3,420 research outputs found

    Characteristics of liquids lugs in gas–liquid Taylor flow in microchannels

    Get PDF
    The hydrodynamics of liquid slugs in gas–liquid Taylor flow in straight and meandering microchannels have been studied using micro Particle Image Velocimetry. The results confirm a recirculation motion in the liquid slug, which is symmetrical about the center line of the channel for the straight geometry and more complex and three-dimensional in the meandering channel. An attempt has also been made to quantify and characterize this recirculation motion in these short liquid slugs (Ls/w<1.5) by evaluating the recirculation rate, velocity and time. The recirculation velocity was found to increase linearly with the two-phase superficial velocity UTP. The product of the liquid slug residence time and the recirculation rate is independent of UTP under the studied flow conditions. These results suggest that the amount of heat or mass transferred between a given liquid slug and its surroundings is independent of the total flow rate and determined principally by the characteristics of the liquid slug

    Current methods for characterising mixing and flow in microchannels

    Get PDF
    This article reviews existing methods for the characterisation of mixing and flow in microchannels, micromixers and microreactors. In particular, it analyses the current experimental techniques and methods available for characterising mixing and the associated phenomena in single and multiphase flow. The review shows that the majority of the experimental techniques used for characterising mixing and two-phase flow in microchannels employ optical methods, which require optical access to the flow, or off-line measurements. Indeed visual measurements are very important for the fundamental understanding of the physics of these flows and the rapid advances in optical measurement techniques, like confocal scanning laser microscopy and high resolution stereo micro particle image velocimetry, are now making full field data retrieval possible. However, integration of microchannel devices in industrial processes will require on-line measurements for process control that do not necessarily rely on optical techniques. Developments are being made in the areas of non-intrusive sensors, magnetic resonance techniques, ultrasonic spectroscopy and on-line flow through measurement cells. The advances made in these areas will certainly be of increasing interest in the future as microchannels are more frequently employed in continuous flow equipment for industrial applications

    Gas-liquid hydrodynamics in Taylor Flows with complex liquids

    Get PDF
    Universitá di Pisa Facoltá di Ingegneria Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali Relazione di tirocinio in Ingegneria Chimica Gas-liquid hydrodynamics in Taylor Flows with complex liquids Il candidato: Federico Alberini Il relatore: Prof. Elisabetta Brunazzi Controrelatore: Prof. Ing. Roberto Mauri Anno Accademico 2009-201

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application
    corecore