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Abstract 

Public health data plays a critical role in ensuring the health of the populace. Professionals 

use data as they engage in efforts to improve and protect the health of communities. For the 

public, data influences their ability to make health-related decisions. Health literacy, which is 

the ability of an individual to access, understand, and apply health data, is a key determinant 

of health.  At present, people seeking to use public health data are confronted with a myriad 

of challenges some of which relate to the nature and structure of the data. Interactive 

visualizations are a category of computational tools that can support individuals as they seek 

to use public health data. With interactive visualizations, individuals can access underlying 

data, change how data is represented, manipulate various visual elements, and in certain tools 

control and perform analytic tasks. That being said, currently, in public health, simple 

visualizations, which fail to effectively support the exploration of large sets of data, are 

predominantly used. The goal of this dissertation is to demonstrate the benefit of 

sophisticated interactive visualizations and analytics. As improperly designed visualizations 

can negatively impact users’ discourse with data, there is a need for frameworks to help 

designers think systematically about design issues. Furthermore, there is a need to 

demonstrate how such frameworks can be utilized. This dissertation includes a process by 

which designers can create health visualizations. Using this process, five novel visualizations 

were designed to facilitate making sense of public health data. Three studies were conducted 

with the visualizations. The first study explores how computational models can be used to 

make sense of the discourse of health on a social media platform. The second study 

investigates the use of instructional materials to improve visualization literacy. Visualization 

literacy is important because even when visualizations are designed properly, there still exists 

a gap between how a tool works and users’ perceptions of how the tool should work. The last 

study examines the efficacy of visualizations to improve health literacy. Overall then, this 

dissertation provides designers with a deeper understanding of how to systematically design 

health visualizations.  
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Chapter 1  

1 Introduction 

1.1 Motivation 

Public health data plays a critical role in ensuring the health of the populace. For health 

professionals, data influences every aspect of their mandate (O’Carroll, 2003). From an 

assessment standpoint, data is needed to investigate and analyze the causation of health 

issues. From a policy development perspective, data plays the crucial role of helping 

professionals prioritize and determine which issues need to be addressed. From an 

assurance viewpoint, timely data is required for the management of resources and for 

educating the public. For the general public, health data influences their ability to make 

sound decisions. An individual’s ability to access, read, and understand health 

information is a public health imperative (Gazmararian, Curran, Parker, Bernhardt, & 

DeBuono, 2005; Kickbusch, Pelikan, Apfel, & Tsouros, 2013; Sørensen et al., 2012). 

This ability has been termed “health literacy” and is a key determinant of an individual’s 

health. According to the American Medical Association, health literacy is a stronger 

predictor of a person’s health than age, income, employment status, education level, and 

race (“Health literacy: report of the Council on Scientific Affairs. Ad Hoc Committee on 

Health Literacy for the Council on Scientific Affairs, American Medical Association.,” 

1999).  

While the role of public health data is indisputable, laypeople and professionals seeking 

to use the data are confronted with a myriad of challenges some of which relate to the 

nature and structure of the data. Public health data originates from a wide variety of 

sources, is encoded in different formats, and is aggregated at different levels (Gotz & 

Borland, 2016; Herland, Khoshgoftaar, & Wald, 2014; E. Liu, Zhao, Wei, Roumeliotis, 

& Kaldoudi, 2016; Ola & Sedig, 2014; Shneiderman, Plaisant, & Hesse, 2013). The 

public health informatics community recognizes the need for data to be presented in ways 

in which individuals can work with it effectively (Higgins et al., 2011; Keough, 2002; 

LaPelle, Luckmann, Simpson, & Martin, 2006; Turner, Stavri, Revere, & Altamore, 
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2008). For centuries, visualizations have been used to facilitate public health tasks 

involving data. For instance, in 1792, Finke produced a world map of diseases and six 

years later Seaman used spot maps to trace yellow fever cases in New York (Barrett, 

2000; Stevenson, 1965). In the mid-19th century, John Snow challenged the theory of 

cholera being an airborne disease by plotting the spread of the disease as it relates to the 

Broad Street water pump (Snow, 1855). Around the same time, Florence Nightingale 

used the coxcomb representation to visualize patient data and educate the Crown on 

sanitation-related deaths of soldiers during the Crimean War (B. Cohen, 1984). From 

outbreak detection to health promotion, these examples highlight the varied use of static 

visualizations.  

However, the rate at which data is currently being generated has reduced the 

effectiveness of past visualization approaches to support the tasks in which individuals 

engage (Cybulski, Keller, Nguyen, & Saundage, 2013; L. Zhang et al., 2012). On the one 

hand, simple visualizations (e.g., bar charts, line plots), which only encode one or two 

attributes of data items, limit the ability of users to analyze non-explicit and unknown 

relationships (Cybulski et al., 2013; Endert, Hossain, et al., 2014). There is a need for 

visualizations that encode multiple aspects of the data at the same time. On the other 

hand, static visualizations, which require that all data items be encoded at once can 

overwhelm the cognitive resources of individuals (Kirsh, 2013; Pike, Stasko, Chang, & 

O′Connell, 2009; Tominski, 2015). Making a visualization interactive, facilitates the 

gradual disclosure of data and allows users to control how data is shown and in what 

quantities. When dealing with large sets of data, which is typically the case in public 

health, interaction has been shown to be effective in aiding analysts to explore and 

understand large, multivariate datasets (Torres, Eicher-Miller, Boushey, Ebert, & 

Maciejewski, 2012).   

In certain situations, providing users with elaborate and interactive visualizations is still 

not sufficient to support their tasks. For example, an epidemiologist may need to perform 

statistical analysis to understand the spread of Chikungunya across the Caribbean. 

Allowing the epidemiologist to visualize summary statistics is beneficial as research 

notes that the complexity of the mathematical models is hard for users to understand 
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without aid (Robert Spence, 2007). This coupling of analytics with visualization is the 

focus of the nascent field of visual analytics.  Visual analytics is the science of analytical 

reasoning facilitated by interactive visual interfaces (Thomas & Cook, 2005). Visual 

analytics tools are comprised of the analytics engine which stores, transforms, and 

performs computational analysis of the data and interactive visualizations which encode 

the data in a visual format that the user can then work with (Ola & Sedig, 2014).  

Before we can effectively design visual analytics tools for public health, there is a need to 

have a deeper understanding of the individual components and how best to develop them. 

Researchers have called for the development of visualization tools that allow users to 

access underlying data, change how data is represented, identify patterns and trends, 

analyze data, and perform a wide variety of tasks (Bhowmick, Griffin, MacEachren, 

Kluhsman, & Lengerich, 2008; Cybulski et al., 2013; Endert, Ribarsky, Turkay, Wong, & 

Nabney, 2017; Fisher, DeLine, Czerwinski, & Drucker, 2012; Gotz & Borland, 2016; 

Katsis, Koulouris, Papakonstantinou, & Patrick, 2017; Pretorius, Khan, & Errington, 

2016; L. Zhang et al., 2012). The design of such visualizations is a non-trivial endeavor 

that requires designers to take into consideration the structure of the data, users’ tasks, 

and human factors. Part of the challenge of developing visualizations is determining how 

to organize and encode data items and how best to support users’ tasks. Currently, there 

is confusion and lack of direction over how to create effective health visualizations 

(Carroll et al., 2014; Folorunso & Ogunseye, 2008; Turner et al., 2008).   

As improperly designed visualizations can end up negatively impacting users’ discourse 

with data (Kirsh, 2009) there is a need for frameworks to help designers think 

systematically about design issues (Purchase, Andrienko, Jankun-Kelly, & Ward, 2008; 

Sedig, Parsons, Dittmer, & Haworth, 2013; Thomas & Cook, 2005). Furthermore, there is 

a need to demonstrate how such frameworks can be utilized. Even when visualizations 

are designed properly, there still exists a gap between how the tool was designed and 

users’ perceptions of how the tool should work (Norman, 2013). This is particularly the 

case with novel interactive visualizations. Borner et al. highlight the need for instruction 

so that individuals are better equipped to understand novel visualizations (Borner, 

Maltese, Balliet, & Heimlich, 2016). The goal of this research is to demonstrate how 
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visualizations and analytics can be designed for public health, explore how instructional 

materials can help individuals to learn to use visualizations, and demonstrate how 

visualizations can impact health literacy efforts.  

 

1.2 Structure of this dissertation 

The rest of this dissertation is broken into 7 chapters as follows: 

In Chapter 2, we present the data-based challenges in public health and make a case for 

the use of visual analytics tools. This chapter also provides background for the 

dissertation and briefly discusses the field of public health and the components of visual 

analytics tools.  

In Chapter 3, we describe the use of visualizations in public health and discuss the need 

for visualizations that effectively model the complexity of the data. In this chapter, we 

also describe a framework that can aid in the design of elaborate visualizations, and apply 

the framework to the design of four novel visualizations that are part of a tool for making 

sense of public health data.  

In Chapter 4, we discuss interaction and its role in improving the discourse between 

users and public health data. We also present a process for designing interaction that is 

based on users’ task and use three scenarios to highlight the efficacy of our approach.  

In Chapter 5, we demonstrate how interactive visualizations can support public health 

stakeholders’ decision-making tasks. In particular, we present a visualization tool we 

created that can support control efforts related to the recent Zika outbreak in Brazil. This 

chapter also demonstrates how complex statistical measures can be incorporated into 

visualization tools.  

In Chapter 6, we present a visual analytic study that explores the discourse of health 

issues on Twitter. We describe how computational models can be used to assess the 

theme of tweets, as well as determine the type of user sending the tweet.  
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In Chapter 7, we present the results of two studies we conducted with the visualizations 

we designed. The first study explores visualization literacy and how individuals learn to 

use unfamiliar and non-typical visualizations. We also investigate the effect of 

instructional materials on improving an individual’s ability to learn how data is encoded 

and how to interact with the visualization. In the second study, we examine the ability of 

visualizations to improve health literacy.  

In Chapter 8, we draw some conclusions from the research reported in the preceding 

chapters, discuss the contributions of this research to the wider scientific community, and 

highlight some areas of future research.  

Finally, readers should keep in mind that the chapters of this dissertation can be read 

sequentially or individually. Chapters 2, 3, and 5 have been published; chapter 7 has been 

accepted; and chapters 4 and 6 will soon be submitted. The dissertation is written in an 

integrated article format, so chapters 2 through 7 are self-contained. 
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Chapter 2  

2 The Challenge of Big Data in Public Health: An 
Opportunity for Visual Analytics 

This chapter has been published as O. Ola and K. Sedig, “The challenge of big data in 

public health: an opportunity for visual analytics.,” Online J. Public Health Inform., vol. 

5, no. 3, pp. 1-21, Jan. 2014. 

Please note that the format has been changed to match the format of the dissertation. 

Figure numbers mentioned herein are relative to the chapter number. For instance, 

“Figure 1” corresponds to Figure 2-1. Additionally, when the term “paper” or “article” is 

used, it refers to this particular chapter.  

2.1 Introduction 

Data and information are both currency and product within the field of public health (PH) 

(O’Carroll, 2003). PH data is often highly complex because of its high volume, its 

various sources, its velocity of generation, and sometimes the low degree of veracity of 

the sources from which it originates. PH data is gathered from heterogeneous sources 

(Revere et al., 2007), may be unreliable, encoded in a variety of formats (Rambo, 2000; 

Turner, Liddy, Bradley, & Wheatley, 2005), and can be volatile (i.e., changing, and 

available only for a limited amount of time) (O’Carroll, Cahn, Auston, & Selden, 1998), 

all characteristics attributed to big data. These characteristics of PH data pose a challenge 

to the PH workforce in terms of whether and how effectively the data is used.   

The PH workforce is comprised of people trained in a variety of disciplines with daily 

duties necessitating the extraction of information and construction of knowledge from the 

mass of available data. In this paper, we refer to any individual seeking to use PH data in 

a professional capacity as a stakeholder. As stakeholders interact with data, they engage 

in various cognitive activities such as analytical reasoning, interpreting, decision-making, 

planning, and problem solving (Sedig, Parsons, Dittmer, & Ola, 2012). Performing these 

activities with data can involve complex cognition and can pose cognitive challenges for 
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the unaided mind. Thus, computer-based information systems and tools may be needed to 

support the activities in which PH stakeholders engage.  

In the context of PH, access to data does not necessarily guarantee that the data will be 

used well—i.e., that cognitive activities will be performed in an effective manner (see 

(Sedig, Parsons, Dittmer, et al., 2012) for more discussion of this issue). Additionally, the 

PH community acknowledges that decisions and policies are often made in an ad hoc 

fashion devoid of evidence (Baltussen & Niessen, 2006; Brownson, Fielding, & 

Maylahn, 2009; Brownson, Gurney, & Land, 1999). The efficient and effective use of 

data determines the extent to which PH stakeholders can sufficiently address the health 

concerns of the community (O’Carroll, 2003; Reeder, Revere, Hills, Baseman, & Lober, 

2012). Consider the following scenario in the fictional town of Lumcard, Louisiana, 

which demonstrates the critical role of data in addressing public health issues. 

The day before Thanksgiving, the director of Lumcard’s health department receives an 

alert showing an unusually high incidence of complaints of diarrhea, vomiting, high 

fever, and sore throat. Discussions with area doctors reveal that local hospitals have 

confirmed the diagnosis of West Nile Virus (WNV) in a high number of patients; this 

helps the director dismiss his first assumption that a food poisoning outbreak exists in 

Lumcard. The regional epidemiologist is made aware of the situation and immediately 

begins to investigate this unseasonable occurrence. The epidemiologist not only needs to 

be able to access data, but also must compare health records, filter out irrelevant data, 

examine environmental influences, and identify relationships among various factors. In 

addition, she will need to develop, test, and discard hypotheses about the cause of WNV 

and collaborate with other PH stakeholders in order to determine how best to ensure the 

health of the citizens of Lumcard.  While having access to data is critical, the Lumcard 

PH team’s success in addressing the potential health hazard is largely dependent on their 

ability to effectively use the available data in their reasoning, sensemaking, decision-

making, and planning activities.  

Under different time constraints, PH stakeholders must perform a myriad of activities, 

which ultimately have health, social, political, economic, and ethical implications for the 
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community (Goddard et al., 2004). Furthermore, as stakeholders interact with data they 

encounter a number of obstacles relating to its volume, variety, velocity, and veracity (B. 

B. Cohen, Franklin, & West, 2006; Higgins et al., 2011; Keough, 2002; Kiefer et al., 

2005; LaPelle et al., 2006; O’Carroll et al., 1998; Rambo, 1998, 2000; Revere et al., 

2007; Turner et al., 2008, 2005). Over the course of the last 20 years, computational tools 

and systems have been developed to support the work activities of PH stakeholders. 

Current tools include data analytics tools such as Stata (StataCorp, 2009), and interactive 

visualization tools such as Malaria Atlas Project (Guerra et al., 2007). While these types 

of tools are beneficial in addressing certain work activities of PH stakeholders, they fall 

short in supporting cognitive activities that involve the use and working with large, 

heterogeneous, and complex bodies of data (Keim, Mansmann, & Thomas, 2009). 

Public health tends to lag behind other sectors in the adoption of new technology (for 

examples, see England et al.’s (England, Stewart, & Walker, 2000) examination of PH’s 

slow rate of information technology adoption, and Shortliffe’s (Shortliffe, 2005) 

comparison of healthcare with other sectors).  The recent emergence of a category of 

computational tools known as visual analytics (VA) tools is no exception. These tools are 

intended to alleviate some of the shortcomings of the aforementioned tools with regard to 

the complexity of data and support of the visuo-analytical reasoning of their human 

users1. VA tools combine interactive visual representations with advanced analytics 

techniques to synthesize, analyze, and facilitate visuo-analytical reasoning and other 

high-level cognitive activities involving data (Keim, Kohlhammer, Ellis, & Mansmann, 

2010; Thomas & Cook, 2005). This is beneficial for data-intensive fields (Keim et al., 

2010) such as PH, finance, insurance, sales, and climatology, to name a few.  While 

many fields, such as finance and sales (Schlegel, Sallam, Daniel, & Tapadinhas, 2013), 

have seen widespread adoption of VA tools, PH has not. In this paper, we discuss the role 

that VA tools can play in assisting PH stakeholders to perform cognitive activities 

involving big data. We focus on analytical reasoning as an activity that plays an 

important role in many other activities. Through a synthesis of research across multiple 

                                                 

1
 In this paper, the terms user means “human user” and is used interchangeably with the term stakeholder. 
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fields including cognitive science, data mining, human-computer interaction, and 

informatics, we explicate the benefits of VA tools in addressing the challenge that big 

data poses to PH practice.  

The rest of this paper is organized as follows. Section 2 discusses foundational 

concepts—i.e., PH data and information, analytical reasoning, visual representations, and 

human-information interaction. Section 3 describes VA tools, their components, and how 

they facilitate analytical reasoning. Section 4 discusses the benefits and role of VA tools 

in PH and highlights current tools in use. Through the use of a hypothetical scenario, 

Section 5 further explicates the usefulness of VA tools. Finally, Section 6 provides a 

summary and briefly outlines limitations and some future areas of investigation. 

2.2 Background 

This section presents necessary background concepts and terminology used in this paper. 

In order to address the health concerns of the community, PH stakeholders interact with 

data to perform a variety of work activities. We depict the needs that VA tools must 

address for PH stakeholders, by describing the data they interact with, the nature of their 

work activities, and the analytical reasoning tasks in which they engage. Furthermore, a 

VA tool’s interface influences the stakeholder’s ability to access data and perform visuo-

analytical reasoning. Therefore, we explain two major components of the interface —

namely: visual representations and interactions. 

2.2.1 PH Stakeholders 

The workforce charged with safeguarding and improving the health of the community 

through a population focus, characterized in this paper as PH stakeholders, is highly 

varied. As discussed by O’Carroll et al. (O’Carroll et al., 1998), the PH workforce may 

be more diverse than any other group of health professionals. PH stakeholders come from 

a diverse set of backgrounds and are trained in a myriad of disciplines (Committee on 

Educating Public Health Professionals for the 21st Century, 2003). Irrespective of their 

area of expertise and sub-field of application, stakeholders must interact with data to 

perform a myriad of work activities. 
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2.2.2 PH Data and Information 

To frame our discussion, we characterize data as digitally stored, sensed changes in the 

environment, and information as processed, organized, and/or analyzed data that depicts 

its relationships2. PH data can be described by its high volume (Higgins et al., 2011; 

Keough, 2002; LaPelle et al., 2006; Turner et al., 2008), great variety (B. B. Cohen et al., 

2006; Rambo, 1998; Revere et al., 2007), high velocity (O’Carroll et al., 1998), and low 

veracity (Kiefer et al., 2005; LaPelle et al., 2006; Reeder et al., 2012). These four features 

of PH data are typical characteristics of big data. As a result, PH data is big data. While 

synthesis of and access to PH data has been a focus of the PH informatics literature 

(Sedig, Parsons, Dittmer, et al., 2012), the use of data by stakeholders to create 

information, particularly as mediated by computational tools, presents a growing 

challenge. Computationally-mediated reasoning requires not only the ability to access 

relevant data, but the ability to control how data is structured, combined, displayed, and 

interacted with (Sedig & Parsons, 2013). In addition, stakeholders must be presented with 

representations that accurately communicate what is known or unknown, the impact of 

actions, relationships that exist, and extent of uncertainty and risk that are involved 

during analysis (Berner & Moss, 2005; Keough, 2002). The seamless incorporation of 

user-guided analysis techniques into computational tools is crucial in facilitating the 

systematic use of data. 

2.2.3 PH Activities 

PH stakeholders engage in a variety of work activities in an effort to improve and ensure 

the health of the community (Committee on Educating Public Health Professionals for 

the 21st Century, 2003; O’Carroll et al., 1998; Rambo, 1998).  These activities vary by 

work group (e.g., epidemiologist or nutritionist), by level within a work group (e.g., state, 

local, federal), and by function (Rambo et al., 2001). In the United States, these work 

activities have been grouped by the Institute of Medicine (IOM) into three core 

functions—namely: 1) Assessment, which includes investigating and analyzing the 

                                                 

2
 For an in-depth discussion on the differences between data and information see (Sedig, Parsons, & 

Babanski, 2012) and (Bates, 2005).   
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occurrence and causation of health problems and hazards; 2) Policy Development, which 

includes priority setting, advocacy, and development of policies; and 3) Assurance, which 

includes managing resources and informing and educating the public about health issues 

and services (National Research Council, 1988). In this paper, we use the IOM core 

functions classification to group PH work activities. Regardless of the core function with 

which the PH stakeholder is tasked, PH work activities are a form of knowledge work 

(Sedig, Parsons, Dittmer, et al., 2012). In other words, at a basic level, PH stakeholders 

are knowledge workers—that is, most of their work is performing information-dependent 

cognitive activities. Knowledge work activities are non-routine and require a combination 

of convergent, divergent, and creative thinking in order to be completed (Reinhardt, 

Schmidt, Sloep, & Drachsler, 2011). As knowledge workers, PH stakeholders engage in a 

myriad of cognitive activities including analytical reasoning, decision-making, 

sensemaking, and problem solving. 

2.2.4 Analytical Reasoning 

While a comprehensive discussion of high-level cognitive activities is beyond the scope 

of this paper, to fully appreciate the utility of VA tools, we examine PH stakeholders’ 

cognitive processes as they work with data. To this end, we focus on analytical reasoning 

and discuss some of its characteristics, explain how it facilitates other high-level 

cognitive activities, and briefly highlight its impact on PH work activities. 

Analytical reasoning is based on a rational, logical analysis and evaluation of data and 

information and encompasses different kinds of reasoning such as inductive, deductive, 

and analogical reasoning (Sedig & Parsons, 2013). An inference or conclusion is reached 

based on the systematic analysis of data.  As an activity, analytical reasoning emerges 

from the completion of lower-level tasks. Some of the tasks include, but are not limited 

to, identifying relationships among pieces of data, asserting and testing key assumptions, 

testing biases, assessing alternatives, developing hypotheses, and supporting conclusions 

with adequate evidence (Heuer, 1999; Thomas & Cook, 2005).  Although analytical 

reasoning is a structured and disciplined process, the aforementioned tasks typically 

occur in an iterative and non-linear fashion (Sedig & Parsons, 2013).  In other words, the 
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order in which low-level tasks occur is not fixed, but varies according to the cognitive 

needs and overall goals of the stakeholder.  

Analytical reasoning seldom occurs in a vacuum, but instead may occur concurrently 

with other cognitive activities. In particular, analytical reasoning facilitates problem 

solving and decision-making (Green & Maciejewski, 2013; Leighton, 2004). Analytical 

reasoning can be viewed as a transformative process in which new information, 

knowledge, and insight are derived from given data (Gilhooly, 2004; Sedig & Parsons, 

2013). In some situations, this new information, knowledge, or insight serves as the basis 

for decision-making and problem solving (Leighton, 2004). To illustrate the 

interconnectedness of analytical reasoning, decision-making, and problem solving, 

consider further the situation in Lumcard: the epidemiologist, engaged in analytical 

reasoning, concludes that there is a direct correlation between temperature and incidences 

of WNV in the city. In addition, from her analysis, she is able to narrow down the list of 

possible mosquito breeding sites to two local bodies of water. Subsequently, the 

epidemiologist and health director make the decision to restrict access of the residents to 

local bodies of water, and also send out an environmental health scientist to collect 

samples to determine the mosquito infestation levels at the shortlisted locations. 

Due to the complex, dynamic, and interdependent nature of public health issues, a faulty 

decision or policy can have a negative impact that may not be immediately recognizable. 

Analytical reasoning provides the basis for decisions, plans, and policies and should, 

therefore, not be overlooked. While the PH community recognizes that information 

should be used to inform policy-making and program development (Kiefer et al., 2005; 

Mowat & Hockin, 2002), the reality is that decisions and policies are often made in an ad 

hoc fashion, mostly based on gut feelings, short-term goals, and/or information satisficing 

(Baltussen & Niessen, 2006; Brownson et al., 1999; National Research Council, 1988). 

For this reason, there has been a push to move stakeholders closer to adopting evidence-

based approaches in PH practice. This approach advocates the systematic use of 

information and application of scientific reasoning principles in a contextualized manner 

while making decisions and creating policies (Brownson et al., 2009; Kiefer et al., 2005). 



13 

 

The success of this approach is contingent on PH stakeholders being able to effectively 

interact with and use data (Keough, 2002). 

