14,202 research outputs found

    Understanding the interplay of capillary and viscous forces in CO2 core flooding experiments

    Get PDF
    Interaction between capillary and viscous forces significantly affects the flow instability in immiscible displacement, which is usually investigated by visualization of flow patterns in 2d porous micromodels or in 3d system equipped with X-ray CT. However, in most practical applications, visualization of flow in porous media is not possible and the pressure signal is often as one of the important sources of information. Core flooding experiments were implemented in this study to investigate the interplay of capillary and viscous effects by analysis of differential pressure. Water and crude oil were employed as defending fluid, and different states of CO2 were injected as invading fluid. The inlet was set as the constant injection flow rate while the outlet as the constant pressure. In viscous-dominated displacement, differential pressure evidently depends on the injection rate and the pressure decline curve is fitted by a power function. The exponent of the function is found to be significantly larger at the crossover between capillary-dominated and viscous-dominated regions. In capillary-dominated displacement, the pressure profile is characterized by a pressure jump at the beginning and intermittent fluctuations during the displacement. Further analysis by wavelet decomposition indicates a transition point existing in standard deviation of pressure fluctuations when the displacement is transformed from capillary-dominated to viscous-dominated. The experimental results are finally verified by a macroscopic capillary number, which characterizes the interaction between capillary and viscous forces at a critical value of , agreeing well with the Log Nca-Log M phase diagram

    EXPERIMENTAL STUDY OF THE FLOW OF FERROFLUID IN A POROUS MEDIA UNDER A MAGNETIC FIELD

    Get PDF
    This research presents results from a laboratory-scale experimental setup that was designed to visualize the behavior of ferrofluid percolation through a porous media. Ferrofluids are colloidal suspensions made of magnetic particles of a few nanometers and stabilized in carrier liquids like water or mineral oil. Ferrofluids get magnetized and align themselves in the direction of a magnetic field when a field gradient is applied. With the help of this experiment we investigate the viability of controlling fluid flow in porous medium by a magnetic field in vicinity. The experiments show that ferrofluids can be used as a transporting media to push the higher viscosity fluid out of the porous media when magnetic forces are acting on it. The magnetic force produces stronger attractive forces on the ferrofluid around the magnet which results in a predictable arrangement which is in- dependent of the heterogeneity of the medium. When capillary or viscous forces are predominant during the 2-dimensional drainage of immiscible fluids in a permeable medium, the injected fluid forms very thin finger like structure which then retains the fluid being displaced in them. No fingers due to varying viscosities are observed during displacement by ferrofluids in the medium. Displacement visualization experiments in an oil saturated porous medium shows that ferrofluids obtain a rectangular shaped final configuration around the magnet, irrespective of the initial arrangement and flow path. The aim of this research is to control the instabilities that occur during the displacement of a fluid with the help of ferrofluid and magnetic field in vicinity. While the applications of ferrofluids are promising in the field of engineering, the results obtained are particularly relevant to the laboratory scale experiments where the weakening of magnetic strength due to increasing distance is a smaller limitation. Ferrofluids may find an immediate application in areas like enhancing oil recovery, in environmental engineering that requires maneuvering subsurface liquids in the field, treatment. Their properties could also be utilized in a situation that requires controlling the emplacement of fluid motion, guiding to or positioning to target zones in the subsurface without coming in direct access with it

    Design, Fabrication, and Experimental Validation of Microfluidic Devices for the Investigation of Pore-Scale Phenomena in Underground Gas Storage Systems

    Get PDF
    The understanding of multiphase flow phenomena occurring in porous media at the pore scale is fundamental in a significant number of fields, from life science to geo and environmental engineering. However, because of the optical opacity and the geometrical complexity of natural porous media, detailed visual characterization is not possible or is limited and requires powerful and expensive imaging techniques. As a consequence, the understanding of micro-scale behavior is based on the interpretation of macro-scale parameters and indirect measurements. Microfluidic devices are transparent and synthetic tools that reproduce the porous network on a 2D plane, enabling the direct visualization of the fluid dynamics. Moreover, microfluidic patterns (also called micromodels) can be specifically designed according to research interests by tuning their geometrical features and surface properties. In this work we design, fabricate and test two different micromodels for the visualization and analysis of the gas-brine fluid flow, occurring during gas injection and withdrawal in underground storage systems. In particular, we compare two different designs: a regular grid and a real rock-like pattern reconstructed from a thin section of a sample of Hostun rock. We characterize the two media in terms of porosity, tortuosity and pore size distribution using the A* algorithm and CFD simulation. We fabricate PDMS-glass devices via soft lithography, and we perform preliminary air-water displacement tests at different capillary numbers to observe the impact of the design on the fluid dynamics. This preliminary work serves as a validation of design and fabrication procedures and opens the way to further investigations

    Invasion Percolation Between two Sites

    Full text link
    We investigate the process of invasion percolation between two sites (injection and extraction sites) separated by a distance r in two-dimensional lattices of size L. Our results for the non-trapping invasion percolation model indicate that the statistics of the mass of invaded clusters is significantly dependent on the local occupation probability (pressure) Pe at the extraction site. For Pe=0, we show that the mass distribution of invaded clusters P(M) follows a power-law P(M) ~ M^{-\alpha} for intermediate values of the mass M, with an exponent \alpha=1.39. When the local pressure is set to Pe=Pc, where Pc corresponds to the site percolation threshold of the lattice topology, the distribution P(M) still displays a scaling region, but with an exponent \alpha=1.02. This last behavior is consistent with previous results for the cluster statistics in standard percolation. In spite of these discrepancies, the results of our simulations indicate that the fractal dimension of the invaded cluster does not depends significantly on the local pressure Pe and it is consistent with the fractal dimension values reported for standard invasion percolation. Finally, we perform extensive numerical simulations to determine the effect of the lattice borders on the statistics of the invaded clusters and also to characterize the self-organized critical behavior of the invasion percolation process.Comment: 7 pages, 11 figures, submited for PR
    • …
    corecore