20,230 research outputs found

    A Parallel High-Order Fictitious Domain Approach for Biomechanical Applications

    Get PDF
    The focus of this contribution is on the parallelization of the Finite Cell Method (FCM) applied for biomechanical simulations of human femur bones. The FCM is a high-order fictitious domain method that combines the simplicity of Cartesian grids with the beneficial properties of hierarchical approximation bases of higher order for an increased accuracy and reliablility of the simulation model. A pre-computation scheme for the numerically expensive parts of the finite cell model is presented that shifts a significant part of the analysis update to a setup phase of the simulation, thus increasing the update rate of linear analyses with time-varying geometry properties to a range that even allows user interactive simulations of high quality. Paralellization of both parts, the pre-computation of the model stiffness and the update phase of the simulation is simplified due to a simple and undeformed cell structure of the computation domain. A shared memory parallelized implementation of the method is presented and its performance is tested for a biomedical application of clinical relevance to demonstrate the applicability of the presented method

    Real-time Error Control for Surgical Simulation

    Get PDF
    Objective: To present the first real-time a posteriori error-driven adaptive finite element approach for real-time simulation and to demonstrate the method on a needle insertion problem. Methods: We use corotational elasticity and a frictional needle/tissue interaction model. The problem is solved using finite elements within SOFA. The refinement strategy relies upon a hexahedron-based finite element method, combined with a posteriori error estimation driven local hh-refinement, for simulating soft tissue deformation. Results: We control the local and global error level in the mechanical fields (e.g. displacement or stresses) during the simulation. We show the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach. Conclusions: Error control guarantees that a tolerable error level is not exceeded during the simulations. Local mesh refinement accelerates simulations. Significance: Our work provides a first step to discriminate between discretization error and modeling error by providing a robust quantification of discretization error during simulations.Comment: 12 pages, 16 figures, change of the title, submitted to IEEE TBM

    Determination of local material properties of OSB sample by coupling advanced imaging techniques and morphology-based FEM simulation

    Get PDF
    This is the publisher’s final pdf. The published article is copyrighted by Walter de Gruyter & Co. and can be found at: http://www.degruyter.com/.The goal was to determine local mechanical properties inside of oriented strand board (OSB) based on a realistic morphology-based finite element (FE) model and data acquired from a physical test performed on the same material. The spatial information and local grayscale intensity from CT-scans obtained from small OSB sample was transformed into a 2D regular morphology-based FE mesh with corresponding material properties. The model was then used to simulate the actual compression test performed on the specimen using simplified boundary conditions. The simulated strain fields from the model were compared with the actual strain field measured on the specimen surface during the compression test by means of a full-field optical method, named digital image correlation (DIC). Finally, the original set of material properties was adjusted by an iterative procedure to minimize the difference between the simulated and the measured strain data. The results show that the developed procedure is useful to find local material properties as well as for morphological modeling without the need of segmentation of the image data. The achieved results serve as a prerequisite for full 3D analyses of the complex materials

    High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows

    Full text link
    In this article we present the first better than second order accurate unstructured Lagrangian-type one-step WENO finite volume scheme for the solution of hyperbolic partial differential equations with non-conservative products. The method achieves high order of accuracy in space together with essentially non-oscillatory behavior using a nonlinear WENO reconstruction operator on unstructured triangular meshes. High order accuracy in time is obtained via a local Lagrangian space-time Galerkin predictor method that evolves the spatial reconstruction polynomials in time within each element. The final one-step finite volume scheme is derived by integration over a moving space-time control volume, where the non-conservative products are treated by a path-conservative approach that defines the jump terms on the element boundaries. The entire method is formulated as an Arbitrary-Lagrangian-Eulerian (ALE) method, where the mesh velocity can be chosen independently of the fluid velocity. The new scheme is applied to the full seven-equation Baer-Nunziato model of compressible multi-phase flows in two space dimensions. The use of a Lagrangian approach allows an excellent resolution of the solid contact and the resolution of jumps in the volume fraction. The high order of accuracy of the scheme in space and time is confirmed via a numerical convergence study. Finally, the proposed method is also applied to a reduced version of the compressible Baer-Nunziato model for the simulation of free surface water waves in moving domains. In particular, the phenomenon of sloshing is studied in a moving water tank and comparisons with experimental data are provided

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field
    • …
    corecore