2.2.5 Visual Representations 

When reasoning is mediated by VA tools, data is made accessible to the user of the tool 

through external visualizations—i.e., visual representations. Therefore, it is necessary to 

discuss the benefits of visual representations and their effect on stakeholders’ activities. 

Visual representations encode data items using visual marks (e.g., lines, dots, shapes) and 

combine and integrate these into more complex structural forms (e.g., scatter plots, heat 

maps, bar charts) (Sedig, Parsons, Dittmer, et al., 2012). These representations seek to 

capitalize on the human visuoperceptual system, which is specifically suited to rapid 

processing of data and recognition of visual patterns. The benefits of such representations 

have been discussed by researchers including Larkin and Simon (Larkin & Simon, 1987), 

Glenberg and Langston (Glenberg & Langston, 1992), and Card et al. (Card, Mackinlay, 

& Shneiderman, 1999). According to Card et al., visual representations can amplify 

cognition by increasing the memory and processing resources available to users, reducing 

the search for information, enhancing the detection of patterns, enabling perceptual 

inference operations, and encoding information in a manipulable medium (Card et al., 

1999). The manipulability of a medium is an important factor. While static 

representations have been historically used by PH stakeholders, from John Snow’s use of 

a map to reason about a cholera outbreak in 1850 (Snow, 1855), to the recent use of 

atlases for mapping the risk of malaria in Africa (Le Sueur et al., 1997), they put the 

brunt of the information-processing load (i.e., analytical reasoning and decision-making) 

on the cognitive resources of users (Sedig & Parsons, 2013; Sedig, Parsons, Dittmer, et 

al., 2012), hence negatively affecting their usability. 

Computers, on the other hand, allow visual representations to be interactive and 

dynamically manipulable. This allows information processing to be shared between the 

user and the tool (Sedig & Parsons, 2013), reducing, and possibly bridging, the gap 

between the internal (mental) representations of the user and the external (visual) 

representations of the tool (Parsons & Sedig, 2013a; Sedig & Parsons, 2013; Sedig, 

Parsons, & Babanski, 2012).  Interactive visual representations can offer users flexibility, 
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support convergent and divergent thinking, and accommodate the users’ perceptual and 

cognitive needs (Sedig & Parsons, 2013; Thomas & Cook, 2005). Furthermore, 

interactive representations allow stakeholders to control which subset of data is visually 

displayed while still having access to data latent in the system (Sedig, 2009; Sedig & 

Parsons, 2013). This is important for fields like PH where large amounts of data cannot 

be visualized all at once. In addition, interactive visual representations allow stakeholders 

to choose how things are represented (Sedig, 2009; Sedig & Parsons, 2013), which has an 

effect on the reasoning tasks in which stakeholders engage. Researchers in cognitive 

science have demonstrated that different representational forms can impact how cognitive 

activities are performed (Larkin & Simon, 1987; J. Zhang & Norman, 1994), and even 

constrain and limit stakeholders as they engage in a particular task (Parsons & Sedig, 

2013a; J. Zhang, 2001; J. Zhang & Norman, 1994). Therefore, PH stakeholders stand to 

benefit from tools that allow users to manipulate visual representations, a capability made 

possible through interaction. 

2.2.6 Human-Information Interaction 

Through interaction, the user of a VA tool is able to control, not only the form or content 

of the visual representation, but also the entire dialogue with information (Parsons & 

Sedig, 2013a; Sedig & Parsons, 2013). Interaction moderates the discourse between 

information and the user and can be conceptualized at different levels.  In this paper, we 

describe interaction in terms of the actions the user performs on the interface of the tool, 

the consequent changes and reactions in the visual representations, and the user’s 

perceptions of changes to the representations (Sedig & Parsons, 2013). In the context of 

VA tools, by performing actions on the visual representations, the user is able to reach 

into the database and operate upon data. Examples of such actions include filtering, 

annotating, drilling, selecting, and comparing (Sedig & Parsons, 2013). In response, the 

reactions visible through changes in the visual representations (i.e., on the interface) 

ensure that the discourse is not one-sided.  Equally important are the reactions that are not 

visually perceptible that occur within the VA tool (Sedig, Parsons, & Babanski, 2012). 

The user’s perceptions of changes to visual representations complete the interaction loop. 

Together, actions, reactions, and perceptions promote the back-and-forth dialogue 
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between the user and the represented information. The sequence in which actions are 

performed is sometimes at the discretion of the user. This is beneficial in fields such as 

PH where software designers are not privy to how various subsets of data will be used in 

analysis by the stakeholder. The user-guided sequencing of actions and discourse with 

information is critical in VA tools that function to facilitate PH stakeholders’ analytical 

reasoning tasks. 

2.3 Visual Analytic Tools 

VA is sometimes defined as the “science of analytical reasoning facilitated by interactive 

visual interfaces” (Thomas & Cook, 2005). VA tools combine data analytics and 

interactive visualizations to support users’ reasoning, and create an environment in which 

users engage in a more involved discourse with data and information (Keim et al., 2010; 

Thomas & Cook, 2005). Prior to the development of VA, various groups of 

computational tools sought to address the information-based needs of professionals. In 

PH, two groups are data analytics and interactive visualization tools. This section 

highlights the limitations of these two groups of tools, describes the components of VA 

tools, and explains how analytical reasoning can be performed using VA tools.  

Data analysis or analytics tools incorporate techniques and algorithms from a variety of 

fields including statistics (e.g., mean and correlation), data mining (e.g., classification and 

clustering), and machine learning (e.g., artificial neural network and support vector 

machines) to facilitate the discovery and understanding of patterns in data (Han, Kamber, 

& Pei, 2011).  Current data analytics tools that assist PH stakeholders in analyzing data 

include Stata (StataCorp, 2009) and EpiInfo (Centers for Disease Control and Prevention, 

2012). While the aforementioned standalone data analytics tools are capable of 

processing massive amounts of data, they neither deal with noisy and highly 

heterogeneous data efficiently, nor are capable of handling ill-defined problems that 

require human judgment (Keim et al., 2009). Because these tools take over the analysis 

process and mostly hide the intermediary steps, stakeholders can only be minimally in 

control of or involved in the analytical reasoning process.  
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Complementing data analytics tools, interactive visualization tools represent data in a 

visual form, allow users to control the flow of data, and let them customize 

representations to cater to their cognitive and contextual needs. Some interactive 

visualization tools focus on visualizing abstract, nonphysical data such as text and 

statistical data (Card et al., 1999), while others portray physical data such as the human 

body and molecules (Mackinlay, 2000). Current PH interactive visualization tools include 

Malaria Atlas Project (Guerra et al., 2007) and Spatio-Temporal Epidemiological 

Modeller (Ford, Kaufman, & Eiron, 2006). While beneficial, these types of tools prove 

inadequate when faced with problems requiring advanced computational analysis and big 

data (Keim et al., 2009). 

2.3.1 Components of VA Tools 

While data analytics tools with advanced automated analysis and interactive visualization 

tools aided by human judgment are advantageous in certain situations, their respective 

limitations create a void, and it is only through VA tools that some of today’s most 

pressing data analysis problems can be addressed (Keim et al., 2009). VA tools fuse the 

strengths of both sets of tools to create an environment in which the user engages in a 

more involved discourse with data. This process is not simply an internal automated 

analysis with an external visual representation displayed at its completion. Instead, it is 

an integrated human-information dialogue in which data processing is distributed 

between the user and the main components of the tool—described in this paper as the 

analytics engine and interactive visualization engine (Sedig, Parsons, & Babanski, 2012), 

which are described below.  

2.3.2 Analytics Engine 

Human cognition displays several limitations when confronted with mental tasks that are 

data-intensive (i.e., they involve the use of bodies of data that are too large or too 

complex), and as a result computational tools can be used to support such tasks. The 

analytics engine in VA tools is intended for this purpose. It stores, transforms, and 

performs computational analysis on data. This process, as shown in Figure 1, is 

subdivided into three main stages: 1) data pre-processing, 2) data transformation, and 3) 



17 

 

data analysis. In the pre-processing stage, data retrieved from a variety of sources is 

automatically processed. Common tasks in this stage include data cleaning, integration, 

fusion, and synthesis (Han et al., 2011). In the data transformation stage, the pre-

processed data is converted into a form that is more conducive to data analysis. This stage 

includes tasks such as data normalization and aggregation (Han et al., 2011). 

 

Figure 2-1: The analytics engine component of VA tools 

Finally, the data analysis stage involves the discovery of patterns and allows for the 

extraction of valuable information. While historically computational tools have focused 

on the analysis of one form of data, VA tools overcome this limitation and can analyze 

and discover patterns in multiple forms of data (e.g., text, video, geo-spatial, etc.) 

together in order to create information.  This is done by drawing on the tasks and 

techniques that originate from a myriad of fields including statistics (e.g., standard 

deviation, correlation analysis), machine learning (e.g., classification, clustering, 

dimension reduction), textual analysis (e.g., document summarization, concept 

extraction), image analysis (e.g., image segmentation, object recognition), video analysis 

(e.g., motion detection), and geo-spatial analysis (e.g., surface analysis, locational 

analysis) (Alpaydin, 2009; Fairclough, 2003; Smith, Goodchild, & Longley, 2006; Soille, 

2003; Weisi et al., 2011). In some VA tools, computational analysis is not a system-

controlled process but a user-controlled one. The blue arrows in Figure 1 are indicative of 

the extent of the user’s involvement in the analysis process. This process is a 

sophisticated discourse that goes beyond simplistic interaction to deep user-guided 



18 

 

analysis of data. The interactive visualization engine allows the user to access and control 

the flow and analysis of data. 

2.3.3 Interactive Visualization Engine 

In VA tools, the interactive visualization engine is composed of the rendering and 

mapping component that takes analyzed data and creates interactive visual 

representations (i.e., information). Interactive visual representations allow the user to 

access, restructure, analyze, and modify amount and form of displayed information 

(Keim et al., 2010; Thomas & Cook, 2005). The user’s actions can impact the discourse 

in many ways, three of which are shown in Figure 2. Firstly, as shown by blue arrow 1, 

the user can change how the visualized information is encoded, as, for instance, by 

replacing a pie chart with a bar graph. Secondly, as depicted by blue arrow 2, the user can 

change the subset of information displayed. Thirdly, as depicted by blue arrow 3, the user 

has the ability to guide the analysis process by selecting and ordering how data analysis 

tasks occur. This in turn sets off a chain of internal reactions resulting in the execution of 

additional data processing tasks previously shown in Figure 1. 

 

Figure 2-2: Interactive visualization engine component in VA tools 

2.3.4 Discourse Mediation by VA Tools 

In order to understand how the application of VA tools facilitates analytical reasoning in 

PH contexts, it is necessary to explicate the human-information discourse that occurs 

when PH stakeholders use VA tools.  Analytical reasoning emerges from the 
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collaboration between the user and the tool (Sedig & Parsons, 2013). Consequently, the 

internal cognitive processes of the user and the components of the analytics and 

interactive visualization engines are all involved in the predominantly user-controlled 

dialogue with information (Hollan, Hutchins, & Kirsh, 2000; Parsons & Sedig, 2013b). 

As shown in Figure 3, as the user performs actions on the interface, the VA tool’s visible 

reactions are communicated by changes in the representations, which the user can 

perceive.  

Analytical reasoning can be conceptualized as the top level of a hierarchical structure of 

processes. When mediated by VA tools, analytical reasoning can be broken down into 

sub-activities (e.g., knowledge discovery, sensemaking), which emerge from tasks (i.e., 

goal-oriented behaviors such as exploring, organizing). These tasks can also be broken 

down into sub-tasks, which in turn emerge from the completion of lower level actions 

performed on the tool (e.g., filtering, annotating) (Sedig & Parsons, 2013). For instance, 

as shown in Figure 3, the epidemiologist engaged in analytical reasoning about the origin 

of WNV might first need to discover new knowledge about the situation in Lumcard. In 

order to do this, she might first need to complete the task of exploring the redacted health 

records of confirmed cases. At this point, it is possible she might choose to filter out 

unconfirmed cases, drill down into the demographic characteristics of confirmed cases, 

and then compare the attributes (e.g., age, ethnicity, gender etc.) to determine if a 

correlation exists. Thus, analytical reasoning emerges over time through a back-and-forth 

cyclic chain of actions, reactions, and perceptions. 
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Figure 2-3: The hierarchical structure of analytical reasoning emerging from lower 

level processes, adapted from (Sedig & Parsons, 2013). Where visual representations 

are depicted as VRs, perceptions as Px, and reactions as Rx (where x stands for 1, 2, 

3, and n-1) 

2.3.5 Factors Affecting Quality of Discourse 

Recent theories of cognition suggest that cognitive processes do not take place solely 

within an individual’s head, but are distributed across social relationships, the material 

environment, and time (Hollan et al., 2000; Sedig & Parsons, 2013; J. Zhang & Norman, 

1994). In other words, analytical reasoning, formerly conceived as a cognitive activity 

that occurs exclusively in the brain of the PH stakeholder, can in fact be distributed 

across computational tools and other PH stakeholders. As a result, in the context of VA 

tools, a joint cognitive system is formed between the user and the tool (Sedig & Parsons, 

2013; Sedig et al., 2013). VA tools therefore play an important role in—and depending 

on their design can either enhance or impede—the human-information discourse. Some 

factors affecting the quality of the discourse are: how information is encoded in visual 

representations, how seamless the coordination is between the user’s internal 
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representations and the tool’s external visual representations, and how information 

processing is distributed between the components of the joint cognitive system (i.e., user, 

analytics engine, and interactive visualizations). 

In VA tools, external representations not only convey information, but also guide, 

constrain, and even determine cognitive behavior of the user (J Zhang, 2001). The 

manner in which interactive visual representations are designed is an important 

consideration as research has shown that external representations should be appropriate 

for the task in which the user is engaged (for an in-depth discussion see (Parsons & 

Sedig, 2014)). As users perform analytical reasoning tasks, they seek to harmonize and 

coordinate their internal representations and the tool’s external representations (Z. Liu & 

Stasko, 2010; J. Zhang, 2001). When processing data in such a dynamic manner, a 

cognitive coupling is formed between the user and the tool (Brey, 2005; Sedig & Parsons, 

2013). The strength of the coupling between the user’s internal representations and the 

tool’s external representations is dependent upon a number of factors, including what 

actions are made available to the user and the quality of these actions (Sedig & Parsons, 

2013). In most situations, interactions should allow the user to select which subset of 

information to display, to manipulate external representations, and to choose which 

analysis techniques to perform so that s/he is able to complete the task at hand (for an in-

depth discussion see (Sedig & Parsons, 2013)). Another consideration relating to the 

discourse is the quality of interaction (i.e., interactivity) that emerges through the use of 

VA tools. This consideration is important because research suggests that the quality of 

interactions has important cognitive effects (for an in-depth discussion see (Sedig, 

Parsons, & Babanski, 2012; Sedig et al., 2013)). As information processing is distributed 

across the joint cognitive system, properly designed VA tools must take into 

consideration the strengths and limitations of the components of the system when 

distributing the requisite load of information processing in any given context (for an in-

depth discussion see (Parsons & Sedig, 2013b)). These three considerations, among 

others, affect the ability of tools to facilitate reasoning and as a result VA tools must not 

be viewed as a silver bullet to alleviate all the problems facing stakeholders, as the 

efficacy of the human-information discourse in these tools depends on how well and 

human-centered their design is.  
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2.4 Benefits of Visual Analytic Tools in Public Health 

VA tools are advantageous to numerous fields, including PH, because they combine the 

benefits of both data analytics and interactive visualization tools. In PH, conclusions or 

inferences drawn may need to be conveyed to different groups of stakeholders including 

legislators, hospital directors, or community group leaders who were not involved in the 

analysis process (O’Carroll et al., 1998). Information, therefore, must be conveyed in a 

manner commensurate with the cognitive and contextual needs of the PH workforce. 

Because VA tools allow users to participate in the data analysis process, and give them 

partial control over the system’s behavior, these tools can provide the flexibility to 

accommodate the needs of this diverse workforce. This is beneficial to PH in a number of 

ways, four of which are described. Firstly, through interactive visual representations, 

stakeholders are able to select the most appropriate visual form from a pre-defined set to 

perform the task at hand. Secondly, through interaction, stakeholders are able to control 

their dialogue with information. This process as previously discussed is not a linear one, 

and VA tools support the unstructured, non-linear process of thinking and data 

exploration in which PH stakeholders typically engage. Thirdly, VA tools can 

automatically generate tailored reports for different groups of stakeholders.  Finally, VA 

tools can also adjust and scaffold tasks in order to accommodate the cognitive needs of 

novice and learned stakeholders alike. The rest of this section is divided into two parts; 

the first describes how VA tools can address the challenge of big data in PH, while the 

second highlights current VA tools that can support PH stakeholders’ analytical 

reasoning tasks. 

2.4.1 Utility of VA Tools in Addressing Challenges of Big Data in 
PH 

While interacting with PH data, stakeholders encounter challenges relating to the volume, 

variety, velocity, and veracity of data. VA tools have accounted for and are addressing 

these challenges. 
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2.4.2 Data Volume 

PH stakeholders are overwhelmed with massive amounts of data on a regular basis, and 

the PH informatics community has yet to sufficiently address the need for data to be 

presented in a more tractable form (Higgins et al., 2011; Keough, 2002; LaPelle et al., 

2006; Turner et al., 2008). Because of this deficiency, stakeholders find themselves 

spending more time wading through data, and less time actually addressing the health 

concerns of their community. As discussed in (Revere et al., 2007), “data set 

‘overload’—the consequence of increasingly large data sets generated by surveys and 

other data collection tools—has forced many epidemiologists to become data managers, 

making it more difficult to analyze data from a variety of sources in order to detect 

disease outbreaks at an early stage.” The user-controlled environment that VA tools 

provide allows the stakeholder to guide the analytics engine on how to manage and 

analyze data. As a result, the user is still cognizant of the characteristics of the data but 

cedes its processing to the tool. Through the division of information processing labor, VA 

tools relieve stakeholders of the tedious task of managing and analyzing obscure and 

intractable patterns in data. Additionally, through interaction, the user is able to control 

the flow of data and access latent data as needed. 

2.4.3 Data Variety and Velocity 

The great variety and high velocity of PH data can impede stakeholders’ reasoning. In 

regards to its variety, PH data is stored in different formats such as numerical, textual, 

geospatial, and multimedia (Rambo, 2000) and ranges from structured (e.g., health 

indicators survey data), to unstructured, which in its original state can only be 

meaningfully interpreted by the human mind (e.g., free-form paragraph in a policy brief 

or tweets about medical symptoms) (Guerra et al., 2007; Turner et al., 2005). In terms of 

its velocity, PH data is updated at varying time frames and in some situations is made 

available for a transient period of time (O’Carroll et al., 1998). VA tools do not merely 

synthesize federated data originating from a variety of sources. Through the analytics 

engine, stakeholders can also process various forms and structures of data, and with the 

interactive visualization engine, these different forms of data can be presented in a 

manner that is conducive to reasoning.  For example, in the WNV scenario, VA tools can 
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help the epidemiologist reason more efficiently with tweets related to health, relevant 

redacted EHR, related national health policy documents, and parish climate data, without 

having to worry about the original form or source of the information. 

2.4.4 Data Veracity 

As PH policies and decisions have implications that affect the very fabric of society, the 

veracity of PH data cannot be overemphasized. PH data is often incomplete and 

inaccurate (Kiefer et al., 2005; LaPelle et al., 2006; Reeder et al., 2012). As a result, 

stakeholders are faced with the challenge of dealing with incomplete and discrepant data 

during reasoning. While some of these challenges require a more efficient health 

information exchange system, in comparison to data analytics and interactive 

visualization tools, VA tools are more equipped to support stakeholders. Through the 

inclusion of models that describe scientific uncertainty and visual representations that 

highlight outliers and anomalies, stakeholders are able to better understand the integrity 

of the data and the ramifications of possible decisions. Furthermore, as humans are better 

able to use incomplete data to make decisions (in comparison with computers), tools that 

allow for a user-guided analysis process enable users to incorporate their previous 

knowledge into reasoning tasks.  

VA tools not only address the challenges arising from existing data repositories, but have 

the potential to enable the use of new sources of data (such as edge data) into PH 

practice. Edge data, which refers to peripheral data that exists in the immediate, 

surrounding environment, can provide significant information on health events and their 

impact—example of these include water utility data that can help make sense of how 

cholera spread within a city, cell tower data can facilitate understanding nurses’ practices 

during night shift, or traffic data of the intersection in front of a hospital.  

2.5 Current Application of Visual Analytic Tools in Public 
Health 

Even though PH has been slow to adopt VA tools, other fields, including finance and 

sales, have aggressively incorporated these tools into their practice. This section 

highlights current VA tools both within and beyond the field of PH, and how these tools 
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can facilitate the work activities with which PH stakeholders are charged. It is subdivided 

based on the core functions of PH. 

2.5.1 Health Assessment 

Work activities in this area include investigating the occurrence of health issues, 

analyzing the origins and contributing factors to health hazards, and identifying health 

trends (National Research Council, 1988). Stakeholders engaged in these activities seek 

answers to a myriad of questions including what causes disease or injury, what current 

risks are, what trends exist, and who is at risk. As analytical reasoning emerges from the 

human-information discourse mediated by VA tools, the user is able to address these 

questions by applying a variety of analysis techniques. In addition, VA tools can provide 

an environment in which hypotheses can be systematically developed, supported, or 

refuted. One such VA tool that does this is nSpace which allows stakeholders to rapidly 

scan and triage thousands of search results in one display (Proulx et al., 2006).  

Furthermore, nSpace provides an environment that supports the generation of hypotheses 

and evaluation of relevant evidence (Proulx et al., 2006).  Epidemic intelligence involves 

the early identification, assessment, and verification of potential public health hazards 

(Paquet, Coulombier, Kaiser, & Ciotti, 2006) and is essential to safeguarding the health 

of the community. To this end, there has been an increase in the use of social media data 

to gain insight into the condition of populations, as, for example, garnering information 

from Twitter to estimate flu activity faster than traditional systems (Carneiro & 

Mylonakis, 2009), and to gauge adverse public reaction to certain drugs (Bian, 

Topaloglu, & Yu, 2012).  Epidemic intelligence stands to benefit from advances in 

textual analysis techniques, which, when incorporated into the analytics engine of VA 

tools, can support PH stakeholders’ analytical reasoning tasks.  

2.5.2 Policy Development 

PH work activities in this area include prioritizing criteria, finding corroborating 

evidence, comparing possible policy options, and selecting the best option. By 

incorporating decision analysis frameworks, VA tools can help PH stakeholders explore 

the complex implications of various policy options in an interactive fashion thus 
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facilitating the use of evidence in policy development. Commercial VA tools such as 

Tableau (Tableau Software, 2013) and SpotFire (TIBCO Spotfire Software, 2013) are 

being used by business and finance professionals to create interactive dashboards useful 

for PH stakeholders. One such application in PH involves the analysis of foodborne 

vibriosis in the United States (Sims et al., 2011). These visualizations present various 

options and potential outcomes to enable decision makers to select a course of action. VA 

tools also allow stakeholders to rapidly access and search through available research from 

relevant studies. Uncertainty is inherent in policy making (Schabas, 2002) and exists in 

situations that have complex dynamics and interdependencies (Kramer et al., 2009). For 

instance, because of the rapid spread of chloroquine-resistant vectors in East Africa, it is 

difficult to predict the effectiveness of malaria policy in that region (D’Alessandro & 

Buttiëns, 2001). VA tools modeling scientific uncertainty in policy simulations can 

provide policy makers with more information on possible outcomes. 

2.5.3 Assurance 

In PH, after health issues have been identified and analyzed, and after policy has been 

developed, it falls on those stakeholders involved with assurance to ensure public 

awareness of preventative measures and access to health services. This includes work 

activities such as enforcing health laws and policies, communicating with the public, 

managing health resources, educating the health workforce, and evaluating the 

effectiveness and accessibility of health services (National Research Council, 1988). 

Stakeholders engaged in these activities inquire into the services being delivered, the 

impact programs have, the capacity of PH stakeholders to deal with outbreaks, and the 

supply of resources for potential epidemics. Once again, commercial VA tools such as 

Tableau can be utilized to ensure health resources are managed and dispensed properly. 

VA tools create an environment that incorporates predictive models to support PH 

stakeholders’ reasoning. Panviz (Maciejewski et al., 2011) is an interactive predictive 

decision support environment that allows stakeholders to explore epidemic models and 

understand the effect certain response measures could have on the spread of an epidemic. 

