8,488 research outputs found

    Visualization of Cellular and Microvascular Relationships

    Full text link

    Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy

    Get PDF
    Purpose To characterise longitudinal changes in the retinal microvasculature of type 2 diabetes mellitus (T2DM) as exemplified in a patient with proliferative diabetic retinopathy (PDR) using an adaptive optics scanning light ophthalmoscope (AOSLO). Methods A 35-year-old T2DM patient with PDR treated with scatter pan-retinal photocoagulation at the inferior retina 1 day prior to initial AOSLO imaging along with a 24-year-old healthy control were imaged in this study. AOSLO vascular structural and perfusion maps were acquired at four visits over a 20-week period. Capillary diameter and microaneurysm area changes were measured on the AOSLO structural maps. Imaging repeatability was established using longitudinal imaging of microvasculature in the healthy control. Results Capillary occlusion and recanalisation, capillary dilatation, resolution of local retinal haemorrhage, capillary hairpin formation, capillary bend formation, microaneurysm formation, progression and regression were documented over time in a region 2° superior to the fovea in the PDR patient. An identical microvascular network with same capillary diameter was observed in the control subject over time. Conclusions High-resolution serial AOSLO imaging enables in vivo observation of vasculopathic changes seen in diabetes mellitus. The implications of this methodology are significant, providing the opportunity for studying the dynamics of the pathological process, as well as the possibility of identifying highly sensitive and non-invasive biomarkers of end organ damage and response to treatment

    A systems biology analysis of brain microvascular endothelial cell lipotoxicity.

    Get PDF
    BackgroundNeurovascular inflammation is associated with a number of neurological diseases including vascular dementia and Alzheimer's disease, which are increasingly important causes of morbidity and mortality around the world. Lipotoxicity is a metabolic disorder that results from accumulation of lipids, particularly fatty acids, in non-adipose tissue leading to cellular dysfunction, lipid droplet formation, and cell death.ResultsOur studies indicate for the first time that the neurovascular circulation also can manifest lipotoxicity, which could have major effects on cognitive function. The penetration of integrative systems biology approaches is limited in this area of research, which reduces our capacity to gain an objective insight into the signal transduction and regulation dynamics at a systems level. To address this question, we treated human microvascular endothelial cells with triglyceride-rich lipoprotein (TGRL) lipolysis products and then we used genome-wide transcriptional profiling to obtain transcript abundances over four conditions. We then identified regulatory genes and their targets that have been differentially expressed through analysis of the datasets with various statistical methods. We created a functional gene network by exploiting co-expression observations through a guilt-by-association assumption. Concomitantly, we used various network inference algorithms to identify putative regulatory interactions and we integrated all predictions to construct a consensus gene regulatory network that is TGRL lipolysis product specific.ConclusionSystem biology analysis has led to the validation of putative lipid-related targets and the discovery of several genes that may be implicated in lipotoxic-related brain microvascular endothelial cell responses. Here, we report that activating transcription factors 3 (ATF3) is a principal regulator of TGRL lipolysis products-induced gene expression in human brain microvascular endothelial cell

    Classification of Human Retinal Microaneurysms Using Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography

    Get PDF
    Purpose. Microaneurysms (MAs) are considered a hallmark of retinal vascular disease, yet what little is known about them is mostly based upon histology, not clinical observation. Here, we use the recently developed adaptive optics scanning light ophthalmoscope (AOSLO) fluorescein angiography (FA) to image human MAs in vivo and to expand on previously described MA morphologic classification schemes. Methods. Patients with vascular retinopathies (diabetic, hypertensive, and branch and central retinal vein occlusion) were imaged with reflectance AOSLO and AOSLO FA. Ninety-three MAs, from 14 eyes, were imaged and classified according to appearance into six morphologic groups: focal bulge, saccular, fusiform, mixed, pedunculated, and irregular. The MA perimeter, area, and feret maximum and minimum were correlated to morphology and retinal pathology. Select MAs were imaged longitudinally in two eyes. Results. Adaptive optics scanning light ophthalmoscope fluorescein angiography imaging revealed microscopic features of MAs not appreciated on conventional images. Saccular MAs were most prevalent (47%). No association was found between the type of retinal pathology and MA morphology (P = 0.44). Pedunculated and irregular MAs were among the largest MAs with average areas of 4188 and 4116 μm2, respectively. Focal hypofluorescent regions were noted in 30% of MAs and were more likely to be associated with larger MAs (3086 vs. 1448 μm2, P = 0.0001). Conclusions. Retinal MAs can be classified in vivo into six different morphologic types, according to the geometry of their two-dimensional (2D) en face view. Adaptive optics scanning light ophthalmoscope fluorescein angiography imaging of MAs offers the possibility of studying microvascular change on a histologic scale, which may help our understanding of disease progression and treatment response

