5 research outputs found

    Using Tag Clouds as a Tool for Patients’ Medical History Visualization and Record Retrieval

    Get PDF
    Reading through a patient’s medical history can be challenging at best, let alone when the patient has a lengthy medical record. This can be a challenge when the patient is a relatively healthy person and even more challenging for a patient with a medical condition. Having a tool to quickly view and retrieve the pertinent elements of a person’s medical record can be useful, especially in cases where a healthcare practitioner is treating a new patient. We propose a visualization tool that makes use of a tag cloud that would allow a healthcare practitioner to easily visualize and retrieve the essential elements of a patient’s medical record. A prototype was created to run usability testing of the tag cloud tool and collect feedback from healthcare practitioners on the usefulness of such a tool in their day-to-day interactions with patients. Twelve paramedical practitioners tested and were questioned on the tool. The findings of this usability testing showed that such a visualization tool would be helpful to paramedical practitioners seeing a patient for the first time, as well as when dealing with patients who have a lengthy medical history

    The Design of Interactive Visualizations and Analytics for Public Health Data

    Get PDF
    Public health data plays a critical role in ensuring the health of the populace. Professionals use data as they engage in efforts to improve and protect the health of communities. For the public, data influences their ability to make health-related decisions. Health literacy, which is the ability of an individual to access, understand, and apply health data, is a key determinant of health. At present, people seeking to use public health data are confronted with a myriad of challenges some of which relate to the nature and structure of the data. Interactive visualizations are a category of computational tools that can support individuals as they seek to use public health data. With interactive visualizations, individuals can access underlying data, change how data is represented, manipulate various visual elements, and in certain tools control and perform analytic tasks. That being said, currently, in public health, simple visualizations, which fail to effectively support the exploration of large sets of data, are predominantly used. The goal of this dissertation is to demonstrate the benefit of sophisticated interactive visualizations and analytics. As improperly designed visualizations can negatively impact users’ discourse with data, there is a need for frameworks to help designers think systematically about design issues. Furthermore, there is a need to demonstrate how such frameworks can be utilized. This dissertation includes a process by which designers can create health visualizations. Using this process, five novel visualizations were designed to facilitate making sense of public health data. Three studies were conducted with the visualizations. The first study explores how computational models can be used to make sense of the discourse of health on a social media platform. The second study investigates the use of instructional materials to improve visualization literacy. Visualization literacy is important because even when visualizations are designed properly, there still exists a gap between how a tool works and users’ perceptions of how the tool should work. The last study examines the efficacy of visualizations to improve health literacy. Overall then, this dissertation provides designers with a deeper understanding of how to systematically design health visualizations

    Visual Analytics of Electronic Health Records with a focus on Acute Kidney Injury

    Get PDF
    The increasing use of electronic platforms in healthcare has resulted in the generation of unprecedented amounts of data in recent years. The amount of data available to clinical researchers, physicians, and healthcare administrators continues to grow, which creates an untapped resource with the ability to improve the healthcare system drastically. Despite the enthusiasm for adopting electronic health records (EHRs), some recent studies have shown that EHR-based systems hardly improve the ability of healthcare providers to make better decisions. One reason for this inefficacy is that these systems do not allow for human-data interaction in a manner that fits and supports the needs of healthcare providers. Another reason is the information overload, which makes healthcare providers often misunderstand, misinterpret, ignore, or overlook vital data. The emergence of a type of computational system known as visual analytics (VA), has the potential to reduce the complexity of EHR data by combining advanced analytics techniques with interactive visualizations to analyze, synthesize, and facilitate high-level activities while allowing users to get more involved in a discourse with the data. The purpose of this research is to demonstrate the use of sophisticated visual analytics systems to solve various EHR-related research problems. This dissertation includes a framework by which we identify gaps in existing EHR-based systems and conceptualize the data-driven activities and tasks of our proposed systems. Two novel VA systems (VISA_M3R3 and VALENCIA) and two studies are designed to bridge the gaps. VISA_M3R3 incorporates multiple regression, frequent itemset mining, and interactive visualization to assist users in the identification of nephrotoxic medications. Another proposed system, VALENCIA, brings a wide range of dimension reduction and cluster analysis techniques to analyze high-dimensional EHRs, integrate them seamlessly, and make them accessible through interactive visualizations. The studies are conducted to develop prediction models to classify patients who are at risk of developing acute kidney injury (AKI) and identify AKI-associated medication and medication combinations using EHRs. Through healthcare administrative datasets stored at the ICES-KDT (Kidney Dialysis and Transplantation program), London, Ontario, we have demonstrated how our proposed systems and prediction models can be used to solve real-world problems
    corecore