It has also been used to educate Indiana PH stakeholders in designing optimal response 

strategies (Maciejewski et al., 2011). A similar tool is Epinome, which, in addition to 



27 

 

allowing epidemiologists to explore outbreaks, tracks users’ interactions for post analysis 

(Livnat, Rhyne, & Samore, 2012). 

2.6 Hypothetical Scenario 

VA tools can meet specific challenges facing PH stakeholders as they reason with big 

data. We will illustrate, through the Lumcard scenario, how VA tools can potentially 

support analytical reasoning tasks of PH stakeholders. In this section, we demonstrate 

how stakeholders are able to control the flow of data, choose representations that are 

applicable to the task, and use various interactions to perform analytical reasoning tasks. 

In the process, we show how analytical reasoning emerges from lower level interactions 

and how information processing is distributed between the user and the tool.  

In our scenario, we focus on the analytical reasoning tasks of a regional epidemiologist, 

who, in late November, received a phone call from the Lumcard health director about a 

potential outbreak of WNV. To investigate the situation, the epidemiologist will need 

access to various forms of data including: 1) surveillance data which includes tweets 

from Twitter and redacted EHR from local hospitals3; 2) geographical data which 

includes the landscape of the city, and places of high volume interaction including 

relevant environmental places (e.g., lakes, other local bodies of water, schools, and 

hospitals); 3) weather data for the city, state, and nation spanning the last ten years; 4) 

public epidemiological data on WNV for recent years; and 5) journal articles relating to 

the emergence of vector borne diseases in North America, to name a few. Possible 

cognitive sub-activities may include sensemaking to determine if there is in fact a WNV 

outbreak in Lumcard and knowledge discovery to determine the origins of this 

unseasonable occurrence. 

In order to make sense of the situation in Lumcard, the epidemiologist will engage in a 

variety of analytical reasoning tasks that may include exploring the demographic 

attributes of confirmed WNV cases, comparing the situation in Lumcard to the rest of the 

                                                 

3
 In this scenario, the epidemiologist has access to a centralized database which stores EHRs of patients 

with WNV from area hospitals.  
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nation, triaging documents to discover relevant literature on WNV, and gathering 

evidence to present to other PH stakeholders. Using EpiProbe (i.e., a hypothetical VA 

tool) to explore the available data, the epidemiologist examines the EHRs to discover 

collective properties of confirmed cases. With the use of visual representations, the 

epidemiologist immediately notices a disproportionate number of adolescents (i.e., 

individuals between the ages of 10 – 20) with the disease. She annotates the visual 

representation and saves it in the evidence box. 

Next, to contrast the situation in Lumcard with cities across the USA, the epidemiologist 

visualizes the total number of confirmed cases by parish for the current year. Then she 

interacts with the visualization to arrange cities based on the number of confirmed WNV 

cases. EpiProbe calculates the 25th, 50th, and 75th percentile of cases, and further groups 

the cities accordingly. Using the box-plot graph the epidemiologist assesses Lumcard is 

one of three cities with an unusually high number of cases that are in fact outliers. She 

concludes from this exploration that there is indeed an outbreak in Lumcard. Next, she 

decides to triage the literature to find PH documents for the three cities over the last year. 

Her initial query results in over 125 articles.  She instructs EpiProbe to narrow the list by 

displaying only articles with the word ‘mosquito’. This reduces the list to seven articles, 

and EpiProbe provides a short narrative of each of the articles by using the 

summarization textual analysis technique.  Each of the articles indicates higher 

infestation of mosquito in the three cities as a result of climate change. With the annotate 

feature in EpiProbe, the epidemiologist writes a brief summary of her thoughts and adds 

these articles to the evidence box. She then directs the tool to calculate and visualize the 

least mean square for the dependent variable (i.e., number of confirmed cases) and the 

independent variable (i.e., temperature) for the three cities. She observes a positive 

correlation between temperature and confirmed cases in all of the cities. The 

corresponding scatter plot is added to the evidence box as well.  

In order to discover knowledge about the cause of the outbreak, she returns to her initial 

observation of the prevalence of the disease among adolescents.  At this point in time, she 

decides to compare the age, time, and number of cases in the three cities. She selects the 

image plot representation shown in Figure 4 and immediately notices three things. The 



29 

 

first is the cyclic nature of the cases; the second is that over the course of the last 5 years 

all three cities have seen a steady increase in cases. This observation provides further 

proof that climate change has had an impact on the prevalence of the disease. The third 

detail she observes is that Lumcard is the only city with a high percentage of adolescents 

with the disease as shown by the three small rectangular shapes in the last column.  She 

describes her findings and adds snapshots of the visual representations as evidence. 

 

Figure 2-4: Image plots of WNV cases for the 3 selected cities from 2008 – 2013 

WNV is transmitted by mosquitoes to humans. Thus, using a textual analysis technique, 

the epidemiologist filters and searches for relationships to determine if there is any 

correlation between the tweets by Lumcard adolescents and any references to mosquitoes 

or local bodies of water. As depicted in Figure 5, after a series of additional tasks, she 

identifies a subset of tweets referencing two parties at East Lake and West Bayou two 

weeks prior. At this point in time, she accesses GIS coordinates for the location and 

instructs the local environmental scientist to collect samples from these locations. Further 

instruction is given to place a warning at the sites until further investigation is completed. 

As the scenario shows, all of the aforementioned tasks can be completed with the VA 

tool, EpiProbe. The epidemiologist is able to explore EHRs, contrast cases across the 

country, pay closer attention to cities that defied the norm, perform statistical analysis to 

determine correlation, use textual analysis techniques to search through published journal 

articles, and ultimately make sense of twitter data to find a possible lake location 

potentially contributing to the outbreak amongst adolescents. Additionally, the 

epidemiologist is able to delegate computationally intensive tasks to the tool, such as 
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searching through existing literature and finding relationships between tweets.  This 

delegation of tasks then allows the epidemiologist to focus on the overall task of 

determining the causation of the outbreak in Lumcard. The benefit of VA tools is 

portrayed in this simple example illustrating their critical application in the PH field. 

 

Figure 2-5: Visual representation depicting spatial relationships between most 

frequent words in tweets and local bodies of water in Lumcard 

2.7 Summary and Conclusion 

The success of an evidence-based approach to PH practice is contingent on stakeholders 

being able to efficiently use and reason with synthesized, federated sets of big data. As 

such, computational tools that support analytical reasoning can be beneficial to PH 

stakeholders. Through an examination of Visual Analytics (VA) tools and a discussion of 

challenges facing PH stakeholders, this paper has shown how VA tools can address the 

big data concerns of PH stakeholders.  

Through the combination of interactive visual representations and advanced data analysis 

algorithms, VA tools create a user-guided environment in which PH stakeholders can 
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interact and reason with data. The data analytics engine in VA tools allows for the 

storage, synthesis, and analysis of, as well as the discovery of patterns within, different 

forms of digitally stored data. Seeking to exploit the human visuoperceptual system, in an 

effort to enhance cognition, the interactive visualization engine creates representations 

that display information in a predominantly non-textual manner.  These interactive visual 

representations allow the user to access and control the flow and analysis of data.  As 

cognitive processes do not take place solely in the brain of the PH stakeholder, VA tools, 

that allow the user to access, structure, analyze, and modify the amount and form of 

displayed information, help to bridge the gap between the internal representations of the 

user and the external representations, thus facilitating analytical reasoning.  

We have shown that VA tools can facilitate collaboration, coordinate internal 

representations with external representations, and efficiently provide comprehensible 

assessments to stakeholders.  Furthermore, VA tools provide flexibility which allows for 

the customization of the tool to cater to the cognitive, perceptual, and contextual needs of 

the diverse PH workforce, and ultimately facilitates stakeholder reasoning and decision-

making. The features of VA tools make them suitable to address the challenge of big data 

in PH that arise from the data’s high volume, great variety, high velocity, and low 

veracity. Because of these reasons, as well as the existing evidence of the success and 

proliferation of VA tools in other domains, we conclude that the use of VA tools can be 

advantageous in PH, where stakeholders must use big data to address the concerns of the 

populace. 

2.8 Limitations 

VA, being an area of research in its infancy, still faces major challenges in understanding 

how to develop sophisticated tools. While current VA tools for PH show promising initial 

results, more research is needed to develop this promise into tried and tested solutions. 

The quality of the human-information discourse that is facilitated by VA tools is 

dependent upon numerous factors including the integration of different sources of data, 

the distribution of information processing load among components of the joint cognitive 

system, the design of visual representations, and the operationalization of interaction 

techniques to support the mental tasks of stakeholders. The manner in which the 
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aforementioned factors are considered in developing VA tools will partly determine the 

utility of these tools in addressing the challenge of big data in PH. There is need for 

systematic and focused research within the context of PH. In other papers, we have 

developed preliminary frameworks to guide the development of VA tools.  Further 

research in these areas will contribute to the development of VA tools that effectively 

support PH stakeholders as they interact and reason with ever more divergent, dynamic, 

and complex bodies of data.  
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Chapter 3  

3 Beyond Simple Charts: Design of Visualizations for Big 
Health Data 

This chapter has been published as O. Ola and K. Sedig, “Beyond simple charts: Design 

of visualizations for big health data,” Online J. Public Health Inform., vol. 8, no. 3, Dec. 

2016. 

Please note that the format has been changed to match the format of the dissertation. 

Figure numbers mentioned herein are relative to the chapter number. For instance, 

“Figure 1” corresponds to Figure 3-1. Additionally, when the term “paper” or “article” is 

used, it refers to this particular chapter.  

3.1 Introduction 

Technological advances have resulted in increased data collection, digitization, and 

storage across many fields. In health, this data includes population surveys, electronic 

medical records, genomic sequencing data, gene microarrays, and social media posts on 

ailments. Health data is often big data due to its high volume, low veracity, great variety, 

and high velocity. Big health data has the potential to improve productivity, eliminate 

waste, and support a broad range of tasks related to disease surveillance, patient care, 

research, and population health management. For instance, it has been estimated that 

using big data in the United States can save the healthcare industry $300 billion dollars a 

year (Groves, Kayyali, Knott, & Van Kuiken, 2013). However, big data’s impact is 

contingent on the availability of tools that can help derive meaning from it. To date, 

health lags behind other fields (e.g., finance and business) in the development of 

computational tools for big data (Dhar, 2014; Drowning in Big Data? Reducing 

Information Technology Complexities and Costs For Healthcare Organizations, 2011; 

Groves et al., 2013; Shneiderman et al., 2013). 



34 

 

Interactive visualizations4 are a category of computational tools that store and process 

data, represent it visually, and allow for its interactive exploration. They have the 

potential to amplify big data’s utilization. With interactive visualizations, individuals can 

access underlying data, change how data is represented, manipulate various visual 

elements, and in certain tools control analysis tasks (Ola, Buchel, & Sedig, 2016). 

Visualizations can be used in health to support a variety of tasks, some of which include: 

tracking the geographic distribution of diseases, developing health policies, analyzing the 

prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-

risk populations. Currently, many health professionals5 rely on Microsoft Office and off-

the-shelf business intelligence tools to perform their data-driven tasks (Carroll et al., 

2014). Majority of these tools use simple visualizations, such as scatter plots, heat maps, 

bar charts, choropleth maps, and radar charts (Carroll et al., 2014; L. Zhang et al., 2012). 

These visualizations typically only represent one or two facets of the data (e.g., attributes, 

relationships) (Aimone, Perumal, & Cole, 2013; Faisal, Blandford, & Potts, 2013; Kosara 

& Miksch, 2002; Rind et al., 2013). When working with big data, there is the challenge 

of needing to analyze non-explicit and unknown relationships among the data elements as 

well (Cybulski et al., 2013; Endert, Hossain, et al., 2014). To address this challenge, users 

also need to be able to explore various data elements and facets simultaneously. Such 

being the case, having access to only one or two data elements at a time is not sufficient. 

Users need to be able to perform related tasks and see many facets and elements of data 

at the same time so they can quickly perceive patterns, develop insights, and create and 

discard hypotheses. Consequently, existing simple and chart-like visualizations are not 

effective at supporting tasks involving large, complex health datasets (Cybulski et al., 

2013; L. Zhang et al., 2012).  

Rapid rise in health data necessitates creation of visualizations that encode multiple facets 

of data simultaneously to support complex health-related tasks. In recent years the need 

for advanced visualizations that address the challenges of big data has been highlighted 

                                                 

4 In the rest of this article, the terms ‘interactive visualization’ and ‘visualization’ are used interchangeably.  

5 In this article, we use the term ‘users’ to refer to all individuals, both professionals and laypeople, who use 

visualization tools. 
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(Cybulski et al., 2013; Gotz & Borland, 2016; L. Zhang et al., 2012). In addition to the 

need for such visualizations, close attention must be paid to how they are designed as bad 

design can have unintended negative consequences (Sedig et al., 2013). The design of 

visualizations for big data is a labor-intensive process and requires an understanding of 

the data, user’s tasks, cognitive and perceptual considerations, and, of course, 

visualization techniques and their utility. In their seminal work on visual analytics, 

Thomas and Cook note that we need new methods to simplify the development process of 

visualizations for big data (Thomas & Cook, 2005). Researchers have tried to organize 

the plethora of existing visualization techniques to give structure to the selection and 

design process (Aigner, Miksch, Schumann, & Tominski, 2011; Heer, Bostock, & 

Ogievetsky, 2010). These classifications are helpful in the selection of some familiar 

visualizations; however, the emergence of big data and its attendant tasks ask for new 

frameworks, ones that go beyond classification and are more robust and flexible.  

There is confusion, lack of direction, and shortage of guidelines about how to create 

effective visualizations for health data (Carroll et al., 2014; Folorunso & Ogunseye, 

2008; Turner et al., 2008).  Given the high stakes in health, be it in education or outbreak 

detection, it is essential for these visualizations to be designed systematically—hence, the 

need for framework-based approaches to the design of health data visualizations. Even 

though a framework should support systematic design, it must not constrain creativity; 

furthermore, it must allow designers to come up with novel and elaborate visualizations 

that capture and encode the complexity of new data (Purchase et al., 2008; Sedig et al., 

2013; Thomas & Cook, 2005). A design framework should integrate relevant concepts 

from multiple fields, be theory-driven, be conceptually sound, bring much-needed 

structure to the design and evaluation process, and provide a common and consistent 

vocabulary to design thinking. Without the structured design thinking provided by a 

framework, design of visualizations can take on an ad hoc approach without much 

systematicity (Purchase et al., 2008).  

To this end, Sedig and Parsons (Sedig & Parsons, 2016) have recently developed a 

comprehensive framework for the design of visualizations for human-information 

interaction. This framework includes a pattern language. This language provides 
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designers with 14 patterns for mapping data to visual structures and a simple grammar-

like syntax for blending these patterns. The goal of this framework is to enable designers 

to create elaborate and sophisticated visualizations in a systematic, principled manner 

with interactive task possibilities at the foreground of design thinking. The purpose of 

this paper is to demonstrate how designers of health visualization tools can go beyond 

simple chart-like visualizations and design novel visualizations for big health data. We 

use the pattern language and apply it to large public health data to illustrate how elaborate 

and complex visualizations for health-driven tasks can be created in a systematic way. 

The rest of the paper is organized as follows. Section 2 provides the terminological and 

conceptual background of the paper. Section 3 presents elements of Sedig and Parsons’ 

framework used to develop our visualizations. Section 4 details the design of four non-

trivial visualizations for global health data that we have implemented. Finally, Section 5 

concludes the paper.  

3.2 Background 

In this section, we first describe public health data and the tasks in which professionals 

engage. Then we describe visualizations and highlight how they are and can be used to 

support big data tasks.  

3.2.1 Big Data in Public Health 

Data collected from the population or on the population is used to assess the health of 

communities, develop policies, manage resources, and educate the public about health 

issues (Herland et al., 2014; Ola & Sedig, 2014). In this paper, we use the term data item 

to refer to any entity, property, or relationship within a dataset such as a database record, 

tweet text, image, document, geolocation, or property. Public health data is voluminous, 

gathered either by traditional (e.g., hospitals) or non-traditional means (e.g., social media 

or sensors), and is stored in different formats (e.g., geospatial, textual, numerical) (Fuller, 

2010; Herland et al., 2014; Revere et al., 2007). This data is often aggregated at various 

levels of granularity. For instance, public health datasets may be aggregated by 

geographic or demographic attributes, and, as a result, one dataset may portray cancer 

patients by income level, while another dataset may focus on the country in which people 
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live. In addition, public health data is created at different time intervals (Herland et al., 

2014). For instance, population survey data may be collected once a year, while 

surveillance data is updated hourly. This varying velocity of data impacts how it is stored 

and processed. Furthermore, the accuracy and completeness of public health data vary 

across countries and organizations (Kiefer et al., 2005; LaPelle et al., 2006; Lozano et al., 

2012). Data that exhibits one or more of these qualities of big data presents processing 

challenges for health-related human-data interaction tasks. 

3.2.2 Public Health Tasks 

Professionals and laypeople use and interact with public health data for a variety of 

reasons. Professionals, charged with improving and protecting the health of the 

community, use this data to detect disease clusters, predict outbreaks, identify risk 

factors, prepare intervention procedures, evaluate strategies, educate the community, and 

analyze the occurrence and causation of health problems (Carroll et al., 2014; Ola & 

Sedig, 2014). At the same time, the general public may need such data to understand 

health risks, recognize biases in health information, vote on environmental issues, and 

make decisions about their lifestyle (Gazmararian et al., 2005). Irrespective of 

background, many people are in need of public health data to perform health-related 

tasks. As need for exploring various facets of big data grows, human-data interaction 

tasks become more complex.  For instance, to make sense of the global spread of the Zika 

virus, a college student may choose to browse through trending tweets with the hashtag 

#zikavirus, rank tweets based on their reputability, and then triage new articles linked to 

reputable tweets. These tasks are inter-related, hierarchical in nature, and emerge from 

the completion of smaller tasks (Rind, Aigner, Wagner, Miksch, & Lammarsch, 2015; 

Sedig & Parsons, 2013). To perform the task of ranking tweets, the user may first filter 

tweets by Twitter handles to focus on tweets from health organizations, and then arrange 

the remaining tweets by the number of retweets. As these tasks are typically co-

occurring, non-routine, and performed in a non-linear fashion, there is need for tools that 

support the convergent and divergent processes in which users engage. In the context of 

big data, interactive visualizations can significantly enhance the completion of such tasks 

(Sedig & Parsons, 2016). 
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3.2.3 Visualizations for Big Data Tasks 

Visualizations6 are composed of basic visual marks (e.g., dot, point, line) organized into 

different structures. These visual marks have certain properties (e.g., size, color, angle, 

texture) that are used to encode data items (Sedig & Parsons, 2016). Visualizations can 

support users’ tasks by synthesizing and integrating data from various sources, reducing 

the search for information, and enhancing the discovery of patterns, trends, correlations, 

and outliers (Ola et al., 2016; Thomas & Cook, 2005). However, the extent to which a 

visualization supports a task depends on how the data, and how much of it, is encoded 

(Parsons & Sedig, 2013a; J. Zhang & Norman, 1994). In this context, users’ discourse 

with data is through the visual representations. As a result, the visual form in which the 

data is presented can either enhance or hinder tasks.  For example, consider a situation in 

which a user needs to make sense of the geographical spread of Chikungunya across 

islands in the Caribbean; using a bar chart to represent the number of cases in each island 

may not be as effective as using a map. As big data tasks seldom occur in isolation, there 

is need for visualizations that not only encode data effectively, but also support inter-

related tasks and allow users to explore various facets of the data simultaneously.  

Currently, simple visualizations found in Microsoft Office and off-the-shelf business 

intelligence tools are typically used by health professionals (Carroll et al., 2014).  Simple 

visualizations usually only encode one or two aspects of the data. For instance, a bar 

chart, heat map, or pie chart that shows the mortality rates in sub-Saharan countries is a 

simple visualization. While such visualizations are beneficial for simple tasks, they are 

less effective for more complex tasks. One approach to using simple visualizations for 

multifaceted data is representing facets in a single visualization and using animation to 

show other aspects of the data. A well-known example is Gapminder Trendalyzer, which 

shows trends in multivariate data (“Gapminder,” n.d.). While this approach may be 

beneficial for narrative tasks, it is not always effective for analytical tasks. Because 

animated visualizations are temporal and substitutive, as one representation replaces 

another in time, users need to recall previous states of the visualization and their short-

                                                 

6 Henceforth, the term ‘visualizations’ refers to both static as well as interactive visualizations. 
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term memory can become overloaded (Sedig, Rowhani, & Liang, 2005). As data 

increases, this approach has been shown to result in an inaccurate understanding of trends 

(Robertson, Fernandez, Fisher, Lee, & Stasko, 2008). Another approach represents facets 

in multiple visualizations distributed through space. Data dashboards, typical in business 

intelligence tools, employ this approach (Al-Hajj, Pike, Riecke, & Fisher, 2013). Though 

beneficial, as visualizations crowd the dashboard, users are forced to mentally combine 

representations to perform tasks (Wang Baldonado, Woodruff, & Kuchinsky, 2000). 

Furthermore, data dashboards typically organize visualizations in a tabular manner, 

regardless of how the data are related. When the external organization of information 

does not represent the data appropriately, the internal mental process of users may be 

negatively impacted (Purchase et al., 2008; Sedig et al., 2013; Thomas & Cook, 2005). 

There is a need to move beyond simple visualizations to more sophisticated visualizations 

that encode multiple aspects and/or layers of the data within the same space. Researchers 

have noted that the very nature of big data and its associated tasks require the 

development of novel visualizations that help with pattern identification and analysis of 

large and complex data (Fan & Bifet, 2013; Gorodov & Gubarev, 2013; Heer & Kandel, 

2012; Jagadish et al., 2014). A review of off-the-self business intelligence tools suggests 

that these tools tend to focus on simple visualizations, with limited capability for 

handling large complex data (L. Zhang et al., 2012). Non-trivial visualizations that 

effectively encode data items can play a prominent role in how people use big data and 

interact with it (Cybulski et al., 2013; Gotz & Borland, 2016; Heer & Kandel, 2012). In 

the context of health-related visualizations, in a systematic and comprehensive review, 

Carroll et al. (Carroll et al., 2014) suggest that there is a need for tools that represent large 

multivariate datasets that have multiple levels, various relationships, and/or layers of 

patterns. However, the ability of visualizations to facilitate big data tasks is contingent on 

their proper design, which is often challenging. This challenge is particularly amplified in 

healthcare, where it has been noted that visualization design is not as advanced as in other 

disciplines (Shneiderman et al., 2013). In the next section, we present a pattern language 

that we believe can help designers with systematic, yet creative and flexible, design of 

non-trivial visualizations for big data in health. 
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3.3 Pattern Language 

When dealing with simple tasks, such as ranking diseases solely based on their mortality 

rate, designing a visualization is straightforward. However, as tasks become more 

complex (i.e., require the completion of subtasks) and the nature of the data more varied, 

design of visualizations becomes less apparent (Heer & Kandel, 2012; Sedig & Parsons, 

2016). Part of the challenge of developing tools for big data is determining how to 

structure or organize data items within visualizations (Ekbia et al., 2015). As the external 

organization of information affects users as they perform tasks, there is a need for 

frameworks to help structure the design of elaborate visualizations. Sedig and Parsons 

have proposed a comprehensive design framework composed of conceptual elements 

including a pattern language, design process, and spaces. In this paper, we focus on their 

pattern language and describe how it can support the development of elaborate 

visualizations for big data. The pattern language consists of 14 abstract patterns and a 

syntax for describing how patterns are blended. These patterns are described next. 

3.3.1 Descriptions of Patterns 

Sedig and Parsons define a pattern as a regularity in some dimension (Sedig & Parsons, 

2016). Their goal was to identify patterns that help organize information items by 

mapping them to visual structures. The patterns operate at an abstract level and are 

independent of any particular technology, platform, or domain. As a result, they can be 

used across domains to help create novel visualizations7. The 14 patterns are described 

next:  

• Area: used to map data items onto visualizations in such a way that their 

boundary, shape, region, and/or area are encoded.  

• Branch: used to map data items onto visualizations and organize them in a 

branched and/or subdivided fashion.  

• Cell: used to map data items onto visualizations and organize them by 

segmenting, compartmentalizing, or containing them within cell-like structures.  

• Coordinate: used to map data items onto visualizations and organize them with 

respect to a frame of reference.  

                                                 

7 For an in-depth discussion on the identification and naming process of the patterns, the reader can consult the book: 

Design of Visualizations for Human-Information Interaction (Sedig & Parsons, 2016). 
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• Cycle: used to map data items onto visualizations and organize them in a circular, 

wheel-like, rotational, spiral, and/or cyclical fashion.  

