, which is often unable to conform to the naturally irregular structure of land cover. To address this problem, a superpixel-based JSRC with nonlocal weighting, i.e., superpixel-based nonlocal weighted JSRC (SNLW-JSRC), is proposed in this paper. In SNLW-JSRC, the superpixel representation of an HSI is first constructed based on an entropy rate segmentation method. This strategy forms homogeneous neighborhoods with naturally irregular structures and alleviates the inclusion of pixels from different classes in the process of spatial information extraction. Afterwards, the superpixel-based nonlocal weighting (SNLW) scheme is built to weigh the superpixel based on its structural and spectral information. In this way, the weight of one specific neighboring pixel is determined by the local structural similarity between the neighboring pixel and the central test pixel. Then, the obtained local weights are used to generate the weighted mean data for each superpixel. Finally, JSRC is used to produce the superpixel-level classification. This speeds up the sparse representation and makes the spatial content more centralized and compact. To verify the proposed SNLW-JSRC method, we conducted experiments on four benchmark hyperspectral datasets, namely Indian Pines, Pavia University, Salinas, and DFC2013. The experimental results suggest that the SNLW-JSRC can achieve better classification results than the other four SRC-based algorithms and the classical support vector machine algorithm. Moreover, the SNLW-JSRC can also outperform the other SRC-based algorithms, even with a small number of training samples

    Joint bilateral filtering and spectral similarity-based sparse representation: A generic framework for effective feature extraction and data classification in hyperspectral imaging

    Get PDF
    Classification of hyperspectral images (HSI) has been a challenging problem under active investigation for years especially due to the extremely high data dimensionality and limited number of samples available for training. It is found that hyperspectral image classification can be generally improved only if the feature extraction technique and the classifier are both addressed. In this paper, a novel classification framework for hyperspectral images based on the joint bilateral filter and sparse representation classification (SRC) is proposed. By employing the first principal component as the guidance image for the joint bilateral filter, spatial features can be extracted with minimum edge blurring thus improving the quality of the band-to-band images. For this reason, the performance of the joint bilateral filter has shown better than that of the conventional bilateral filter in this work. In addition, the spectral similarity-based joint SRC (SS-JSRC) is proposed to overcome the weakness of the traditional JSRC method. By combining the joint bilateral filtering and SS-JSRC together, the superiority of the proposed classification framework is demonstrated with respect to several state-of-the-art spectral-spatial classification approaches commonly employed in the HSI community, with better classification accuracy and Kappa coefficient achieved

    A Bicriteria-Optimization-Approach-Based Dimensionality-Reduction Model for the Color Display of Hyperspectral Images

    Full text link
    corecore