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex

    Estimation of cellular traction forces in morphogenesis of capillaries through advanced material modeling of fibrous biopolymers

    Get PDF
    Vaculogenesis is a process during which endothelial cells grow to form a network of interconnected vessels, to provide oxygen and nutrients to surrounding tissues. Endothelial cells microenvironment has an important impact on their growth. To understand such impact, one of the environment factors is studied in this report, i.e the traction forces that endothelial cells apply on the extracellular matrix. Those forces can modify the course of the network development. Based on a previous study, a combination of experimental and numerical approaches has been replicated for endothelial cells specifically in a three-dimension (3D) fashion. Fluorescence imaging was used to measure displacement fields with a fast iterative digital volume correlation (FIDVC). Then, forces applied on cells were determined with the technique of Traction Force Microscopy (TFM) using the Finite Element Method (FEM). The results showed that with a linear relationship between rigidity and density of the extracellular matrix, tractions, displacements, and density are independent. Furthermore, the independence between tractions, displacements and matrix density paves the way for more complex scenarios regarding the effect of matrix material remodeling.Incomin

    Doctor of Philosophy

    Get PDF
    dissertationAn intact lung capillary glycocalyx is vital to normal vascular barrier function and subsequently normal pulmonary function. Evidence suggests that the glycocalyx provides active regulatory functions, which are fundamental to normal lung fluid balance and that endothelial surface glycoproteins participate in agonist-mediated signaling. Heparan sulfates and hyaluronan glycosaminoglycans are of particular interest in mechanostimulation and subsequent mechanotransduction because of direct and indirect attachment to intracellular components involved with barrier maintenance. Also important to glycocalyx structure are associated blood serum proteins. The component contribution to the overall glycocalyx mechanical environment is integral to its transfer of extracellular mechanical signals to intracellular signals. These components have not been characterized in terms of their mechanical contribution to the glycocalyx stiffness, which allows for endothelial mechanotransduction. Understanding these components will assist in developing a strategy to treat acute inflammation of the lungs. In this dissertation, the mechanical contributions of glycosaminoglycans (heparan sulfate and hyaluronan) and associated macromolecules (albumin and hydroxyethyl starch) to lung glycocalyx mechanical structure are measured with novel applications of two optical micromechanical techniques: atomic force microscopy and reflectance interference contrast microscopy. This information is combined into an inclusive mechanical model. Specifically, the biomechanical properties of the microvascular glycocalyx were acquired and analyzed by probing with physiologically relevant normal forces. The techniques and experiments described in this dissertation provided means to measure and potentially other soft biologic materials, including the local glycocalyx microenvironment

    Intravital Multiphoton Microscopy Analysis of Spatial Relationships in Murine Skull Bone Marrow

    Get PDF
    The BM is a key organ of hematopoiesis and also has an important role in the immune system. The BM microenvironment is a complex, highly vascularized 3D structure composed of different cell types and extracellular matrix. Intense cellular traffic takes place from the peripheral blood to the BM and vice versa. However, the precise arrangement and microscopic dimensions of this environment have only been inferred so far from static imaging of sectioned tissue. We developed a new model to characterize and analyze the 3D microanatomy of murine skull BM in its physiological state using intravital MPM. This technology offers deep tissue penetration, low phototoxicity, superior image contrast and 3D resolution compared to other microscopy techniques. This makes MPM a powerful tool to investigate the BM, overcoming its anatomic inaccessibility. To quantify the dimensions of the BM compartment, we used high molecular weight FITC-dextran and Rhodamine 6G, which delineated the intra- and extravascular space, respectively. Measurements were generated using the 3D visualization and measurement software VoxBlast 3.1 after using a thresholding technique carried out by Adobe Photoshop 6.0. Results were expressed as the ratio of intravascular to extravascular space for different microvascular segments. Moreover, we performed adoptive transfer experiments with isolated naïve B-cells and TCM and studied their location within the BM compartment. The new approach presented here will be a useful tool for further in vivo investigations of cell behavior, trafficking and interactions in the BM
    corecore