• Fusion: used to map multiple data items onto a single visualization in a 

continuous fashion, such that the items are integrated and fused together.  

• Group: used to map data items onto visualizations and organize them by 

congregating them close to each other.  

• Hierarchy: used to map data items onto visualizations and organize them in a 

hierarchical, multi-level, pyramid-like fashion, where higher levels are superior to 

or contain and encompass lower level items.  

• Link: used to map data items onto visualizations and organize them by 

connecting them together using paths, routes, lines, or other similar structures.  

• List: used to map data items onto visualizations and organize them by placing in a 

sequential, successive fashion.  

• Spectrum: used to map data items onto visualizations and organize them in a 

spectral fashion. Often instantiated using multiple saturation or luminance values 

of a particular hue, or using multiple hues or textures.  

• Stack: used to map data items onto visualizations and organize them by placing 

on top of one another in a piled or stacked fashion; visualizations are often placed 

on top of one another such that they are touching or are very close together.  

• Token: used to map one or more data items onto a visualization that can be 

regarded as a unit, whether in atomic form or composite form made of discrete 

parts. 

• Track: used to map data items onto visualizations and organize them in a lane-, 

stripe-, and/or track-like fashion.  

The patterns are divided into three groups: (1) primary, (2) substrate, and (3) relational. 

The first category, primary, consists of the Token and Fusion patterns. These two patterns 

often act as primary building blocks for creating visualizations. The second category, 

substrate, consists of the Area, Cell, Coordinate, and Track patterns. These four patterns 

are often used for designing underlying structures in/on which other representations are 

placed. The third category, relational, consists of the Branch, Cycle, Group, Hierarchy, 

Link, List, Spectrum, and Stack patterns. These patterns are often used for creating 

structures that encode relationships, variations, and/or movements among data items. 

The patterns in the language are not concrete structures and, as a result, must be 

instantiated as visual structures. For example, the Token pattern—which is used to map 

data items onto a single unitized visual representation—may be instantiated as a dot to 

represent each cause of death, or a square to represent the incidence rate of breast cancer 
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in developing nations. Any pattern can be instantiated using many different structures. 

This flexibility promotes creativity and supports the creation of a diversity of 

visualizations. Every visualization is an instantiation of one or more blended patterns and 

is not the pattern itself. Next, we discuss how patterns can be blended. 

3.3.2 Pattern Blending and Syntax 

Sedig and Parsons note that “Designers can blend different patterns to devise 

representational structures that have different organizational affordances” (Sedig & 

Parsons, 2016). In other words, instances of different patterns can be blended to create 

sophisticated visualizations that are beneficial for showing different aspects and features 

of the data. For example, to communicate the grouping of risk factors that contribute to a 

disease, designers can blend the Token and Group patterns together. When instantiated, 

the blending of these two patterns results in a visualization that conveys both the 

uniqueness and classification of each risk factor. The pattern language employs a simple 

syntax to represent the blending of different patterns. The syntax has three elements:  

• 14 codes (e.g., TK for Token and CR for coordinate) to denote the different 

patterns; however, in this paper we use the pattern words and eschew the codes to 

promote comprehension;  

• the symbol “•” to denote a blending, where blended patterns appear together in 

square brackets “[]”; and  

• the symbol “∈” to denote that a visualization or representational structure “is 

derived from,” “is based on,” “instantiates,” or “is an instance of” a blending.  

For example, the expression V∈[Token•Hierarchy•Cell] signifies that the visualization, V, 

is derived from the blending of the three patterns. It is important to note that the ordering 

of blended patterns does not affect the instantiated visualizations. Instances of patterns 

can be blended in various ways to support users’ tasks, including: nesting (i.e., placing 

one inside of another), overlapping and layering (i.e., placing one on top of another), and 

placing them side by side. One strength of this framework is that through pattern 

blending, complex data structures can be modeled and then instantiated.  

To illustrate how patterns can be blended and instantiated, consider a designer charged 

with creating a visualization for making sense of tweets from individuals infected with a 

rare vector-borne disease. Typically, in public health, either a heatmap or bar chart is 
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used to visualize this. The grouped bar chart depicted in Figure 1a is a 

[Group•Coordinate•Token]-based visualization that encodes the number of tweets with 

specific keywords in each area of interest. With the pattern language, the designer can 

create a new visualization by first choosing which aspects of the data to organize. For 

instance, she can decide to communicate the uniqueness of each tweet and geographical 

location (Token) and the spatial distribution of the location (Area). She can also convey 

the relationship between each site and the tweet (Link) as well as the geographical group 

to which each tweet belongs in a single visualization (Group). At this stage, the designer 

proceeds to create a [Token•Link•Area•Group]-based visualization. She instantiates the 

Token pattern for geographic locations using a circle and keywords with text. She 

instantiates the Area pattern using a map-like structure, the Link pattern with lines from 

each keyword to geographic location, and the Group pattern is encoded using color. The 

resulting visualization based on the blending is depicted in Figure 1b. With this 

visualization, the user of the tool gets a more comprehensive representation of the space 

and then can generate hypotheses of how the disease spreads. We use this example not to 

suggest that this is a good visualization, but, instead, to demonstrate the flexibility and 

creativity afforded by blending patterns to map different aspects of the data to an 

integrated visual structure. Indeed, the representation on the left may be better suited for 

the simple task of comparing the occurrence of keywords in tweets. 

 

Figure 3-1: (a) Grouped bar chart (b) Alternative visualization for making sense of 

tweets 
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Instead of dealing with thousands of visualization techniques, by using the pattern 

language, based on the organizational structures that they want to convey, designers can 

select which patterns to blend and then design a visualization. The abstract nature of the 

patterns allows for flexibility and creativity as the same blending can result in different 

instantiations. In the next section, we demonstrate the utility of the pattern language to 

help designers of health visualization tools convey more data in a systematic manner. 

3.4 Systematic Design of Visualizations for Big Public 
Health Data 

The four visualizations presented in this section are part of a tool designed to facilitate 

making sense of the global burden of disease through an analysis of causes and risk 

factors8 associated with mortality across the world. First, we present a high-level 

overview of the overall activity of sensemaking and the datasets used and then delve into 

the design of each visualization.  

The whole of public health data relevant to understanding cause and risks attributed to 

mortality across the world is diverse. As data collection and access vary within each 

continent, and the quality of collected data is not easily verifiable, we utilize standardized 

data from the Institute for Health Evaluation and Metrics (IHME) (Institute for Health 

Metrics and Evaluation, 2013). This data includes a large number of attributes and has 

been gathered from various sources. The level of complexity of the data requires that it be 

analyzed at many levels of granularity. While the size of the data is not in the terabytes, 

the highly varied nature of this data is a characteristic of big data (Heer & Kandel, 2012). 

When combined, the datasets include over 12 million records that present mortality 

estimates for 57 risk factors and 235 causes of death that fall into 17 age groups9 across 

187 countries.  

                                                 

8 For the remainder of the paper, we will use the terms risks and risk factors interchangeably.   

9 While IHME data includes 20 different age groups, we only use 17 of them, as the mortality estimates for the three 

age groups representing children under the age of 1 is not available for all datasets. 
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This data is further aggregated at the level of clusters. We use the term cluster to refer to 

an intermediary level of grouping. For example, the cardiovascular cluster of causes 

includes ischemic heart disease, hypertensive heart disease, cardiomyopathy, 

hemorrhagic stroke, and other diseases.  There are 21 cause-clusters which are further 

classified into three main groups: 1) non-communicable, 2) injury-based, and 3) 

communicable, maternal, neonatal, and nutritional.  There are ten risk clusters which are 

categorized into three groups: 1) behavioral, 2) metabolic, and 3) environmental and 

occupational. From a geographical perspective, mortality rates have also been aggregated 

at the level of geographical clusters and regions. There are 21 clusters (e.g., western sub-

Saharan Africa, southeast Asia) and seven regions (e.g., Asia, Europe). Age-distributed 

mortality is also aggregated into five main age groups: under 5, 5-14, 15-49, 50-69, and 

over 70. Some datasets provide estimates for specific years (e.g., 1990, 2010, and 2013), 

while others span timeframes (e.g., 2000-2010 and 1970-2010). In general, to make sense 

of data, users perform a variety of tasks, including searching and filtering data; 

organizing, categorizing, and examining relevant data; developing, proving, and 

discarding hypotheses; and integrating data into mental models (Bodnar, 2005; Pirolli & 

Card, 2005). Providing users with means to explore data through different perspectives is 

beneficial to sensemaking. In the following subsections, we first present visualizations 

that explore the burden of disease from three perspectives: demography, chronology, and 

geography and then conclude the section with an overview visualization. 

3.4.1 Demography Visualization 

Demography is the study of human populations with respect to various subjects, 

including birth and death rate, socioeconomic status, and age and sex distributions. To 

make sense of the burden of disease, we focus on age-specific death rates for different 

causes and risk factors across regions of the world. The datasets include estimates of 

overall mortality, cause cluster-specific mortality, and mortality attributed to risk clusters 

for different age groups across geographical regions. As opposed to using the seven 

regions of the world, we use the country clusters created by IHME so that users can 

explore demographic trends at a lower level of granularity. Data that approximates death 

resulting from specific risks at the level of cause-clusters is also utilized. Users’ 
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sensemaking tasks include: identifying different age groups and understanding how they 

are classified; identifying and distinguishing cause and risk clusters by their groupings; 

exploring the distribution of death across age groups; and comparing mortality for 

specific age groups across geographical regions. Ranking the clusters for specific age 

groups and comparing trends across age groups are additional relevant tasks. To describe 

the visualization that supports these tasks, we will discuss the five sub-visualizations that 

represent age groups, cause-clusters, risk clusters, country clusters, and relationships of 

mortality across these facets. This approach of describing a visualization by the sub-

visualizations that support its main tasks will be used for the chronology, geography, and 

overview visualizations as well. 

We organize our data according to age to emphasize demography. We want users to be 

able to locate each unique age group in the visualization; for this, we use the Token 

pattern and instantiate it as an oval-like shape. Each oval represents a unique age group 

(1-4, 5-9, 10-14, etc.). To support exploration, we arrange age groups in a sequential 

fashion using both the List and Coordinate patterns. A polar coordinate system on which 

oval shapes are placed next to each other instantiates [List•Coordinate]. To support users’ 

understanding of the larger categories to which age groups belong, we organize the age 

groups by placing them close to each other and contained in a larger oval shape, thus 

instantiating the Group pattern. Figure 2 shows the [List•Coordinate•Group•Token]-

based sub-visualization. This visualization supports locating age groups and recognizing 

how the groups are combined into larger groups. 
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Figure 3-2: Demography sub-visualization for age groups 

For each age group, users need to explore how different cause-clusters contribute to 

mortality. To do this, they will need to identify cause-clusters and their groupings, rank 

clusters for each age group, and assess trends across age groups for specific clusters. To 

support these tasks, we first use the Token pattern to organize each cluster, instantiated as 

an arc. Certain age groups do not have all cause-clusters; these data items are encoded 

using gray circles (see Figure 3a). To emphasize each cluster’s group, we also organize 

clusters with the Group pattern, which is instantiated using color. For the cause groups, 

we use blue, red, and black for non-communicable, communicable, and injury clusters 

respectively. This instantiation of [Token•Group] is used in other visualizations, and, 

henceforth, we will not describe it in detail. To support comparison, we utilize the Stack 

pattern. Arcs are placed on top of each other to denote co-occurrence for the age group as 

well as their rank. Clusters are stacked in order of their rank, with the cluster that 

accounts for the most deaths at the top. Figure 3a shows the instantiation of 

[Stack•Group•Token] used to represent the ranking of cause-clusters for 1- to 4-year-old 

children. As depicted, there are two cause-clusters that do not contribute to death, and the 

highest ranking cluster falls under the communicable disease group. To encode the 

ranking for all age groups, we use the same polar coordinate structure (i.e., an 

instantiation of [List•Coordinate]) from the first sub-visualization. The main difference 

between the two sub-visualizations is that, instead of an oval-like shape, we use the 

[Stack•Group•Token]-based visualization. The resulting 
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[Stack•Group•Token•List•Coordinate]-based visualization is shown in Figure 3b. This 

sub-visualization supports locating cause-clusters and understanding the ranking of 

clusters for each age group, as well as trends across age groups. For instance, as depicted 

in Figure 3b, users can observe that for the last three age groups (i.e., individuals >=70), 

the three deadliest cause-clusters are within the non-communicable group (as denoted by 

the three blue arcs at the top of the last three segments in the visualization). Users can 

also observe how for younger age groups (i.e., 1-14 years) the highest ranked cluster falls 

under communicable diseases, which is expected as this group includes neonatal 

disorders. Figure 3c depicts an alternative configuration of the visualization in Figure 3b. 

In this mode, the neglected tropical diseases and malaria cluster has been selected10 so 

users can observe trends across age groups. Figure 3d portrays the risk cluster sub-

visualization, which is organized in a similar fashion; the main difference is the colors 

used to encode risk groups. Light shades of orange, green, and pink are used for 

metabolic, behavioral, and environmental and occupational risk groups respectively. 

Users may notice that not all risk factors contribute to mortality in younger individuals. 

In particular, metabolic risk clusters (which are encoded as orange arcs)  do not 

contribute to death for individuals under the age of 25. 

 

 

 

  

 

                                                 

10 As the focus of this article is on visualization design, we do not go into the details of the interactive features of this 

tool. 
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Figure 3-3: (a) visualization of cause-clusters for children 1-4 years old (b) cause-

clusters ranking sub-visualization for all age groups (c) cause-clusters sub-

visualization with the neglected tropical diseases and malaria cluster emphasized (d) 

risk clusters sub-visualizations for all age groups 

To enable interpretation of age-specific mortality for country clusters we want users to be 

able to compare mortality rates across regions for a specific age range, and so we use the 

Coordinate pattern. For each age group, the scale is different so as to emphasize trends 

across country clusters as opposed to across all ages. We use the List pattern and place 

regions side by side in a successive fashion. The locations are ordered left to right by 

their region starting with the region with the highest mortality rate for all ages and ending 

with the lowest. The ordering of regions is as follows: Europe, sub-Saharan Africa, high-

income North America, Pacific, Asia, Latin America and the Caribbean, and North Africa 
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and the Middle East. Using the List pattern in this manner supports comparison within 

regions. Figure 4a shows the [Token•List•Coordinate]-based bar charts for age groups 

15-19 and 75-79. Similar to the previous three sub-visualizations, we use an instantiation 

of [List•Coordinate] to organize mortality for all age groups. The resulting 

[Token•List•Coordinate]-based sub-visualization is shown in Figure 4b. Users can 

observe that for younger ages mortality varies widely across country clusters as opposed 

to older age groups where mortality is relatively consistent. In this sub-visualization we 

use [List•Coordinate] in different ways. One instantiation is the 2D bar chart, while the 

other is at a higher level of granularity and orders the bar charts (for all age groups) on a 

polar coordinate system. This flexibility in how designers instantiate pattern blendings is 

one of the strengths of the pattern language. 

 

 

Figure 3-4: (a) [Token•List•Coordinate]-based bar charts for age groups 15-19 and 

75-79 (b) demography sub-visualization for locations 

In addition to understanding mortality for each aspect of the data (i.e., country clusters, 

cause-clusters, and risk clusters), it is also of benefit to explore relationships among the 

different aspects. [Group•Token] is instantiated as color-coded circles to represent each 
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cluster. We use the Coordinate pattern to organize aspects as three axis-like structures 

and the List pattern to organize the different clusters in each aspect as shown in Figure 

5a. The clusters in each aspect are arranged by rank with the cluster with the highest 

aggregated mortality rate at the top. As the number of relationships is large, we only 

encode relationships that fall above the third quantile (i.e., top 25%). To show the 

presence of a relationship between aspects, we use the Link pattern, encoded as a curved 

line. The resulting [Coordinate•List•Group•Token•Link]-based visualization is shown in 

Figure 5b. As depicted, the south Asia country cluster is selected, and from this 

visualization users can surmise that addressing the issue of water and sanitation in south 

Asia will significantly impact death from diarrheal and lower respiratory diseases for 

people between the ages of 5 and 14. 

 

Figure 3-5: (a) Coordinate axes for cause, risk, and location clusters (b) 

Demography sub-visualization for relationships between cause, risk, and location 

clusters for individuals between the age of 5 and 14 

Each of the five sub-visualizations discussed above represents one aspect of the 

demographical distribution of mortality. One design intention is to facilitate the 

exploration of cause, risk, and country clusters independently of each other as well as 

simultaneously. To organize the sub-visualizations to support this task, we use the Track 

pattern which places the visualizations in a lane or track-like fashion. With this pattern, 

we can highlight the individual nature of each sub-visualization. As four of the sub-

visualizations use the same polar coordinate system to organize data items, we also use 
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the Stack pattern to show relationships across the four sub-visualizations. A 

[Stack•Track]-based structure is used to organize the sub-visualizations as depicted in 

Figure 6a. The inmost lane encodes the age clusters; placed on top of that is the cause 

visualization, then the risk visualization, and finally the location visualization is the 

outermost lane. The fifth sub-visualization is put in the center as shown in Figure 6b. 

Organized in this manner, we can convey both the uniqueness of each sub-visualization 

while at the same time show co-occurrence of common age groups across visualizations. 

It is important to note that the instantiation of [Stack•Track] is not at the same level as 

previous pattern blendings; here we are using the pattern language to organize sub-

visualizations as opposed to individual data items. Figure 6b shows the 

[Stack•Track•Token•Group•Link•List•Coordinate]-based visualization for demography.  

The visualization provides a dense lens through which the data can be explored; its initial 

configuration encodes over 820 data items. Each of which serves as a selector to reveal 

latent data. With this visualization, users can perform a series of inter-related tasks that 

facilitate making sense of the demographical distribution of mortality. Through 

interaction, users can increase or decrease the amount of data that is visible. 

 

Figure 3-6: (a) Enlarged partial view of the first four sub-visualizations for 

demography (b) Overall visualization for demography based on 

[Stack•Track•Token•Group•Link•List•Coordinate] 
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3.4.2 Chronology Visualization 

Chronology is concerned with the arrangement of events in order of their temporal 

occurrence. Here we describe a visualization that allows users to explore temporal trends 

in mortality. We utilize datasets that provide rates for cause and cause cluster-specific 

mortality in 5-year increments between 1990 and 2010. To make sense of temporal trends 

of mortality, users’ tasks include recognizing time intervals, identifying causes and 

clusters that contribute to mortality at a global level and making sense of how different 

regions of the world are affected by specific groups of diseases. We will discuss the 

design of the visualization by focusing on sub-visualizations that address cause cluster-

specific trends and cause-specific trends at a global level and cluster-specific trends for 

different geographical areas. 

First, users need to be able to identify the major points in time (i.e., 1990, 1995, 2000, 

2005, 2010). For this we use an instantiation of  [Token•Coordinate] to convey the 

uniqueness of each year across a scaled structure (see Figure 7a). This representation is 

used to control the three chronology sub-visualizations. The first sub-visualization 

focuses on cluster-specific mortality. We use [Token•Group] to encode each cause-

cluster so that users can identify clusters and the group to which they belong. Clusters are 

composed of causes with varying prevalence. For example, in 1990, the chronic 

respiratory diseases cluster consisted of five causes including chronic obstructive 

pulmonary disease (COPD), asthma, and pneumoconiosis. COPD accounted for over 

60% of all the deaths attributed to this cluster. Because we want to convey the 

distribution of causes that make up a cluster, we use the Cell pattern. As the hierarchical 

structure of the cluster is also of importance, we also use the Hierarchy pattern. We 

instantiate a blending of [Token•Cell•Hierarchy] to convey both the hierarchical structure 

and proportion of items within each cluster. Figure 7b depicts the cardiovascular diseases 

and HIV/AIDS & tuberculosis clusters for 1990 and 2010. One notable observation is 

that from 1990 to 2010 the proportion of deaths from tuberculosis (i.e., green rectangle in 

HIV/AIDS & tuberculosis cluster) decreased. 
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Figure 3-7: (a) [Token•Coordinate]-based representation for years (b) hierarchical 

visualization for cardiovascular diseases and HIV/AIDS & tuberculosis clusters (c) 

top portion of cluster-specific mortality ranking (d) Chronology sub-visualization 

for cause cluster-specific mortality 

To represent a temporal change for each cluster, we utilize the Link pattern, instantiated 

as a colored line between represented clusters. Figure 7c shows the top four clusters with 

the hierarchical structure of chronic respiratory diseases exposed. Clusters are ranked 

based on their percentage of the overall global mortality. To convey the ranking, we use 

the Coordinate pattern, instantiated using a 2D coordinate system. The horizontal 

dimension represents years, and the vertical dimension represents rank from 1 – 21 with 

the axis reversed so that one is at the top. Each cluster sub-visualization is positioned 

using this frame of reference. The resulting 

[Token•Hierarchy•Cell•Link•Coordinate•Group]-based sub-visualization, depicted in 

Figure 7d, conveys cluster-specific mortality ranking at a global level. One observation is 

that the top four clusters have remained the same with a change in position between 

cancers and diarrheal and lower respiratory diseases in 2000. Upon closer examination of 

neurological disorders, one notices that it has risen from position 17 to 12, thus 

accounting for more deaths. Furthermore, within the neurological cluster, the proportion 
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of deaths from Alzheimer’s disease (i.e., light blue rectangle) is significant and has grown 

since 1990.  

The second sub-visualization supports the exploration of temporal trends for cause-

specific mortality rates within each cluster. Similar to the previous sub-visualization’s 

design, we use the Token, Group, Link, and Coordinate patterns to organize data items. 

[Token•Group] is instantiated as colored circles for each cause at a point in time. The 

temporal relationship for a cause is encoded using a curved line (i.e., Link pattern). A 2D 

coordinate system where the horizontal dimension is for years and the vertical dimension 

is for proportion is utilized. A portion of the resulting [Link•Coordinate•Token•Group]-

based visualization for the unintentional injuries cluster is shown in Figure 8a. As 

depicted, the percentage of deaths by drowning has decreased, while the percentage of 

deaths from falls increased. The colors used to encode each cause are the same ones used 

in the first sub-visualization, thus allowing users to make a connection between the 

visualizations. 

 

Figure 3-8: (a) Portion of chronology sub-visualization for cause proportion (b) 

Area chart for Eastern Europe for the cancer cluster (c) Region cluster-specific 

mortality for cardiovascular disease cluster 

The first two sub-visualizations support making sense of cluster- and cause-specific 

mortality at a global level. The final sub-visualization for chronology focuses on 
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temporal trends for different geographical regions.  For each country cluster, we want to 

communicate continuous mortality patterns, and so we select the Fusion pattern. By using 

the Fusion pattern instead of the Token pattern, users will be able to understand overall 

trends for each region as opposed to distinct values for each year. To facilitate 

comparison, we use the Coordinate pattern and blend it with the Fusion pattern to derive 

an area chart as shown in Figure 8b. The representation also includes instantiations of the 

Token pattern for country cluster names and values on the x- and y-axes. The 

[Fusion•Coordinate•Token]-based area chart depicted in Figure 8b shows the mortality 

rate for cancers for eastern Europe.  To facilitate comparison of death rates for clusters of 

geographical areas, we use the Coordinate and List Patterns. This blending is instantiated 

by ordering the area charts by their 2010 mortality rate in descending order. The resulting 

[Fusion•Coordinate•Token•List]-based visualization for cardiovascular diseases from 

1990-2010 is shown in Figure 8c. Each area chart’s y-axis is independent of the others. 

As designers, we choose to use separate scales so that users can identify trends for 

specific regions. If the same scales were used for all country clusters, the mortality rates 

for southern sub-Saharan Africa would appear constant because the difference between 

146 and 181 is hard to perceive when put on a scale between 0 and 969 (i.e., the highest 

mortality rate for eastern Europe).  

As each of the sub-visualizations supports one part of the overall task, we organize them 

in a way that conveys separation of information as well as membership. For this, we used 

the Cell pattern instantiated as compartments in which each sub-visualization is placed. 

The overall [Fusion•Coordinate•Token•Hierarchy•Cell•Link•Group]-based visualization, 

shown in Figure 9, facilitates the exploration of mortality from a temporal perspective. In 

its current configuration, users can make sense of mortality trends from 1990-2005. One 

observation is that at a global level deaths from nutritional deficiencies have dropped 

from a high position of 9 in 1995 to 15 in 2005. When the HIV/AIDS & tuberculosis 

cluster is selected, one can notice that tuberculosis has decreased significantly in 

proportion while HIV/AIDS causes of death have increased. In the last panel, users can 

observe that HIV/AIDS & tuberculosis mortality rates have increased for the Carribean 

and the regions in sub-Saharan Africa. 
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Using the pattern language, we are able to analyze the tasks and select patterns to 

organize data items. These patterns are then blended to create sub-visualizations which 

are arranged in a manner such that users can perform multiple co-related cognitive tasks. 

It is worth mentioning that each sub-visualization instantiates the Coordinate pattern in a 

different manner. This flexibility that the pattern language provides supports designer 

creativity, while allowing designers to structure the design process. 

 

Figure 3-9: Overall [Fusion•Coordinate•Token•Hierarchy•Cell•Link•Group]-based 

visualization for chronology 

3.4.3 Geography Visualization 

The next visualization we present facilitates the exploration of mortality from a 

geographic perspective. We utilize data that includes cause-specific and risk-specific 

death rates. The data is aggregated at various levels of granularity. For cause of death, the 

levels are individual causes and their clusters; for risk factors, the levels are risk factors 

and their clusters; for geography the levels are countries, clusters of countries, and global. 

We also use data that quantifies the burden of disease attributable to each risk for each 

cause of death, thus focusing on the relationship between causes and risks. One starting 
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point for making sense of the geographic distribution of death is examining the 

relationship between causes and risk factors at a global level. By supporting this task, 

users can identify causes and risks of interest and then choose to explore their impact on 

different geographical regions of the world. As the number of causes and risk factors is 

large, this approach can help guide exploration. Other tasks include assessing the 

variability of mortality across the globe for specific causes and risks, exploring the 

prevalent causes of death and risks for each country cluster, and comparing the 

distribution of cause-specific and risk-specific mortality across countries. 

For users to learn about causes and risks that contribute to death at a global level, they 

will need to perform a series of tasks. These tasks include identifying the major entities 

(i.e., causes and risks), exploring the hierarchical structure of entities, ranking entities 

based on mortality rates, and assessing relationships between entities at different levels of 

granularity. As the relationship between causes and risks can be explored from a cause or 

risk-centric point of view, we opt to design a visualization that can be configured to 

support both options. The organization of data items is similar for both modes, and so we 

will discuss the design of the cause-centric visualization and provide a screenshot of the 

risk-centric visualization. 

 

Figure 3-10: (a) Hierarchical structure of the physiological risk cluster (b) 

Representation of non-communicable disease group by individual causes (c) Diet 

low in fruit risk visual element (d) High fasting plasma glucose visual element 

As with previous visualizations, we use a [Token•Group]-based representation to support 

the identification of each risk, cluster, and the group to which it belongs. We use colored 

arcs, where size encodes mortality rate, to instantiate this blending (see Figure 10a). 
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Because we want to convey the hierarchical structure and severity of risk factors we use 

[List•Hierarchy]. The outer arcs represent risk clusters, while the inner arcs represent the 

risk factors. Combined, the two tiers of arcs convey the structure of risk factors and 

instantiate the Hierarchy pattern. Within each tier, we use the List pattern to organize 

entities by their mortality rate so that users can rank entities within each cluster. For 

instance, Figure 10a shows the five risks that make up the physiological risk cluster 

arranged by mortality rate. Next, we want to convey the mortality of each cause and the 

group to which it belongs and so we a [Token•Group]-based representation. Where 

Group is instantiated with color and position and the Token pattern is instantiated as a 

circle for each cause. Once again, we use size to denote severity. Figure 10b shows the 

non-communicable disease group. Next, the relationship between risks and causes needs 

to be encoded. We use the Branch pattern to convey how a risk factor can contribute to 

multiple causes of death. Figure 10c shows an instantiation of the [Token•Branch]-based 

representation for the risk factor, a diet low in fruit. The top portion represents mortality 

attributed to the specific risk for all causes and the lower portion is composed of smaller 

branches each representing mortality for a specific cause. Color is used to encode the 

group to which the cause belongs. For instance, Figure 10d shows the instantiation for 

high fasting plasma glucose; this risk factor is connected to seven causes of death, one of 

which belongs to the communicable group as indicated by the red link.  

Figure 11 shows the resulting sub-visualization when the above elements are combined. 

The [List•Hierarchy•Token•Group•Branch]-based visualization is a variation of a 

visualization developed by Vizuly (Vizuly, 2014); one noticeable difference is that the 

hierarchy of risks is encoded. With this sub-visualization, users can rank and explore the 

hierarchical makeup of risk factors. For instance, within the behavioral group, smoking is 

attributed to more deaths than child and maternal undernutrition, and within the smoking 

cluster, there are two risk factors. Regarding relationships between causes and risk 

factors, users can explore and notice that communicable diseases (i.e., red circles) are 

predominately not linked to dietary and physical inactivity risk factors. In this mode, it is 

challenging to rank causes of death. Figure 12 shows the risk-centric visualization. The 

arcs are used to encode the hierarchy and prevalence of causes, while the circles encode 
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risk factors.  For each of the cause-clusters, users can explore the constituent causes, their 

ranking, as well as their relationship to risk factors. 

 

Figure 3-11: Geography sub-visualization for cause-risk relationships at a global 

level from a cause-centric point of view 
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Figure 3-12: Geography sub-visualization for cause-risk relationships at a global 

level from a risk-centric point of view 

The third sub-visualization facilitates the exploration of cause- and risk-specific mortality 

for different regions of the world. When designing the demography and chronology 

visualizations, we represented geographical entities without encoding their spatial 

dimensions. As the goal here is to present mortality through the lens of geography, we 

organize geographical entities by their spatial attributes. To do this, we use the Area 

pattern and instantiate it with a map demarcated at the level of country clusters. Making 

sense of mortality across 187 countries may seem tedious, and so we first present the data 

at the level of the country clusters and then provide users the ability to compare mortality 

rates within a cluster. As users need to investigate the variability of death across the globe 

we use the Spectrum Pattern. We use color saturation to instantiate this pattern, the darker 

the color, the higher the mortality rate. A [Token•Spectrum]-based legend is also created 

to facilitate comprehension of different saturation values. The resulting 

[Spectrum•Area•Token]-based visualization is placed between the first two sub-

visualizations as shown in Figure 13. As depicted, users can make sense of the global 
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distribution of mortality, as well as, explore how selected risks and/or causes affect 

different country clusters. In Figure 13, the impact of chronic obstructive pulmonary 

disease is depicted. 

 

Figure 3-13: First three geography sub-visualizations, the impact of chronic 

obstructive pulmonary disease is depicted in the map-based visualization 

The next task we facilitate is exploring relationships between the cause and risk clusters 

for a particular country cluster. The sub-visualization uses data at the level of clusters 

(i.e., country, risk, and cause). To support this task, we use the Token, Group, and Branch 

patterns. The Token pattern is instantiated with a rectangle and discrete name (e.g., 

neonatal disorders), while color is used to instantiate the Group pattern. The size of the 

rectangle encodes death rate. Since we want to show how risks contribute to different 

causes of death, we use the Branch pattern. We instantiate this pattern as links that 

emerge from risk clusters and go to cause-clusters. Figure 14a depicts the 

[Branch•Token•Group]-based visualization that shows the prevalent relationships for the 

central Europe country cluster. After gaining an understanding of cluster relationships, 

users may want to make sense of mortality at the level of cause, risk, and country. To 

support comparison at this lower level of granularity, we design the fifth sub-

visualization. To convey each country’s risk or cause mortality, we use 

[Spectrum•Token] depicted as colored squares. These data items are organized using 

[Coordinate•List] where the horizontal axis is used for countries and the vertical axis is 

used for causes or risks. The resulting [Spectrum•Token•Coordinate•List]-based 

visualization shown in Figure 14b depicts the distribution of mortality for causes in the 

cardiovascular diseases cluster. We use the Cell Pattern instantiated as a boundary 
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structure to blend the two sub-visualizations (Figure 14a and b). Figure 14c shows the 

resulting [Spectrum•Coordinate•List•Branch•Token•Group•Cell]-based visualization for 

central Europe. 

 

Figure 3-14 (a) Cause-risk cluster level relationships sub-visualization (b) 

Visualization of cardiovascular diseases for central European countries (c) Fourth 

major sub-visualization for geography which combines cause-risk cluster level 

relationships and risk/cause specific distribution for central Europe 

Figure 14c depicts the cause-risk relationship for one country cluster; but it is important 

that users be able to explore the relationships for other geographical regions as well. 

While using a map is beneficial for exploration, it pre-supposes that individuals know 

what the country clusters are and where they are located. To address this assumption, we 

instantiate [Cell•Token] with arcs and text that encode the 21 country clusters by name 

(see Figure 15). Itemizing each country cluster is beneficial for two reasons. First, it 
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provides a clear way for users to identify geographical areas regardless of their prior 

background, second, it helps users learn where geographical clusters are located when 

linked to the map in Figure 13. We use the Cell pattern to organize the sub-visualizations 

as shown in Figure 15. As depicted, central sub-Saharan Africa has been selected, and the 

cardiovascular disease cluster and physiological risk cluster have been expanded. 

 

Figure 3-15: Geography sub-visualization for a country cluster 

We combine the sub-visualizations for global, country cluster, and country-level 

mortality as depicted in Figure 16. The 

[Branch•Token•Coordinate•List•Group•Spectrum•Area•Cell]-based visualization 

supports understanding the geographical distribution of mortality at multiple levels of 

granularity. As illustrated, the geographical distribution of deaths attributed to a diet high 

in sodium is presented, as well as the relationships between causes and risk factors for the 

central sub-Saharan African cluster. 
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Figure 3-16: Overall [Branch•Token•Coordinate•List•Group•Spectrum•Area•Cell]-

based visualization for geography 

3.4.4 Overview Visualization 

The last visualization provides a high-level summary of mortality trends for different age 

groups and geographical regions, at various points in time. With this visualization, users 

can assess overall and cause-specific mortality, the burden of death attributed to each risk 

factor, as well as relationships that may exist between specific causes and risk factors. In 

addition, users need to be able to understand the major data item groups and how they 

relate to each other at a high-level. As the number of data items is sizable, it is beneficial 

to provide landmarks that will support exploration. To provide an overview of the burden 

of disease, we utilize datasets aggregated at the highest level of granularity for geography 

(i.e., seven geographical regions) and demography (i.e., five main age groups) in 1990, 

1995, 2000, 2005, and 2010. Users’ sensemaking tasks include: identifying different age 

groups, geographical regions, and years; assessing the distribution of mortality from each 

perspective; exploring the relationship between cause and risk clusters; and 
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understanding the structure of clusters. We will describe the overall visualization by 

discussing sub-visualizations that support the above four tasks.  

To support the identification of age groups, regions, and years we need to map data items 

in a manner that conveys uniqueness, and so we use the Token pattern. Each data item is 

encoded as a rectangle with a textual label as shown in Figure 17a. We use color to 

distinguish data items, shades of purple are used for years, shades of brown for age 

groups, and seven unique colors for geographical regions. After users can identify and 

select age groups, years, and regions of interest to explore, it helps to understand how the 

selected items contribute to the burden of disease. For instance, users may want to 

determine what age group contributes the most to mortality in Asia. To support this task 

of assessing proportion, we design a second sub-visualization. Because our goal is to 

allow users to compare data items that have similar features we use the Stack pattern. The 

[Stack•Token]-based visualization in Figure 17b shows the percentage of overall deaths 

for each age group. The size of each rectangle represents the percentage of total mortality 

for each age group. The rectangles are stacked in descending order with the highest 

proportion at the bottom. By organizing data items by position, users can compare items 

without relying solely on the size of the rectangle. When two items have the same 

proportion, we use a black dashed line between them to denote equality.  Since we want 

users to be able to contrast patterns at different levels, we create instantiations of the 

[Stack•Token]-based representation for mortality, cluster-specific mortality, and cause- 

and risk-specific mortality. The Group pattern is instantiated as a bounding box. Figure 

17c shows the year-related global mortality proportions for all individuals over the age of 

5. We have sub-visualizations similar to Figure 17c for demography and geography thus 

enabling users to explore the proportion of mortality at three different levels for all three 

perspectives. 
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Figure 3-17: (a) Legends for overview visualization (b) Mortality by age group sub-

visualization (c) [Stack•Token]-based representations for year-based mortality 

The third sub-visualization focuses on the relationships that exist between cause and risk 

clusters. We use an instantiation of [Branch•Token•Group] similar to Figure 14a to 

convey the group to which each cluster belongs, the relationship between risks and cause-

clusters and the uniqueness of each cluster. Figure 18a depicts the 

[Branch•Token•Group]-based sub-visualization that shows the prevalent cause-risk 

cluster relationships at a global level in 2010 for all age groups.  The last task focuses on 

understanding the structure of clusters. Because users need to understand the causes that 

are most prevalent within each cluster, we use a [Token•Cell•Hierarchy]-based 

visualization similar to the one in Figure 7b. Figure 18b depicts the 

[Token•Cell•Hierarchy]-based sub-visualization for the physiological risk cluster. We use 

a Token-based textual notation to label each rectangle and provide the names of each risk 

factor. The labeling of each rectangle is in ascending order such that 1 represents the risk 

or cause that has the largest proportion. Since we want users to understand the hierarchy 

and burden of disease for each cluster, we use the Cell pattern to blend the 

[Token•Cell•Hierarchy]-based sub-visualization with the [Branch•Token•Group]-based 

sub-visualization. The resulting [Branch•Token•Group•Cell•Hierarchy]-based sub-

visualization is shown in Figure 18c. By default, the structure of clusters with smaller 

mortality rates are not shown, but can be explored through interaction. 
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Figure 3-18: (a) [Branch•Token•Group]-based sub-visualization that shows the 

prevalent cause-risk cluster relationships at a global level in 2010 for all age groups 

(b) Physiological risks hierarchy and prevalence sub-visualization (c) Overview sub-

visualization for cluster relationships and inter-cluster hierarchy 

Since our goal is to allow users to perform all four tasks with the same visualization, we 

blend the sub-visualizations using the Cell pattern. The overall overview visualization is 

shown in Figure 19. This [Branch•Token•Group•Cell•Hierarchy•Stack]-based 

visualization allows users to explore mortality at three different levels for demography, 

chronology, and geography. In addition, users can examine the relationship between 

cause and risk clusters, and make sense of the structure of each cluster. 
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Figure 3-19: Overall overview [Branch•Token•Group•Cell•Hierarchy•Stack]-based 

visualization 

3.5 Conclusion 

The field of healthcare is being inundated with massive amounts of data. In addition to its 

size, health data is generated at varying rates, collected from heterogeneous sources, and 

has different levels of veracity. These qualities of health data can negatively impact 

users’ mental processes and increase their cognitive load as they interact with the data. 

As the ability for big data to revolutionize how healthcare is conducted is contingent on 

the effective use of this data, there is need for tools that can support users as they engage 

in a variety of tasks. Interactive visualizations can play a critical role in harnessing the 

potential of big data. These tools mediate users’ discourse with data and, as a result, the 

manner in which they represent data can either support or impede human-data interaction. 

When dealing with big data tasks, providing users with the ability to interact with 

multiple facets of the data is important. Currently, many health visualization tools use 

simple charts that typically represent only one or two facets of the data thus limiting 

users’ interaction with other facets. Simple charts cannot represent the complexity of big 

data; they fail to support multifaceted tasks effectively. Therefore, there is a need for 
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sophisticated visualizations that encode many data elements simultaneously and allow 

users to perceive patterns and develop insights quickly.  

At present, there is a lack of direction about how to create effective visualizations for big 

data. We contend that the design of visualizations cannot be left to ad hoc processes 

without the use of frameworks.  There is a critical need for support structures, such as 

conceptual frameworks, that enable the design of visualization tools for big data. This is 

especially true in the health sector, where previous suites of computational tools have not 

been well received for a variety of reasons. Frameworks can help designers create 

elaborate and sophisticated visualizations in a systematic manner with interactive task 

possibilities at the foreground of design thinking. This is important as human-data 

interaction is guided by the tasks users seek to complete. Furthermore, conceptual 

frameworks allow designers to have an awareness of the cognitive implications of design 

choices, while at the same time facilitating systematic design thinking. Sedig and Parsons 

have developed a framework which includes a pattern language. 

In this paper, we demonstrate how the pattern language can be useful when creating 

sophisticated visualizations. Through a description of four novel visualizations, we have 

explicated how the pattern language supports design creativity and flexibility. For 

instance, the chronology visualization instantiated the coordinate pattern in three different 

ways to facilitate making sense of mortality at different levels of granularity. The 

demography visualization provided a concrete example of how designers can structure 

and encode data items to support tasks. As the external organization of information 

affects how users perform tasks, clear thinking about how to structure multifaceted data is 

of particular importance.  The multifaceted nature of big data tasks requires users to 

perform inter-related tasks. Elaborate visualizations designed in a systematic fashion can 

support these tasks. For instance, with the geography visualization, users can understand 

the cause-risk relationships at a global level, explore the impact of a specific cause in 

different regions of the world, and understand how a specific risk factor impacts countries 

in a region. In conclusion, if we are to support complex health-related tasks effectively, 

our design thinking needs to be research-based and systematic, this facilitating the 
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development of visualizations that model the depth and multifaceted intricacies of big 

data. 

3.6 Limitations 

The work we have presented is part of a larger research plan aimed at developing tools to 

make sense of big health data. The visualizations we developed use reputable data as 

opposed to the full spectrum of data collected by local and international organizations. As 

a result, we did not address issues related to the quality of data. Future work should 

include the incorporation of other sources and types of data, including real-time data.  In 

this paper, we have focused on the visual representation of data, but the manner in which 

the tool provides users with control over tasks is another important factor that influences 

human-data interaction. When dealing with big data, users cannot simply look at the data 

and understand it; additionally, they must be able to interact with it and change its form 

as they perform inter-related tasks. As interaction promotes the gradual unfoldment of 

data within a visualization, it is important to explore how interactions can be incorporated 

in such tools to support users’ tasks better. Furthermore, for the domain to fully embrace 

sophisticated visualizations for big data, there is a need for studies that evaluate the 

impact of visualizations to better understand how they improve users’ discourse with 

data. 
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Chapter 4  

4 Discourse with Health Data: Design of Human-Data 
Interaction 

To be submitted to Multimodal Technologies and Interaction Journal.  

Please note that the format has been changed to match the format of the dissertation. 

Figure numbers mentioned herein are relative to the chapter number. For instance, 

“Figure 1” corresponds to Figure 4-1. Additionally, when the term “paper” or “article” is 

used, it refers to this particular chapter.  

4.1 Introduction 

The massive influx of data has the potential to revolutionize population health efforts and 

enhance personalized medicine. Health data can help reduce healthcare costs, support 

early detection of diseases, improve insurance fraud detection, manage population health, 

and facilitate identification of epidemics or at-risk groups in society (Gotz & Borland, 

2016; Kruse, Goswamy, Raval, & Marawi, 2016; Luo, Wu, Gopukumar, & Zhao, 2016; 

White, 2014). While health data presents rich opportunities, the health community has 

historically been slow to leverage the data (White, 2014). This is in part due to the nature 

of the data. Health data is relatively large, comes from a variety of sources, is generated 

at different velocities, is largely unstructured, and sometimes is erroneous or incomplete 

(Kruse et al., 2016; Raghupathi & Raghupathi, 2014; Viceconti, Hunter, & Hose, 2015). 

These characteristics make it difficult for users to effectively work with the data.  

Interactive visualizations, when properly designed, can provide a way to analyze and 

explore large sets of data. Interactive visualizations can help maintain context during 

exploration, support the identification of patterns, and facilitate a wide variety of tasks in 

which individuals engage in (Fisher et al., 2012; Pretorius et al., 2016). When involved in 

data-driven efforts, the tasks that users perform are mostly non-routine, exploratory, and 

inter-related (Bikakis & Athens, 2016; Fisher et al., 2012; Katsis et al., 2017; Pike et al., 

2009). Users need to be able to interact with data seamlessly to complete these tasks. 
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They need to be able to ask questions and receive a response. As data is accessible 

through the visually-perceptible interface of the tool, the ability of users to complete tasks 

is partially dependent on how effectively the visualization mediates the discourse. This 

back-and-forth between users and the tool is made possible by interaction.  

Through interaction, users can become active participants in the analysis of data. For 

example, interaction can allow users to gradually retrieve or display data. This 

progressive unfoldment of data is critical, as encoding only one aspect of the data in a 

visualization, or encoding too much data, strains the cognitive resources of users 

(Kaufman, Kannampallil, & Patel, 2015).  Allowing users to reveal data gradually within 

a visualization has been shown to be effective in aiding analysts in exploring and 

understanding large, multivariate datasets (Torres et al., 2012). To date, much of the 

interaction available in visualizations allow users to perform simple visual representation 

manipulations and selection of model choices (Ko et al., 2016; Pretorius et al., 2016). 

This is unfortunate, as researchers note that in addition to allowing users to control the 

flow of information, visualizations need to allow users to view data from different 

perspectives (e.g., changing the visual representation form) or add their inferences (e.g., 

annotating data items) (Bikakis & Athens, 2016; Heer, 2013). The more ways users can 

interact with the data, the more involved their discourse is with the data, and the more 

effective their analysis will be (Che, Safran, & Peng, 2013; Endert et al., 2017; Pike et 

al., 2009; Tominski, 2015).  

Researchers have highlighted the need for a deeper understanding of interaction (Aigner, 

2011; Dou et al., 2012; Endert, Chang, North, & Zhou, 2015; Heer, 2013; Murray et al., 

2012; Sedig & Parsons, 2013; Tominski, 2015). In the health field, designers seeking to 

create interactive visualizations are bereft of guidance (Carroll et al., 2014; Folorunso & 

Ogunseye, 2008; Turner et al., 2008). Because visualizations are often designed for 

different domains, the research on how to properly design interaction is fragmented 

across disciplines. There is a need for theoretical structures that can help designers 

systematically create interactive visualizations. Frameworks that bring together concepts 

from multiple fields, provide a consistent vocabulary, and have structure while at the 

same time allowing for designer creativity may be of benefit (Purchase et al., 2008; Sedig 
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et al., 2013; Thomas & Cook, 2005). Sedig et al. have developed a comprehensive 

framework concerned with the different aspects of human-data discourse mediated by 

visualizations tools. In a previous paper, we have demonstrated how designers of health 

visualizations can use elements of the framework to create sophisticated visualizations 

(Ola & Sedig, 2016). The purpose of this paper is to demonstrate how to design 

interaction so that users can engage with data in a more meaningful discourse.  

To this end, the rest of the paper is organized as follows. Section 2 provides necessary 

terminological and conceptual background. Section 3 presents elements of the framework 

relevant to designing interaction. Section 4 details the design process that we developed 

based on the framework. Section 5 presents three scenarios that highlight how users can 

utilize the visualizations in an interactive manner to learn about global health trends. 

Section 6 concludes the paper.  

4.2 Background 

4.2.1 Data-driven Tasks 

The field of health historically has generated massive amounts of data. As far back as the 

1980s, the widening gap between data collection and usage has been discussed (Wurman, 

1989). As humans, our ability to solve problems does not solely rely on the collection and 

storage of data, but in our ability to use the data to complete tasks (Sedig, Parsons, 

Dittmer, et al., 2012).  We conceptualize health tasks as any set of goal-oriented 

behaviors involving the use of health data. As such, our discussion of health tasks is not 

limited to one specific task but encompasses a variety of tasks in which individuals 

engage. This includes, but is not restricted to, health professionals using data to diagnose 

patients, ascertain the cause of disease, and determine if there is an outbreak, and 

laypeople using data to understand their treatment options, explore risk factors that relate 

to a disease, and seek support from an online community.  

In the context of interactive visualizations, tasks can be thought of as having three 

aspects: cognitive, visual, and interactive (Sedig & Parsons, 2016). Cognitive tasks are 

conscious and deliberate mental processes such as generating hypotheses, comparing 

them to existing mental structures, and constructing analogies (Parsons & Sedig, 2013b). 
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Visual tasks are behaviors carried out by our visuoperceptual system as we look at 

visualizations (Sedig & Parsons, 2016).  For instance, consider the scenario in which an 

individual is using a choropleth map to understand the distribution of HIV/AIDS in South 

Asia. Some of the visual tasks may include locating Bhutan and perceiving which nation 

has the highest mortality rate. Interactive tasks require users to manipulate the visual 

representation. For instance, in the example above, the user may need to rank nations 

based on mortality rate, identify the nation with the lowest transmission rate, and assess 

countries to determine those that would benefit most from external aid. In this paper, our 

discussion centers on how to support interactive tasks.  

At a fundamental level, tasks are emergent in nature, co-occurring, and can be performed 

in an iterative and ill-defined manner (Knauff & Wolf, 2010; Sedig & Parsons, 2013). In 

many situations completing tasks in a straightforward progression is unlikely and may be 

impossible (Bikakis & Athens, 2016; Pike et al., 2009). As users interact with data, new 

questions arise that may change which tasks need to be performed, as well as the order in 

which they are executed. It is important to allow users to not only complete a single task 

but engage in a series of tasks in the manner of their choosing (Sedig & Parsons, 2013). 

In the next section, we briefly discuss how visualizations support users’ tasks. 

4.2.2 Visualization Tools 

In this paper, we use the term visualization to refer to computational tools that represent 

data primarily in a visual format and allow users to manipulate how the data is shown. 

Visualizations can extend the capacity of individuals to use complete tasks (Sedig & 

Parsons, 2016; Shneiderman et al., 2013).  When using visualizations to mediate a user’s 

discourse with data, there is a partnership in which data processing is shared between the 

tool and the user (Sedig, Parsons, & Babanski, 2012). For instance, a doctor who needs to 

diagnose a patient may first observe the patient’s symptoms. Next, she may use a 

visualization to view the summary of the patient’s medical history before asking for 

certain tests to be done. This partnership between the user and the tool allows for the 

computational strengths of the tool to be used in conjunction with human abilities.  
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As data is accessible through the visually-perceptible interface of the tool, the user’s 

ability to complete tasks is partially dependent on how effectively the tool encodes data 

(Dou et al., 2010; J. Zhang, 2001). Even when the visual elements of the tool are properly 

designed, there still exists a perceptual and cognitive distance between the internal and 

external realms (Kirsh, 2009; Z. Liu & Stasko, 2010). In other words, a gap exists 

between the user’s internal representations and the tool’s external representations. Hence, 

part of the process involves users coordinating these distinct representational forms. 

Interaction allows users to harmonize and coordinate their mental representations with 

the external visual representations (Kirsh, 2009; Z. Liu & Stasko, 2010; Sedig & Parsons, 

2013; Ziemkiewicz & Kosara, 2007). In the next section, we discuss the role of 

interaction. 

4.2.3 Interaction 

When discussing visualization tools, interaction can be conceptualized as the actions 

users perform and the consequent reactions that occur via the tool’s interface (Parsons & 

Sedig, 2013b). Interaction is critical to human-data discourse as it allows users to engage 

in the process of testing assertions, assumptions, and hypotheses (Endert, North, Chang, 

& Zhou, 2014). The ability of users to pose questions and get answers from the data is 

made possible by interaction (Pike et al., 2009). Also, interaction can strengthen the 

partnership between users and the tool. This is important as humans have an irreplaceable 

role in the analysis process. For example, even when using advanced statistical 

techniques, human judgment plays a vital role in outlier analysis tasks (Cao, Lin, Gotz, & 

Du, 2017). Through interaction, the analysis of data can be user-directed and this is 

beneficial for several reasons. First, it promotes a seamless flow of data and reduces the 

cognitive load of users  (Kaufman et al., 2015). Second, it allows for the incorporation of 

the users’ knowledge in the analysis process (G. Andrienko et al., 2007; Parsons & Sedig, 

2013b; Thomas & Cook, 2005; Tominski, 2015). Furthermore, interaction allows users to 

adjust features of the tool to suit their cognitive, perceptual, and contextual needs, thus 

better supporting their exploration experience (Bikakis & Athens, 2016; Kamel Boulos, 

Viangteeravat, Anyanwu, Ra Nagisetty, & Kuscu, 2011).  
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If we are to use visualizations to capitalize on the potential of collected health data, 

interaction must allow users to reach into the dataset and perform various tasks. As 

human judgment is at the center of successful data analysis the more ways humans can 

control their discourse with data the better their analysis will be (Fisher et al., 2012; Heer, 

2013; Pike et al., 2009). Pike et al. note that “this manipulative aspect is crucial; the more 

ways users can ‘hold’ the data; the more insight will accumulate” (Pike et al., 2009).  In a 

survey of visualizations for web-linked data, researchers note that visualizations need to 

have interactions that provide users with the ability to customize the exploration 

experience based on their preferences and the problem requirements (Bikakis & Athens, 

2016). To this end, users need to be able to view data from different perspectives (i.e., 

changing the visual representation form), select latent data (i.e., filtering or drilling into 

the data), or add their inferences (i.e., annotating data items).  

There is a need for tools that allows humans to have more control in the analysis and 

exploration of data (Bikakis & Athens, 2016; Elmqvist et al., 2011; Endert et al., 2015; 

Fisher et al., 2012; Greitzer, Noonan, & Franklin, 2011; Ko et al., 2016). To date, much 

of the interactive tasks that are supported by visualization tools allow users to perform 

simple visual representation manipulations (e.g., panning and zooming) and selection of 

model choices (e.g., selecting Naïve-Bayes or Support Vector Machine technique). In a 

recent survey of biomedical visualizations, it was observed that tools typically offer 

interactions like rotating and zooming, but provide limited support for querying and other 

more advanced interactive tasks (Pretorius et al., 2016). Ko et al. conducted a survey of 

visualizations for financial data and noted that most visualizations failed to support tasks 

such as exploring, annotating, and linking (Ko et al., 2016).  In a survey of malware 

visualizations tools, it was noted that most tools did not have interactions that allowed 

users to incorporate their knowledge sufficiently in the analysis process (Wagner et al., 

2015).  Creating visualizations that effectively support users’ interaction with data is not 

a trivial task. The process requires a proper understanding of interaction. In the next 

section, we present conceptual constructs that can help systematize the design of 

interaction. 
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4.3 Elements of Theoretical Framework 

4.3.1 Conceptualization of the Human-Data Discourse 

In the framework developed by Sedig and Parsons, the human-data discourse mediated 

by visualization tools is characterized at four levels of granularity: events, actions, tasks, 

and activities (shown in Figure 1). Events are physical occurrences that users perform on 

the visualization. Examples include clicking, touching, and swiping. As users complete 

these events, epistemic actions emerge. Epistemic actions are actions taken to transform 

the world to facilitate mental information-processing needs (Sedig & Parsons, 2013). In 

other words, actions alter the visualization in a manner that supports mental processes. 

Let us consider a situation in which a data analyst needs to assess health trends for 

individuals over the age of 70. The analyst may choose to filter the data; to do this, he 

may click on a visual item or swipe the screen to reveal a sub-menu that he then clicks on 

to filter the data. Through a combination of events, the analyst can perform the action of 

filtering. Table 1 includes a subset of the actions identified in the framework (Sedig & 

Parsons, 2013). 
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Figure 4-1: Conceptualization of the human-data discourse 

At the next level is interactive tasks. Interactive tasks are goal-oriented behaviors that 

emerge from the completion of actions. For example, to complete the task of triaging 

with a visualization, an ER nurse may need to arrange patient records based on the 

severity of symptoms, and then annotate each record to assign a priority level. The 

performance of tasks leads to the emergence of activities. Activities (e.g., decision-

making, analytical reasoning, problem solving) are made up of not only interactive tasks, 

but visual and cognitive tasks as well.  For instance, for an epidemiologist to decide that 

an epidemic of West Nile virus exists, she may have to engage in the cognitive task of 

testing a hypothesis, the visual task of observing the spread of the disease on the 

visualization, and the interactive task of categorizing the severity of the disease in each 

country. While our discussion is focused on interactive tasks, it is worth mentioning that 

cognitive and visual tasks can also be characterized at multiple levels of granularity.  

The conceptualization of the human-data discourse as a multi-leveled phenomenon is of 

benefit because it helps designers structure the design process (Tominski, 2015). Let us 
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imagine a doctor who needs to diagnose a patient. How does one create a visualization 

that supports diagnosis? First, designers can break down the activity into a series of tasks 

that doctors typically perform with data. Next, for each task, designers can select 

epistemic actions that facilitate the data-based mental processes of physicians. For 

instance, for doctors to assess the patient, they may need to be able to filter out 

extraneous data, select relevant medical information, and compare current physiological 

data to previous data. Once actions have been determined, designers can then decide how 

to best operationalize them with events. 

Table 4-1: Some of the epistemic actions from (Sedig & Parsons, 2013) 

Action Characterization: acting upon visualizations to … 

Annotating augment them with additional visual marks and coding schemes, as personal 
meta-information 

Arranging change their ordering, either spatially or temporally 

Blending fuse them together such that they become one indivisible, single, new 
visualization 

Comparing determine degree of similarity or difference between them 

Drilling bring out, make available, and display interior, deep information 

Filtering display a subset of their elements according to certain criteria quantify 

Navigating Move on, through, and/or around them 

Searching seek out the existence of or locate position of specific items, relationships, 
or structures 

Selecting focus on or choose them, either as an individual or as a group 

Translating convert them into alternative informationally- or conceptually-equivalent 
forms 

Collapsing/ 
Expanding 

fold in or compact them, or conversely, fold them out or make them diffuse 
assemble 

Linking/ 
Unlinking 

establish a relationship or association between them, or conversely, 
dissociate them and disconnect their relationships 

4.3.2 Quality of Interaction 

The manner in which interaction is operationalized contributes to the quality of users’ 

discourse with data and thus is an important consideration for designers (Elmqvist et al., 

2011; Sedig, Parsons, Liang, & Morey, 2016). For instance, one visualization might 

allow users to perform a series of actions that changes the subset of data visualized, while 

another may only allow users to change aesthetic qualities of the visualization such as 

size and color. While both visualizations are interactive, the difference is in the quality of 

the interaction. The mere presence of interaction does not equate to effectiveness. The 
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distinction between interaction and the quality of interaction is important because if the 

quality of interaction is inadequate, the ability of users to complete tasks will be 

negatively impacted (Sedig et al., 2013). In our subsequent discussions, we will refer to 

the quality of interaction as interactivity.  As the exploration and analysis of data require 

the performance of inter-related tasks, it is important to examine interactivity at the level 

of actions. At this level, interactivity is concerned with how the combination and 

chaining of individual actions affect and facilitate tasks. Sedig et al. have identified some 

factors that influence interactivity at the level of actions. In this paper, we focus on two of 

those factors: complementarity and flexibility (Sedig et al., 2013).   

Complementarity is concerned with how well actions work with and supplement each 

other. It is important to provide users with actions that, when performed in conjunction, 

lead to the emergence of a task. Studies suggest that complementary actions can 

contribute towards the completion of sensemaking tasks (Groth & Streefkerk, 2006; 

Sedig et al., 2016; Siirtola & Räihä, 2006; Wang, Wongsuphasawat, Plaisant, & 

Shneiderman, 2011). For example, in a study on making sense of 4D mathematical 

structures, the authors note that providing complementary actions can enhance users’ 

discourse with the data (Sedig et al., 2016). Furthermore, complementary actions support 

flexibility by increasing the ways in which users can complete a specific task (Tominski, 

2015).  For each task, designers should consider which actions should be used in 

conjunction. For instance, let us examine the task of triaging data; designers can allow 

users to filter the data, and select and annotate an encoded data item for further analysis. 

Thus, the actions of filtering, annotating, and selecting should be operationalized.  

Flexibility is concerned with the degree to which users can adjust properties of the 

interface to suit their preferences, characteristics, and goals. This factor is of great 

importance in health, as past computational tools that adopted a one-size-fits-all approach 

failed to sufficiently support the diverse user groups and their needs (Berner & Moss, 

2005; Turner et al., 2005, 2008). One way of making a visualization flexible is by 

allowing users to adjust properties of the visualization. Sedig and Parsons have identified 

essential properties of visualizations that influence cognitive and visual processes 

(Parsons & Sedig, 2013a). As activities emerge from the completion of cognitive, visual, 
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and interactive tasks, it is important for us to consider how manipulating the visualization 

(i.e., performing interactive tasks) facilitates cognitive and visual tasks. Some of the 

adjustable properties include:  

o Appearance: aesthetic features (e.g., color and texture) by which information 

items are encoded in a visualization 

o Complexity: degree to which encoded data items exhibit elaborateness and 

intricacy in terms of their quantity and interrelationships in a visualization 

o Configuration: manner of arrangement, organization, and ordering of data items 

that are encoded in a visualization 

o Density: degree to which data items are encoded compactly in a visualization 

o Interiority: degree to which data items are latent and remain hidden below the 

surface of a visualization, but are potentially accessible and encodable 

o Type: form of a visualization in which data items are encoded 

In this section, we have highlighted two elements of the framework that can influence 

interaction design. In the next section, we present a design process based on these 

elements.  

4.4 Systematic Design of Interactions 

Here we present a process for designing interaction health visualizations. We first 

explicate the design process and then illustrate the process with an example. 

4.4.1 Design Process 

The process has four main stages: analyzing data and tasks, mapping tasks to actions, 

linking actions to adjustable properties in the visualization, and operationalizing actions 

with events. Figure 2 depicts the major stages. 
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Figure 4-2: Interaction design process for visualizations 

The first stage is concerned with understanding the data and users’ tasks. At this stage, 

designers need to consider the sources of data, how often the data is updated, as well as 

the properties, relationships, and typology of data items.  Task analysis requires an 

explication of users’ intended activities and tasks. In this stage, we are primarily 

concerned with determining what the users’ goals and intentions are in relation to the 

data. For more information on how to analyze data and tasks, the interested reader can 

consult (Munzner, 2014; Sedig & Parsons, 2016; Tominski, 2015; Ward, Grinstein, & 

Keim, 2015).  

The second stage involves selecting actions for each task. In this stage, designers need to 

consider how users will manipulate the data via the interface of the tool. While it may 

seem that having every possible action operationalized is a good idea, research indicates 

that too many actions may result in a high time consumption and increased cognitive 

demand, thus negatively impacting users ability to complete tasks (Lam, 2008; van Wijk, 

2006). At this stage, it is beneficial to itemize the actions that will contribute to the 

completion of each task and then check to see whether the selected actions are 

appropriate for the users and the context in which the tool will be used.  

The third stage is concerned with linking actions to properties in the visualization that can 

be adjusted. As previously mentioned, interaction is composed of the action of the user 

and the reaction that takes place in the tool. The reaction is evident in the change in 
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Stage 2:

Selecting 
epistemic actions 

for tasks

Stage 1: 

Analyzing data 
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certain properties of the visualization. The manipulation of the properties can influence 

cognitive and perceptual processes, thereby strengthening the bond between the user and 

the tool (Parsons & Sedig, 2013a). Designers need to determine which properties of the 

visualization would need to be adjusted so that an action can be performed.  

The last stage involves the operationalization of actions with lower-level events. In this 

stage, designers need to consider how to present each action so that users know it is 

available and how to activate it (i.e., use it). One consideration at this level is the number 

of events necessary to complete an action. For instance, if a user needs to drill, does he 

first click the visual item, drag it into a bin, and then click a button? Or can he just click 

the item and drilling occurs? Another consideration at this level pertains to when the 

reaction occurs. Should it occur immediately or be delayed? While in this paper we do 

not discuss interactivity at the level of events, it is an important aspect that impacts the 

human-data discourse. For more information on interactivity at the level of events see, 

(Sedig et al., 2013) and (Sedig, Haworth, & Corridore, 2015).  

The design process outlined above is an iterative one. The process can be carried out 

multiple times for each visualization or sub-visualization that exists in the tool. Typically, 

the design of interaction happens in conjunction with the design of the visualization, thus 

providing designers with maximum flexibility. However, even with previously designed 

static visualizations, designers can engage in the design process to make them interactive.  

4.4.2 Illustration 

We have created a visualization tool to facilitate making sense of the global burden of 

disease. This tool includes visualizations that allow users to explore the demographical, 

geographical and chronological distribution of mortality. In this section, we illustrate how 

the design process helped systematize the design of interaction for the demography 

visualization.  

The Institute for Health Evaluation and Metrics (IHME) aggregated the data used in our 

tool (Lozano et al., 2012). The datasets include over 12 million records that present 

estimates of mortality for causes, risk factors, cause-clusters and risk-clusters. We use the 
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term cluster to refer to an intermediary level of grouping. For example, the physiological 

risk-cluster includes the following risk factors: high blood pressure, high body-mass 

index, high fasting plasma glucose, high total cholesterol, and low bone mineral density. 

The datasets include 235 causes of death that are grouped into 21 cause-clusters which 

are further aggregated into three main groups: 1) non-communicable, 2) injury-based, and 

3) communicable, maternal, neonatal, and nutritional.  The datasets also include estimates 

for 57 risk factors which are grouped into 10 risk-clusters and further categorized into 

three groups: 1) behavioral, 2) metabolic, and 3) environmental and occupational. From a 

geographical perspective, mortality rates are aggregated at the level of regions or location 

clusters. From a geographic standpoint, the datasets include estimates for 187 countries 

which belong to 21 regions (e.g., eastern Europe, southern sub-Saharan Africa, and 

tropical Latin America). In terms of age groups, mortality is aggregated into 17 age 

groups and also at a higher level into five main age groups: 1-4, 5-14, 15-49, 50-69, and 

over 70. For more information on how the data was collected and aggregated, refer to 

(Lozano et al., 2012). 

The demography visualization shows the distribution of mortality by age group. In its 

initial configuration, the visualization, shown in Figure 3a,  encodes over 800 data items. 

The risk-clusters and cause-clusters are encoded as arcs. Each visual item also encodes 

the group to which the cluster belongs. For the cause groups, we use blue, red, and black 

for non-communicable, communicable, and injury clusters, respectively.  For the risk 

groups, we use light shades of orange, green, and pink for metabolic, behavioral, and 

environmental and occupational risk groups, respectively. The location clusters are 

encoded as grey bars. The clusters are ranked and arranged according to their mortality 

rate per 100,000 people. For the cause and risk aspects, the cluster with the highest rank 

is on top, while location clusters are arranged in descending order from left to right. 

Figure 3b shows an enlarged portion of the visualization. For certain age groups, not all 

risk- or cause-clusters contribute to mortality; these clusters are encoded as light grey 

circles. Through observation, users are able to learn about how mortality affects different 

age groups. That being said, the visualization is densely packed, and without interaction, 

it will be difficult for users to perform various tasks. 
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Figure 4-3: (a) Overall visualization for demography (b) Enlarged partial 

demography visualization 

Being that the visualization has already been designed, we do not delve into an analysis 

of the data in this section. For more information on the data, consult the research that 

focuses on the design of the visualization (Ola & Sedig, 2016).  Next, we must analyze 

the activities and tasks of users. The overall activity that the visualization supports is 

sensemaking. Sensemaking typically involves users performing a variety of tasks 

including searching and filtering data; organizing, categorizing, and examining relevant 

data; developing, proving, and discarding hypotheses; and integrating data into mental 

models (Parsons & Sedig, 2013b). More specifically, to make sense of the demographic 

distribution of mortality, users need to be able to identify the ranking of clusters, explore 

mortality rates and ranking across age groups for different aspects (i.e., cause, risk, or 

location clusters), assess mortality across geographical regions, explore age-specific 

trends, examine the distribution of mortality at lower levels of granularity, and investigate 

relationships that exist across aspects.  

To facilitate the completion of these tasks, we need to determine the epistemic actions 

from which the tasks emerge. For users to be able to identify a cluster’s ranking, we will 

need to enable users to select each cluster that is represented. To facilitate exploration 

users need to be able to select, search for, and filter clusters. In order to assess mortality 

for specific age groups, users need to be able to select, filter, and compare data items. In 
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the visualization, mortality is depicted at the level of clusters. To allow users to 

investigate the distribution of mortality at lower levels of granularity (e.g., country); users 

need to be able to retrieve data that is latent in the system. To do this, they will need to be 

able to drill. To allow users to explore relationships that exist, they need to be able to link 

and unlink items. 

Before we operationalize the itemized actions, it is important to consider if there are 

additional actions that may work in tandem with the chosen actions. For example, our 

visualization has many data items encoded in its default configuration and as a result 

identifying a specific item may become tedious. In order to support identification, it 

would be beneficial to allow users to reduce the amount of data visualized at a point in 

time. Collapsing and expanding are two actions which enable users to control the number 

of items visualized. Allowing users to collapse and expand portions of the visualization 

can help reduce the burden that high degrees of density may cause.  In addition, it may be 

advantageous to allow users to change the visualization in order to assess the properties 

of data items. Different types of visualizations have different benefits and limitations for 

communicating information (Munzner, 2014), and as a result changing the visualization 

may support users in understanding the various aspects of the data. Translating is the 

action that allows users to convert visualizations to an alternative informationally- or 

conceptually- equivalent representation. A similar process of determining complementary 

actions was carried out for the other tasks and no additional actions were identified. At 

the end of stage two, the final list of actions is selecting, searching, filtering, drilling, 

comparing, linking, unlinking, collapsing, expanding, and translating.  

Now that we have our list of actions we need to determine which properties of the 

visualization will be manipulated. In other words, we need to determine the reaction (i.e., 

how the visualization will change). Selecting is concerned with focusing on an item or 

group of items, searching is concerned with seeking out specific items or relationships, 

and filtering is concerned with displaying a subset of elements that meet specific criteria. 

For these three actions, changing the aesthetic features (e.g., color, texture, saturation) 

can facilitate and increase the speed of identification of visual items. For example, in 

Figure 4a, the risk track has been selected and the saturation of the cause and location 
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visual items has been altered. In Figure 4b, the cause track has been filtered and only the 

visual items for nutritional deficiencies are emphasized. 

 

Figure 4-4: (a) Risk track emphasized (b) Nutritional deficiencies cluster 

emphasized in the cause track 

Linking allows users to establish a relationship or association between items. To support 

linking and unlinking, we need to allow users to alter the complexity of the visualization. 

Complexity is an adjustable property concerned with the quantity and relationships 

between data items in the visual representation. Research indicates that a significant 

burden is placed on the mental faculties of users when the complexity is not suitable for 

the task at hand (Moody, 2007).  If users were not able to manipulate the configuration, 

the sub-visualization would look like Figure 5a.  Alternatively, the approach we take is to 

have the data items shown without any relationships (see Figure 5b) and allow users to 

select which relationships to explore (see Figure 5c). 
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Figure 4-5: (a-c) Different states of the demography visualization with complexity 

adjusted 

Comparing is concerned with determining the degree of similarity or difference between 

items. It is worth mentioning that the word comparing can be used to refer to a visual, 

cognitive, or interactive task. In this paper, we use the word comparing in the interaction 

realm but at the level of actions and not tasks. In other words, comparing refers to the 

ability of users to select two or more visual items so that the tool will emphasize 

differences and similarities. In this context, in addition to selecting the item that will be 

compared, users may need to change the arrangement, organization, or ordering of items 

(i.e., altering the configuration). Translating, is concerned with converting the 

visualization into an alternative form. To facilitate this action, we will allow users to 

change the visualization’s type.  

Next, we need to determine which property needs to be adjusted so that users can 

collapse and expand segments of the visualization.  The main idea behind collapsing and 

expanding is changing the amount of data visualized at a specific point in time. Density is 

concerned with the degree to which items are compactly encoded in a visualization. 

Research indicates that when the density is too high, perceptual tasks such as locating and 

extracting pertinent information becomes difficult (Rosenholtz, Li, & Nakano, 2007).  

That being said, sometimes it is beneficial to have a high level of density as it may allow 

users to obtain a high-level overview of the data (Hornbæk & Hertzum, 2011). By giving 

users control over the number of data items encoded, they are able to control the density 
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to suit their needs. Figure 6(a – c) shows three possible states of the demography 

visualization when density is varied. 

 

Figure 4-6: (a) Collapsed location and risk tracks (b) Collapsed cause track (c) 

Collapsed risk track 

Drilling is concerned with revealing data that is not currently visualized. To do this, we 

need to allow users to change the degree to which data items are latent and remain hidden 

in the visualization. In the default arrangement of the visualization, users can obtain an 

overview of the demographic distribution of mortality, but if they wanted to learn about 

mortality rates for children living in Eastern European countries, they would need to 

access data that is not currently visualized. By adjusting the interiority of the 

visualization, we enable users to access this data, thus controlling the flow of 

information.  

Now that we have determined the adjustable properties, in the last stage we focus on the 

events the users will perform on the visualization to prompt the change. To ensure 

consistency in how users interact with the tool we opted to use the clicking event. In 

addition to clicking visual items, buttons were used to indicate the presence of actions 

that required multiple events. For example, to filter cause-clusters, users will first need to 

click on the filter button for cause-clusters, so that different cluster options are presented, 

and then click on the cluster they wish to focus on. 
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4.5 Scenarios 

The three visualizations presented in this section are part of a tool designed to facilitate 

making sense of the global burden of disease. The first visualization is the demography 

visualization from the preceding section, while the other two visualizations focus on the 

geographical and temporal distribution of mortality. For each visualization, we present a 

scenario to illustrate how through interaction users can engage in a meaningful discourse 

with data to learn about global health trends. 

4.5.1 Demography Visualization 

Let us consider a college student who is interested in knowing the causes of death for 

young people. The student may start by learning the rank of different cause-clusters. To 

focus specifically on causes, he collapses the risk and location parts of the visualization 

as shown in Figure 7a. At this point, he observes that for individuals between the ages of 

15 and 34, injury-related causes of death are highly ranked (i.e., for each age group in the 

range, black-colored arcs are in the top 5 positions). To explore the demographical 

distribution, he may choose to filter by cause-cluster. Figure 7b depicts the state of the 

visualization when the self-harm and interpersonal violence cluster is filtered. He 

continues this process until he understands the ranking of clusters. One trend he observes 

is that mortality from neglected tropical diseases and malaria decreases as one gets older.  

He also observes an opposite trend for cardiovascular and circulatory diseases. To obtain 

a better understanding of what causes make up the self-harm and interpersonal violence 

cluster, he drills and then explores the mortality rates, as shown in Figure 7c. At this 

point, he can assess death rates and may notice that self-harm has a higher mortality rate 

than assault by firearm for individuals between the ages of 15 and 19. By clicking on 

each arc, he notices that the same trend applies to the other young adult age groups (i.e., 

20 – 24, 25 – 29, 30 – 34). This dispels a previous notion he had that assault by weapon 

was the primary cause of death on a global scale for young people. At this point, he 

collapses the cause part, expands the risk part and engages in a similar exploration of risk 

factors. Next, he chooses to explore mortality across geographical regions. By filtering, 

he learns that the location cluster with the highest mortality rate for young people is 

southern sub-Saharan Africa. He focuses specifically on the age group 25 – 29 and 
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notices that for this age group, in addition to the injury-related cause-clusters, there is a 

communicable cluster (i.e., red colored arc) that is highly ranked. He drills to retrieve 

latent data that relates to the causes that make up this cluster. As shown in Figure 7d, 

tuberculosis (TB) and two types of HIV/AIDS make up this cluster. At this point, he 

explores the relationship between cause, risk and location clusters. By drilling and linking 

visual items, he notes that there are five location clusters with a strong relationship 

between HIV/AIDS & TB  and the physiological risk-cluster.  The student can continue 

to interact with the data and learn more about mortality for different age groups. 
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Figure 4-7: (a-e) Screenshots of the demography visualization 

4.5.2 Geography Visualization 

The next visualization supports making sense of the burden of disease from a geographic 

perspective. One of the datasets we use quantifies mortality as attributed to each risk for 

each cause of death, thus focusing on the relationship between causes and risks. 
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Additional datasets utilized include the global, regional, and country-level estimates of 

mortality for causes, cause-clusters, risk-clusters, and risks.  

Depicted in Figure 8, the top half of the visualization details relationships between risks 

and causes at a global level, as well as the geographical distribution of mortality for a 

selected risk or cause across the 21 regions of the world. The circular sub-visualization 

on the left shows the relationship between causes and risks. Each cause is encoded as an 

arc, while each risk factor is encoded as a circle. Risk factors are colored and clustered 

together to emphasize their grouping. For instance, the largest orange circle represents 

high blood pressure (HBP), the color orange signifies that HBP is a member of the 

metabolic group. Causes and their clusters are arranged circularly based on their group 

and are similarly colored. The links between the arcs and the circles represent the 

attributed mortality between a cause and risk factor. The circular sub-visualization on the 

right shows the same information but in a different manner. In this visualization, the 

causes are encoded as circles while the risk factors are encoded as arcs. For instance, the 

largest blue circle represents ischemic heart disease, while the longest green arc 

represents the cluster dietary risks and physical inactivity. One reason why both 

representations are shown is that they emphasize different aspects of the data and thus 

may facilitate different tasks. The choropleth map in between them shows the 

geographical distribution of death for a selected cause, risk, or cluster across regions of 

the world. In its default configuration, the bottom half of the visualization is comprised of 

four main elements. The first is the circular track, which is divided into 21 segments each 

representing a region of the world. The second part is the flow diagram, which is in the 

center of the track. The flow diagram shows the relationships between cause- and risk-

clusters for a specific region. The last two parts are heatmaps which are located on either 

side of the flow diagram. The heatmaps show the mortality rates for countries for each 

cause or risk in the selected clusters.  

To design interaction, we analyzed the tasks in which users may engage. These tasks 

include examining mortality or the relationship between causes and risk factors at 

different levels of granularity, focusing on a region, assessing the variability of mortality, 

exploring prevalent causes and risks for regions, and discovering the similarities and 
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differences of the burden of disease between two regions, or between countries in a 

region. To support these tasks we have operationalized the following actions, selecting, 

drilling, filtering, searching, arranging, translating, and comparing. Similar to the 

demography visualization, to activate or initiate an action, users can either click on a 

visual item or for compound interactions (i.e., interactions that involve multiple steps), 

click on the appropriate button. 

 

Figure 4-8: Geography visualization with hypertensive heart disease and the 

Caribbean selected 

Let us imagine a situation in which an employee of a non-governmental agency needs to 

develop a proposal that reduces mortality by tackling risk factors in high-risk regions of 

the world. Using the circular sub-visualizations, she can select a risk factor or cluster to 

determine the distribution across the regions of the world. An alternative approach may 

be to search for a specific risk factor using the searching capabilities of the tool. Figure 

9a shows the top half of the visualization when alcohol use has been selected. 
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Unfortunately, while this view allows her to see how alcohol affects different regions, it 

is not effective in determining whether eastern Europe has a higher rate than east Asia. 

To address this issue, she switches the representation to a bar chart as shown in Figure 9b 

and observes that eastern Europe has the highest rate. Next, she drills to obtain a more 

detailed view of the relationships between causes and risk factors for eastern Europe as 

shown in the bottom half of Figure 9b. As she also wants to understand how alcohol use 

affects each country in the region, she drills to display country-level data related to 

substance abuse.  The heatmap in the lower left portion of Figure 9b depicts how both 

alcohol and drug use affect the nations in eastern Europe. By filtering, she can ascertain 

the countries in eastern Europe that have a high mortality from alcohol use (i.e., Belarus, 

Russia, and Ukraine). The employee repeats this process of searching for risk factors, 

determining the region that has the highest mortality rate, and exploring the distribution 

at the level of countries until she has a better understanding of which nations can benefit 

from intervention measures directed at certain risk factors. 
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Figure 4-9: (a-b) Screenshots of geography visualization with alcohol use and 

eastern Europe selected 

Next, to assess the similarities in mortality between geographical areas, she compares. 

Figure 10a shows the bottom of the visualization when she is comparing the regions of 

western and central sub-Saharan Africa. Next, she decides to contrast the mortality rates 

for cause-clusters across countries in central Europe. To identify the cause-cluster that 

has the highest mortality rate for Bulgaria, she can choose to re-arrange the heatmap as 

shown in Figure 10b. An alternate and time-consuming approach would be to select each 

one of the clusters, and mentally keep track of the cluster with the highest mortality rate.  
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Next, she re-arranges the heatmap by cause-cluster (as opposed to country) because she is 

interested in determining which country has the highest rate of death from diarrheal 

diseases. While she may be deviating slightly from her original task of understanding the 

impact certain risk factors have, the interactive nature of the tool supports this 

divergence. Next, she chooses to investigate on a global level which regions are most 

affected by diarrheal diseases and so she returns to the top half of the visualization and 

selects that cluster (top of Figure 10c). At this point, she notices that diarrheal diseases 

significantly impact regions in Africa and that Oceania is also impacted.  She decides to 

take a break and will pick up her exploration by examining the risk factors that 

significantly contribute to death in countries in Oceania. In this scenario, the professional 

was able to navigate between data aggregated at different levels. She started with 

exploring the cause-risk relationship at a global level, then moved on to exploring how 

risk factors affect different regions of the world, and ended her session by learning about 

the impact of certain diseases for specific nations.  
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Figure 4-10: (a-c) Screenshots of geography visualization that emphasize 

comparison 
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4.5.3 Chronology Visualization 

The last visualization we present facilitates the understanding of temporal trends of 

mortality. The data utilized includes estimates of mortality at regional and global levels 

for each cause and cause-cluster. The estimates are at five different points in time: 1990, 

1995, 2000, 2005, and 2010. The visualization has three main parts (see Figure 11). The 

first part (i.e., the left panel) presents the ranking for cause-clusters at a global level. Each 

rectangle represents a cause-cluster for a specific year. We use color to represent the 

group to which each cluster belongs, and the position of the rectangle represents the 

cluster’s rank. The scale on the left side shows the rank values from 1 to 21, with 1 

representing the cluster with the highest mortality rate. For instance, one can notice that 

the cardiovascular diseases cluster is consistently ranked number 1, while the nutritional 

deficiencies cluster starts at position 11, goes up to position 9 and drops to position 16. 

Embedded within each rectangle is the hierarchical and proportional make-up of the 

cluster.  Each cluster is comprised of several causes, each with varying prevalence. For 

example, the HIV/AIDS & TB cluster is made up of three causes: Tuberculosis, HIV 

from TB, and HIV diseases resulting in other unspecified diseases. In 1990 tuberculosis 

accounted for over 80% of the deaths in this cluster, but by 2010, tuberculosis accounted 

for less than 50%. The proportion of each cause for a cluster is also depicted in the 

second panel. This sub-visualization uses a multi-line chart to depict the proportion of 

mortality for causes.  
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Figure 4-11: Chronology visualization 

The third part of the visualization uses area charts to depict the temporal distribution of a 

selected cluster for each region of the world. For example, one can observe that for South 

Asia, death from HIV & TB has decreased over the 20-year period. The area charts are 

arranged according to their mortality rate, with the region with the highest mortality rate 

at the top. To design interaction, we once again considered the tasks that users would 

perform with the data.  These tasks include assessing trends for cluster-specific mortality 

at a global and regional level, comparing cause and cause-cluster ranks, exploring 

temporal trends within a cluster on a global scale, and comparing rates between 

geographical regions. To support these tasks, we have operationalized the following 

actions: selecting, drilling, filtering, arranging, collapsing, expanding, and comparing.  

For this last scenario, let us imagine a student, enrolled in a global health course, who has 

an assignment that requires him to answer the following questions: 

1. Between 1990 and 2010, which cause-cluster increased in rank the highest? 
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2. Over the 20-year period, what was the highest rank for liver cirrhosis? 

3. Between 1990 and 2005, which digestive diseases significantly decreased in 

proportion? 

4. Which region of the world had the lowest mortality rate from cardiovascular and 

circulatory diseases between 1995 and 2005? 

After reading over the questions, the student recognizes that the first three questions do 

not require regional-level data, and so he collapses the third panel. Through selecting 

each cluster, he observes that the neurological disorders cluster increased from position 

17 to 12 over the 20-year period. He selects this cluster (see Figure 12a), writes down the 

answer, and then proceeds to the second question. To determine the highest rank for the 

liver cirrhosis cluster, he changes the time range and then selects the cluster as shown in 

Figure 12b. He notes that the highest position for liver cirrhosis was 13 in 2010. To 

discover the digestive disease that significantly decreased in proportion between 1990 

and 2005, he changes the time range, selects the cluster and then focuses his attention on 

the cause mortality panel. Next, he performs a visual search and determines that peptic 

ulcer significantly decreased in proportion (see Figure 12c). To answer the last question, 

he collapses the cause panel and expands the region panel as shown in Figure 12d, and 

also changes the time frame so that only data between 1995 and 2005 is visualized. Next, 

he selects the cardiovascular and circulatory disease cluster and notices that Eastern Sub-

Saharan Africa has the lowest mortality rate during the specified time frame. 
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Figure 4-12: (a-d) Chronology visualization screenshots 

The scenarios presented in this section briefly highlight some of the ways in which users 

can interact with the underlying data. In the first and second scenarios, we demonstrated 

how exploring the data in an open-ended fashion may occur. In the third scenario, we 

focused on how users can use the visualization to address specific questions. We have 

shown that when interaction is designed in a systematic fashion; users can perform a 

variety of tasks. The way users perform tasks is dependent on the complementary actions 

made available to them and the way in which the visualization reacts to their prompting. 
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4.6 Conclusion 

Data has the potential to impact health care efforts positively. However, in the past, the 

health community has been slow to leverage the data and capitalize on the opportunities it 

presents. This is partially due to the complexity of the data and the challenges it presents 

for individuals trying to complete tasks. Interactive visualizations can play a role in 

supporting data-driven health tasks. While research indicates that visualizations allow 

users to interact with the data, to date, recent surveys suggest that much of the interaction 

in visualizations allows for simple manipulations. 

In this paper, we contend that when dealing with large sets of data, users need to be able 

to interact with it and change its form so that they can perform tasks effectively.  

Designing interaction is a non-trivial issue and efforts to design it in an ad hoc manner 

may lead to tools that inadvertently constrain users’ ability to complete tasks. There is a 

need for conceptual structures to help systematize the design process.  In this work, we 

have demonstrated how elements of a theoretical framework contribute to structuring the 

design process for interaction. We have presented a design process and illustrated how it 

could be used. We have demonstrated the utility of designing interaction in a structured 

fashion. In the scenarios, we show how users can seamlessly perform inter-related tasks.   

It is our intent to help raise awareness of the potential of interactive visualizations to 

support data-driven health tasks. Our future work will include user studies that detail the 

exploration experience. Although this research uses global health data, we anticipate that 

the design process presented may be beneficial in supporting other datasets in healthcare 

as well as other domains. Furthermore, systematically designing interaction has 

applications for large datasets, where leveraging expert knowledge is critical. 
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Chapter 5  

5 Exploring the Spread of Zika: Using Interactive 
Visualizations to Control Vector-Borne Diseases 

This chapter has been published as O. Ola, O. Buchel, and K. Sedig, “Exploring the 

Spread of Zika: Using Interactive Visualizations to Control Vector-Borne Diseases,” Int. 

J. Dis. Control Contain. Sustain., vol. 1, no. 1, pp. 47–68, 2016. 

This chapter appears in International Journal of Disease Control and Containment for 

Sustainability edited by Mehdi Khosrow-Pour Copyright 2016, IGI Global, www.igi-

global.com. Posted by permission of the publisher. 

Please note that the format has been changed to match the format of the dissertation. 

Figure numbers mentioned herein are relative to the chapter number. For instance, 

“Figure 1” corresponds to Figure 5-1. Additionally, when the term “paper” or “article” is 

used, it refers to this particular chapter.  

5.1 Introduction 

Vector-borne diseases (VBDs), such as zika, malaria, and dengue fever, do not respect 

geopolitical boundaries, as evidenced by their prevalent spread across the globe. For 

example, for the first time in history, Chikungunya, a disease endemic in African and 

South Asian countries, is now present in Caribbean nations (Charrel, Leparc-Goffart, 

Gallian, & de Lamballerie, 2014). Vector-borne diseases are a major public health threat 

which results in over 750 thousand deaths each year (World Health Organization, 2012). 

VBDs increase health inequities, put a strain on health services, and negatively impact 

development and economic growth (Campbell-Lendrum et al., 2015; World Health 

Organization, 2012). In full awareness of the consequences of VBDs, public health (PH) 

stakeholdersi have implemented various preventive, control, and treatment measures. 

While substantial progress has been made, there is still much more that can and should be 

done. 

http://www.igi-global.com/
http://www.igi-global.com/
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To control VBDs, PH stakeholders must make sense of the epidemiological and 

entomological data, analyze the local determinants of the disease, compare possible 

vector-control methods, predict morbidity levels so as to ensure sufficient supply of 

treatment measures, and perform various other decision-making tasks. While engaged in 

these tasks, PH stakeholders interact with dataii. This data has high volume, has extensive 

variety, and, in some situations, has low veracity (Eisen & Eisen, 2011; World Health 

Organization, 2012). These factors all contribute to the complex situation in which PH 

stakeholders operate to address VBDs.  In addition to the challenges data presents, the 

multivariate nature of VBD poses additional obstacles to PH stakeholders. These 

challenges include understanding the complicated dynamics, interdependencies, and 

uncertainties that arise from various control strategies over time, and the impact of 

human-environment interaction on vector populations (Kramer et al., 2009). As with all 

infectious diseases, time plays a crucial role; the early detection of VBD outbreaks is 

essential to their control. When dealing with VBDs, the stakes are high, the challenges 

are immense, and a timely response is paramount. Therefore, computational tools that 

support the decision-making tasks of PH stakeholders are much needed. Fortunately, 

technological advances can dramatically change our capacity to predict, prevent, and 

control VBDs.  

Interactive visualization tools (henceforth simply referred to as visualization tools 

without the adjective ‘interactive’) are a group of computational tools that has gained 

prominence in several disciplines over the last 20 years. These tools use interactive visual 

representations to convey information and support decision-making tasks by allowing 

users to control the flow of information, customize visual representations, and, in certain 

cases, perform other analytical tasks (Parsons & Sedig, 2014). Visual representations 

encode abstract or concrete information (e.g., geographic, scientific, or health data) in a 

visual form, and can be static or interactive. From the time Seaman used spot maps to 

study yellow fever in 1796 to the use of atlases to make sense of the endemicity of 

malaria in recent times, static visual representations have been used by PH stakeholders 

(Stevenson, 1965; Le Sueur et al., 1997). Though useful, static representations do not 

effectively support data-intensive tasks in which stakeholders engage. Visualization tools, 
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on the other hand, employ the use of interactive visual representations and, as a result, are 

better equipped to support the decision-making tasks of stakeholders.  

Since VBDs decision-making requires PH stakeholders to reason with heterogeneous 

data, visualization tools can play a major role.  The effective and efficient use of data 

determines the extent to which PH stakeholders can sufficiently address VBDs (Reeder et 

al., 2012; Thomsen et al., 2016). Therefore, tools that allow users to interact with 

information systematically can support the decision-making process. Visualization tools 

include Spatio-Temporal Epidemiological Modeller (Ford et al., 2006), Panviz 

(Maciejewski et al., 2011), and Google Flu Trends (Carneiro & Mylonakis, 2009). An 

awareness of the potential of these tools is needed so as to facilitate their incorporation 

into PH practice.  To this end, this article will focus on how visualization tools can 

support PH stakeholders make better decisions when dealing with VBDs.  

The rest of this article is organized as follows. Section 2 presents visualization tools 

through a discussion of their characteristics and functionalities. Section 3 highlights 

challenges facing stakeholders as they engage in decision-making tasks and explains how 

visualization tools can address them. Section 4 presents a visualization tool we developed 

to support making sense of the recent Zika outbreak in Brazil. Section 5 provides a 

summary. 

5.2 Interactive Visualization Tools 

With visualizations, users can control how much and the visual form in which 

information is represented; here, we discuss visual representations, the role of interaction, 

and how visualization tools can support decision-making tasks. In this section, we also 

briefly discuss the functionality of various visualizations tools. 

5.2.1 Visual Representations 

Visual representations encode data in forms that are visually perceptible to the 

stakeholder. Using visual marks (e.g., lines and dots) to compose more complex 

structural forms (e.g., maps and pie charts), these representations encode concrete or 

abstract information that can be geographic, scientific, or mathematical in nature (Sedig, 
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Parsons, Dittmer, et al., 2012). In VBD control, visual representations have been used to 

support various tasks. For instance, visual representations were used for analyzing the 

prevalance of dengue distribution in Malaysia (Aziz et al., 2012)  and exploring the 

interrelationships among diseases and international air service routes (Huang, Das, Qiu, 

& Tatem, 2012).The widespread use of visual representations is based on research 

showing that they capitalize on the strength of the human perceptual system and are 

superior to textual representations for certain tasks (Kirsh, 2009; Parsons & Sedig, 2014). 

However, while visual representations can enhance the decision-making tasks of 

stakeholders, in some situations an improper representation can hinder the task in which 

the user is engaged (Parsons & Sedig, 2014). Therefore it is important that visual 

representations be appropriate for the task at hand (Sedig & Parsons, 2016). 

In this article, we make a distinction between static and interactive visual representations. 

Though static visual representations are useful, nonetheless, due to not being dynamically 

manipulable (i.e., interactive) by those who use them, they put the brunt of the 

information-processing load (i.e., decision-making tasks) on the cognitive resources of 

their users (Sedig & Parsons, 2013). As a result, their effectiveness in data-intensive 

decision-making tasks is limited. Visualization tools, on the other hand, employ the use 

of interactive visual representations and, as a result, are better equipped to support the 

decision-making tasks of users. Empirical evidence from human-computer interaction 

literature shows that interactive visual representations can support decision-making tasks 

better than static representations.  Specifically, when compared to static visual 

representations, interactive visual representations can significantly improve reasoning 

about mathematical, geospatial, medical, and unstructured textual data, to name a few 

(Ahonen-Rainio & Kraak, 2005; Carroll et al., 2014; Liang & Sedig, 2010; Robinson, 

MacEachren, & Roth, 2011). Furthermore, interactive visual representations can foster 

serendipitous discoveries, creativity, and hypothesis generation (Guo, Gahegan, 

MacEachren, & Zhou, 2005; Koua & Kraak, 2004). 

5.2.2 Interaction 

In the context of visualization tools, interaction allows users to manipulate visual 

representations by controlling the form and content of the visual representations. We use 
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the characterization of (Sedig & Parsons, 2013) – small actions initiated by users on 

visual representations, subsequent responses in the visual representations, and the user’s 

perceptions of the changes – to describe interaction.  For example, as shown in Figure 1, 

a user selects a subset of information for further analysis; in response, the visualization 

tool reacts to this prompt and highlights the selected information in a different color and 

the user can observe the changes on the visual representation.  As different 

representational forms can have different effects on the user, the ability to change how 

data is represented aids in the completion of the specific decision-making task in which 

the stakeholder is engaged.  Not only does interaction allow the user to manipulate visual 

representations, but it also plays a greater role of mediating the entire discourse between 

the user and information. The cyclic process of the user’s action on the interface, the 

tool’s corresponding reaction visible in the visual representations, and the user’s 

perception of their changes promotes the discourse between the user and information.  

 

Figure 5-1: Depicting how the user and tool interact, where VRi represents visual 

representation and VRi+1 represents the altered representation 

As interaction plays such a pivotal role in facilitating the discourse, the quality of 

interaction must not be overlooked. Currently, there exist computational tools that boast 

of being interactive but only allow the user to alter the size of current representations 

(e.g., zooming, panning).  In this article, we focus on interaction that allows the user to 

not only change the size of a visual representation but also engage in a more meaningful 
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discourse with data. In this context, interaction lets the user filter data, select analysis 

algorithms and techniques, drill deeper to examine latent information, transform the 

current representation, categorize data based on certain characteristics, compare 

scenarios, and perform a host of other tasks.  All of these actions allow for a more 

involved discourse that promotes the distribution of decision-making tasks between the 

user and the tool. 

5.2.3 Facilitating Decision-Making Tasks 

Visualization tools can support decision-making tasks in which stakeholders engage (e.g., 

exploring, organizing, hypothesis generation, and comparing). When using such tools, 

tasks do not occur solely in the mind of the stakeholder, but instead can be distributed 

between the user and the tool (Sedig & Parsons, 2013). In other words, the user and the 

tool both work together to complete the task. For instance, an epidemiologist charged 

with determining the spread of dengue in a community might choose to delegate the 

computational sub-task of finding hotspots to the visualization tool. From the changes in 

the visual representation, the epidemiologist generates a hypothesis about how the disease 

has spread. In this scenario, both the tool and the epidemiologist collaborate to determine 

the origins of the outbreak. While using visualization tools, the stakeholder’s ability to 

effectively address health concerns and hazards are enhanced. It is important to note that 

visualization tools do not take over the analysis process but instead support stakeholders 

as they engage in various tasks. As VBD problems are inherently ill-defined, this user-

guided discourse is beneficial. Research has shown that tools that exclude the user’s 

knowledge and focus on automated processing are ill-equipped to effectively support 

stakeholders (G. Andrienko et al., 2007; Ola & Sedig, 2014; Thomas & Cook, 2005). 

Humans are better able to reason about ill-defined problems with incomplete information. 

Through interaction and distributed task processing, visualization tools allow for the 

synergetic work in which both the human and the tool cooperate in a manner that 

capitalizes on the strength of each (G. Andrienko et al., 2007). Hence, tools that create a 

joint cognitive system with the user are essential for insightful thinking (Parsons & Sedig, 

2013b). These tools accept stakeholder’s background knowledge, support flexible 

thinking, and distribute the load of analysis. The extent to which tasks are aided by the 
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tool differs and depends on the visualization tool that is being used. In addition, the user’s 

ability to control how and when decision-making tasks are performed also varies with the 

tool.  

5.2.4 Diverse Functionality of Visualization Tools 

Visualization tools include information visualization, visual analytics, and geographic 

visualization tools. Information visualization tools incorporate interaction techniques and 

visual representations to create an environment that supports the storage and exploration 

of abstract data. These tools allow users to control what information is represented, as 

well as the form in which it is represented. Furthermore, information visualization tools 

may include basic analysis algorithms that allow users to gain a deeper understanding of 

the data.  Visual analytics tools, on the other hand, go a step further and support decision-

making tasks that are not effectively addressed through the use of information 

visualization tools. Through the use of advanced storage and processing algorithms, 

visual analytics tools allow for the synthesis and analysis of heterogeneous data in ill-

defined problems. Furthermore, visual analytics tools seek to incorporate the user’s 

knowledge into the decision-making process by providing users with greater control over 

the discourse with information. For an in-depth discussion on the differences between 

information visualization and visual analytics tools, the reader can refer to (Keim et al., 

2008, 2009).  

Geographical information systems are systems which keep track of events, activities, 

other phenomena, and where they all happen or exist (Longley, Goodchild, Maguire, & 

Rhind, 2005).  In this article, we distinguish between GIS tools that use static visual 

representations and those that use interactive ones. Though beneficial, not only do static 

maps require users to bear the brunt of decision-making tasks, but also these maps come 

with some degree of subjectivity. The issue of subjectivity arises because “maps are 

never fully formed and their work is never complete” (Kitchin & Dodge, 2007, p. 331). 

As a result, they represent a snapshot of reality from the view of the cartographer 

(Davies, Fabrikant, & Hegarty, 2013) which is not always objective and therefore can 

result in bias that influences decision-making tasks.  Furthermore, GIS tools with limited 

actions (e.g., having only zooming and panning) are not well-suited for making informed 
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decisions in a spatial context (N. Andrienko & Andrienko, 2003). These limitations have 

led researchers to recognize the need for tools that support the use of interactive and 

dynamically alterable thematic maps which can facilitate “visual thinking” about spatially 

referenced data (N. Andrienko & Andrienko, 2003). From this point on when we refer to 

GIS tools as geographic visualization tools, we are focused on GIS tools with interactive 

capabilities that go beyond simple alterations of the representation’s size.  

Geovisualization tools facilitate visual exploration, analysis, synthesis, and presentation 

of geospatial data (Kraak, 2006). These tools use interactive maps that reduce subjectivity 

and facilitate exploratory visual analysis rather than the pre-defined mapping common in 

older GIS tools (Andreinko, Jern, Dykes, Fabrikant, & Weaver, 2007). Spatial decision-

making is an ill-defined process and, as a result, automated and pre-defined mapping 

methods are inadequate in addressing stakeholders’ activities. Through interaction, 

stakeholders can perform a myriad of actions including selecting, navigating, filtering, 

and animating, to name a few (Buchel & Sedig, 2014). Furthermore, stakeholders can 

manipulate information, and the geovisualization environment becomes a place where 

multiple decision-making tasks can take place. 

5.3 The Role of Interactive Visualization Tools in 
Addressing Challenges Facing Stakeholders 

With an understanding that VBD control and eradication is dependent on a variety of 

factors, the World Health Organization has advocated for the adoption of an integrated 

vector management approach to decision-making. This approach seeks to improve the 

efficacy, cost-effectiveness, ecological soundness, and sustainability of vector disease 

control (World Health Organization, 2012). This approach is predicated upon a 

systematic and rational analysis of data, incorporation of control/treatment methods based 

on knowledge of influencing factors, development of policies that use a range of 

interventions, and interdisciplinary collaboration that spans both public and private 

organizations. The multidimensional nature of VBD presents challenges that limit 

stakeholders’ ability to effectively and efficiently control, prevent, and treat these 

diseases.  
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The use of visualization tools in decision-making can be advantageous to PH 

stakeholders.  Through interaction, these tools allow for the distribution of decision-

making tasks between the user and the tool, thus providing a synergetic environment in 

which both the tool’s processing capacity and the human’s ability to deal with ill-defined 

problems is used to its fullest (G. Andrienko et al., 2007). Visualization tools facilitate 

collaboration and support the evolutionary and iterative process of decision-making 

(Sedig & Parsons, 2013; Thomas & Cook, 2005). Additionally, these tools help users 

extend their problem solving abilities through processing massive amounts of data 

quickly, providing timely and comprehensible assessments, discovering trends, patterns, 

correlations, and outliers, and reducing the search for information (Gotz & Borland, 

2016; Ola & Sedig, 2014; Robinson et al., 2011). As tools with interactive visual 

representations, these tools enable latent information to be made explicit when desired, 

coordinate internal representations with external representations, provide explicit 

encodings of information that facilitate discussion, increase the memory and processing 

resources available to users, and convey visually difficult statistical algorithms in a 

comprehensible manner (Kirsh, 2009; Sedig, 2001). The benefits above are not an 

exhaustive list; rather they provide a cross-sectional view. The remainder of this section 

describes how visualization tools can address specific challenges relating to the nature of 

the data, human-environment variables, and the dynamics of the disease and highlights 

current tools. 

5.3.1 Multifaceted Data 

As data plays a pivotal role in all stages of VBD control, stakeholders’ ability to 

systematically access, use, interact with, and analyze collected data is crucial (Thomsen 

et al., 2016). Some of the facets of VBD data can be described in terms of its volume, 

variety, and veracity. VBD data is voluminous, originates from a myriad of sources, and 

is often collected independently by discipline (Guerra et al., 2007). This data includes 

medical records collected at hospitals, environmental data generated by remote sensing 

surveillance systems, mosquito migration patterns collected by vector ecologists, 

genomic data from biological databases, policy briefs from government legislature, and 

mosquito net distribution data from non-governmental agencies or local health 
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departments. In regards to its variety, VBD data is stored in different formats (e.g., 

numerical, textual, and geospatial), and ranges from structured (e.g., malaria indicator 

survey data) to unstructurediii forms (e.g., free-form paragraphs in a policy brief or tweets 

about medical symptoms) (Eisen & Eisen, 2007; Kelly, Tanner, Vallely, & Clements, 

2012; World Health Organization, 2012). In addition, the low veracity (i.e., accuracy and 

completeness) of the data further complicates stakeholders’ decision-making tasks. Low 

veracity can result from partial or erroneous reporting at the point of data collection and 

temporary gaps in transmission from surveillance systems (Mandl et al., 2004; Wilkins, 

Nsubuga, Mendlein, Mercer, & Pappaioanou, 2008). The nature of VBD data presents 

challenges to stakeholders who engage in decision-making tasks.  

While visualization tools cannot change the characteristics of data that make it 

challenging to use (i.e., high volume, various sources, and low veracity), these tools can 

support the systematic use of such data. Visualization tools can facilitate the storage, 

transformation, and analysis of data to help stakeholders arrive at conclusions, form new 

knowledge, and make sense of the data. Furthermore, through interaction, stakeholders 

can control the amount of information presented at one time, thus dealing with the 

challenge of information overload.  For instance, Koua & Kraak (2004) developed a 

geovisualization tool that supports the visual data mining and exploration of health 

statistics and survey data. Previously the size of this data would present a challenge to 

stakeholders, but through the use of self-organizing maps and artificial neural networks, 

stakeholders engage in exploration to gain insights into the patterns, trends, and 

appropriate underlying distributions inherent in the data. Epinome is another tool that 

addresses concerns of multiple streams of heterogeneous data that stakeholders may use 

in decision-making tasks. This tool facilitates the detection, monitoring, exploration, and 

discovery of infectious disease (Livnat et al., 2012). Another beneficial tool, MaGnET, 

facilitates the exploration of genomics data related to the malaria parasite, Plasmodium 

falciparum (Sharman & Gerloff, 2013). Through the use of multiple linked views, the 

user can examine features of groups of genes across different datasets, explore networks 

of proteins, query the database to retrieve a subset of information, and perform other 

decision-making tasks. Another tool seeking to address the data challenge facing 

stakeholders is WHO’s HealthMap (Freifeld, Mandl, Reis, & Brownstein, 2008). This 
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tool gathers data from disparate web-accessible sources, including unstructured data, and 

presents on an interactive map alerts of various diseases, including Zika, Dengue, 

Malaria, Chagas, and Lyme disease. 

5.3.2 Human-Environment Interactions 

VBD control requires an understanding of the interaction among various components 

including humans, environment, and vector populations (Campbell-Lendrum et al., 2015; 

Chareonviriyaphap et al., 2013). As the distribution and prevalence of VBDs are strongly 

influenced by ecological conditions in the natural environment, an understanding of 

environmental factors is crucial for controlling the vector population (Tabachnick, 2010; 

World Health Organization, 2014). Human activities have impacted the environment and 

have led to the emergence and resurgence of many vector-borne diseases (Kilpatrick & 

Randolph, 2012; LaDeau, Allan, Leisnham, & Levy, 2015; Weaver, 2013).  Therefore, in 

addition to understanding vector populations, it is also important to consider the social 

and behavioral aspects of humans that impact the environment (Heggenhougen, 

Hackethal, & Vivek, 2003). Changing migratory patterns, globalization, rapid 

urbanization, and irrigation are examples of human behaviors that can exacerbate or lead 

to deforestation, increased salination, and a host of other environmental issues that have 

been linked to influencing the vector populations in an area (Chan, 2014; Kraemer, Sinka, 

Duda, Mylne, Shearer, Brady, et al., 2015; Weaver, 2013). For instance, urbanization has 

contributed to the spread of dengue and chikungunya in recent years (Kraemer, Sinka, 

Duda, Mylne, Shearer, Barker, et al., 2015). An understanding of the complex human-

environment interactions provides a unique opportunity to combat the spread of VBDs 

(Hartemink, Vanwambeke, Purse, Gilbert, & Van Dyck, 2015). Unfortunately, current 

disease prevention and control interventions that consider the human-environment 

connections tend to be the exception more than the rule (Boischio, Sánchez, Orosz, & 

Charron, 2009). Therefore, tools that can facilitate an understanding of human-

environment interactions would be of great assistance to the decision-making tasks of 

stakeholders. 

Visualization tools can include models that promote the understanding of human-

environment interactions. Research shows that imported cases of malaria belong to 
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networks of people with similar travel patterns (Koita et al., 2013). These human 

migratory patterns have an impact on VBD control measures. VBD-Air is a web-based 

visualization tool that examines the role of human migration via air travel and helps 

stakeholders make sense of how such migratory patterns influence the transmission and 

spread of VBDs (Huang et al., 2012). With VBD-Air, stakeholders can explore the 

interrelationships among modeled distributions of diseases. In addition, such tools can 

incorporate models (such as the three Dengue models evaluated by Nakhapakorn & 

Tripathi (2005)) to facilitate the understanding of how climatic factors such as rainfall 

and humidity affect incidences of dengue. Such models can be used to forecast the 

number of future dengue incidents based on current environmental factors. While such 

models do not consider the effect of social factors on vector populations, they integrate 

physio-environmental factors (e.g., land use and cover) that result from human-

environment interaction and thus can serve as a starting point on which further models 

can be built. Chang et al. (2009) report another tool that uses Google Earth as part of a 

dengue surveillance program. This tool visualizes locations of interest related to larval 

infestation (e.g., location of tire dumps and large areas of standing water) to allow 

stakeholders engaged in decision-making tasks to prioritize specific high-risk 

neighborhoods based on ecological factors. 

5.3.3 Changing Disease Dynamics 

The locality, uncertainty, and interdependencies of VBD dynamics further complicate 

stakeholders’ decision-making tasks. The variability inherent in VBD dynamics makes it 

difficult to ascertain future ramifications and the effectiveness of current policy decisions 

on a community (Kramer et al., 2009; Mendis et al., 2009). The locality of disease 

dynamics requires the contextual understanding and comparison of intervention strategies 

because not all strategies are effective for a particular community.  For instance, 

chloroquine was the major treatment for malaria in West Africa in the 1990s, but East 

African nations had to change their antimalarial drug policies mid-season because of the 

rapid spread of a chloroquine-resistant parasite (D’Alessandro & Buttiëns, 2001). This 

example shows how one treatment measure fails to address the concerns of another 

environment. Furthermore, the uncertainties of disease dynamics within a community 
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also present an additional challenge as effective strategies today might prove ineffective 

in the future within the same community (Bloland, 2001). For instance, insecticide 

resistance levels have risen over the years, and there is emerging evidence that such 

resistance is negatively impacting malaria control efforts (Mnzava et al., 2015; World 

Health Organization, 2015).  In situations where control of the vector population is the 

primary mode of prevention, the use of ineffective insecticides can potentially have a 

disastrous effect on communities. The mutation of the mosquito, the resistance of the 

virus to treatment, and the differing impacts on local communities create dynamic 

challenges for the defining of long-term policies. Computational tools that can introduce 

scientific uncertainty into models, thus providing bounds for ill-defined problems and 

creating environments to explore choices for different communities and time frames, can 

help stakeholders address this challenge.  

Visualization tools allow for the incorporation of dynamic decision analysis models that 

can help stakeholders explore the possible impacts of choices over different time frames 

as well as the various communities based on their ecological characteristics. One such 

model described by Luz, Vanni, Medlock, Paltiel, & Galvani (2011) focuses on 

simulating dengue transmission to facilitate the understanding of the evolution of 

insecticide resistance and immunity in the human population. Another tool, STEM, uses 

mathematical models of disease to simulate the development, evolution, and transmission 

of a disease in both space and time (Ford et al., 2006). This tool accommodates the 

creation of models specific to a population and disease strains. Developed by IBM, 

STEM is an open source tool and has tutorials on how stakeholders can create and use 

models in their decision-making tasks. A customized visualization tool that specifically 

addresses rift valley fever dynamics is Panviz.  This tool supports epidemic modeling and 

response evaluation for decision-making (Maciejewski et al., 2011). It does not 

automatically determine the best solution, but instead allows stakeholders to understand 

the effect various measures would have on disease control so that they can determine the 

best set of optimal control measures. Furthermore, Panviz facilitates the exploration of 

temporal decisions as well, allowing stakeholders to examine the role time plays in 

combating the disease. Visualization tools allow stakeholders to develop possible control 
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measures and gauge their impact on the disease before they are deployed in the 

community. 

5.4 Case Study: Zika Outbreak in Brazil 

This section demonstrates how visualization tools can support decision-making tasks of 

PH stakeholders engaged in VBD control. In particular, we focus on the recent Zika 

outbreak in Brazil. Zika—a vector-borne disease transmitted among humans by Aedes 

mosquito species—was first detected in Brazil in May 2015. Since then, the Zika virus 

(ZIKV) spread rapidly around the region. In the last year, there has also been a surge in 

the number of infants born with microcephaly. Microcephaly is a rare neurological 

condition associated with incomplete brain development. The prevalence of the disease 

led WHO to declare that the Brazilian cluster of microcephaly constitutes a Public Health 

Emergency of International Concern (World Health Organization, 2016). Our goal is not 

to show a causal relationship between Zika infection during pregnancy and microcephaly, 

but to support PH stakeholders in understanding the spatiotemporal characteristics of 

both diseases so as to improve control efforts. To develop control responses, PH 

stakeholders engage in a variety of tasks. One of these tasks involves the exploration of 

disease frequencies across and within geographical regions so that the parties concerned 

can determine which communities are most at risk. As diseases do not respect regional 

boundaries, it is important to explore the prevalence of diseases at multiple levels of 

aggregation.  

To this end, we utilize a subset of the Dryad data package (N. Faria et al., 2016) that 

contains records of suspected ZIKV and microcephaly cases in Brazil for the year 2015. 

The findings based on this dataset are published in (N. R. Faria et al., 2016). This dataset 

includes incidence of ZIKV cases and passively reported microcephaly cases per 100,000 

people in each federal state. It is important to note that because microcephaly is being 

passively reported the dataset is not as complete as the ZIKV dataset. Faria et al. (2016) 

aggregated ZIKV and microcephaly data by provinces and showed disease frequencies on 

two regional maps. In the Dryad dataset, however, the data are referenced at a more fine-

grained level (i.e., municipalities) which implies that the dataset has a latent spatial 

structure with random effects which cannot be made explicit when the data are 
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aggregated by large regional units. Understanding the intricacies of spatial data structures 

is critical for making sense of the spatial relationships among diseases and environmental 

factors.   

Using spatial data to develop control efforts is not a trivial matter.  ZIKV and 

microcephaly have spatially non-stationary processes—processes which exhibit 

significant spatial variation. Static visualizations of geographical summary (GW) 

statistics have been used in some studies to explore non-stationary processes (Homan et 

al., 2016; Matthews & Yang, 2012). GW models have been found to provide insights into 

spatial targeting of intervention and control programs against disease outbreaks (Y. Liu et 

al., 2011). GW summary statistics (e.g., means, standard deviation, skewness) aid 

stakeholders in exploring the complexities of non-stationary processes in great detail as 

they describe each locational fragmentation and variance with multiple statistics.  

Consequently, they are beneficial in developing plans, policies, intervention procedures, 

and decision-making strategies to mitigate the adverse effects of spatial variability 

(Brunsdon, Fotheringham, & Charlton, 2002; Harris, Clarke, Juggins, Brunsdon, & 

Charlton, 2014). The visualization we designed utilizes GW statistics as opposed to using 

standard simple means and choropleth maps.  We use GW summary statistics because 

diseases are distributed not across an “average” space but full of variations; hence 

statistical techniques must account for different forms of spatial heterogeneity or non-

stationarity (Goodchild, 2004; Lu, Harris, Gollini, Charlton, & Brunsdon, 2011). The four 

GW statistics we use are briefly described below. 

• GW means are computed by weighting each observation in the dataset according to 

its proximity to a summary point. The closest points are given higher weights than 

remote points. After a certain threshold the points’ weight is reduced to 0. Because of 

geographic weighting, the means do not vary as much as the raw counts of disease 

incidents. GW means are especially useful when the numbers of samples taken at 

different places vary as in the case with ZIKV in Brazil. 

• GW standard deviation is beneficial in emphasizing areas of high variability. They 

can also help detect transitional zones between low and high incidence areas. 
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Knowing where transitional zones are located is essential for managing and 

controlling epidemics, as transitional zones are affected first when a virus spreads.  

• GW skewness determines the symmetry of the spatial distribution. In statistics, 

skewness plays a major role in hypothesis testing and analysis of variance as it 

determines whether data are normally distributed and whether local skewness departs 

from global. Additionally, skewness plays an important role in modeling  (Bekaert & 

Harvey, 2002; Harvey, 2000). 

• GW coefficient of variation (or difference) considers the degree of variation in 

proportion to the changing mean. A constant coefficient of variation across all 

locations implies that the proportion of local variability of incidents is fixed and there 

are no spatial non-stationary processes (Fotheringham, Brunsdon, & Charlton, 2002). 

Knowing the coefficient of variation is beneficial to stakeholders as it helps measure 

the dynamicity of the outbreak/virus. 

In addition to GW summary statistics, we also use Standard Deviational Ellipse—a 

model for describing spatial distribution. This model measures the disease concentration 

or dispersion around the mean center (Mitchell, 2005). If the data are normally 

distributed, one standard deviation ellipse covers approximately 68% of incidents. The 

mean center of the ellipse is a point representative of the center of all disease cases. The 

ellipse is an example of global statistics which shows a general spatial trend. Calculation 

of the ellipse generates one set of results, representing one set of relationships, which are 

assumed to apply equally to the entire region under investigation. These results 

characterize an “average” type of phenomenon behavior. The uniqueness of ellipse is in 

showing the directionality of the spatial trend (specifically, it indicates the angle of 

rotation). A change in directionality may be indicative of changes in disease vectors 

(Khan, 1992). Next, we describe the visualization and then with the use of a scenario 

demonstrate how the tool may benefit PH stakeholders. 
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5.4.1 Visualization Description 

The subset of the data we utilized from the Dryad dataset includes 50 consecutive 

epidemiological weeks. We preprocessed the data by filtering out locations that had no 

ZIKV or microcephaly cases. As a result of this filtering, the dataset was reduced to 380 

locations. These sites were geocoded using Google Geocoding API. We use a map-based 

visualization so that stakeholders can explore cases of ZIKV and microcephaly across 

municipalities. The visualization was created using Mapbox API mashup and developed 

in JavaScript. The mashup utilizes spgwr R package (Bivand & Yu, 2009) for producing 

GW summaries and OpenCPU package (Ooms, 2014) for reading outputs from R 

packages in JavaScript. We also utilized the jQuery and D3.js libraries for implementing 

additional graphs and sliders.  Figure 2 shows the default view of the visualization. The 

interactive visualization has some elements namely, layered-map, control elements, 

streamgraph, and description panel. The layered map as shown in Figure 2 depicts the 

GW means for ZIKV across the municipalities in Brazil. Each marker on the map 

represents values of local means, standard deviations, skewness, and coefficient of 

variation depending on what the map shows. We use gradient color (from yellow to red) 

to denote the intensity of values in ascending order.  

Layered on the map is an ellipse which represents the standard deviational ellipses.  

Below the map is a streamgraph that allows users to compare frequencies of ZIKV and 

microcephaly over time. A streamgraph is a stacked area graph displayed around a central 

axis. As depicted, the yellow stream represents the flow of ZIKV over time, while the red 

stream represents microcephaly. With the provided controls, users can interact with the 

information. On the left of the map are two drop-down lists that allow users to choose 

between ZIKV and microcephaly, as well as, select a statistical measure. Below the drop-

downs are four sliders which enable users to filter the data based on the statistical 

measures. With filtering, users can identify communities, make sense of spatial 

relationships within communities, track the evolution of spatial relationships within 

communities, and prioritize communities for future intervention efforts. In addition, 

sliders are useful for understanding how individual summary measures (means, standard 

deviations, skews, and differences) work as many novice users may not know the 



122 

 

mathematical models behind GW summary measures. Moreover, the sliders allow users 

to ask questions about outliers and unique, atypical properties of municipalities (e.g., high 

means but low standard deviations). 

 

Figure 5-2: Default screenshot of the visualization tool 

Below the GW sliders is a histogram that shows how frequencies of disease incidents are 

distributed globally. This summary is important because it gives users a sense of the 

largest and smallest values in the dataset and complements spatial descriptions provided 

by standard deviational ellipse and GW summary.  The statistics under the histogram are 

descriptions of the properties of the standard deviational ellipse. They help users better 

understand changes in ellipses over time (e.g., whether the angle or radii have changed). 

Below the streamgraph is a timeline filter that enables users to make temporal selections. 

Interaction with the timeline allows stakeholders to inspect the evolution of non-

stationary processes over time. Changes in time ranges affect the representations of the 

map and the legend (which are recalculated upon each adjustment). During the 

exploration, stakeholders may notice that ZIKV and microcephaly are non-stationary, not 

only spatially but also temporally. For example, through interaction, we identified that a 

cluster near Salvador, BA, with high means disappeared during the last ten weeks of the 

year, while a cluster near Petrofina, PE, became more prominent. Such observations may 
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lead to hypotheses about causes of such spatial transformations and help stakeholders 

assess whether preventive measures work. Changing ranges on the timeline also affects 

the representation of ellipses on the map.  In spatial triaging, users often use snapshots of 

ellipses at discrete points in time. While this may be beneficial, it fails to effectively 

support understanding how ellipses evolve or change as they transition from one snapshot 

to another (for example, whether they rotate, shrink or expand). Animating the ellipse’s 

transformation can reveal the center of the outbreak as well as lead to questions about 

how vector-borne diseases spread. 

5.4.2 Scenario 

As stakeholders interact with the visualization tool, they can make observations that are 

critical to prioritizing communities. Here, we present a brief scenario describing the 

usage of the visualization tool. The default representation of the tool is the GW means of 

ZIKV (Figure 2), at this point, the user may notice that incidents of ZIKV vary across 

administrative boundaries as well as within them. By selecting microcephaly, the user 

observes the same pattern for the congenital disease. As the user explores ZIKV, he may 

perceive that within each administrative region, several sub-regions emerge from data. 

For example, Figure 3 shows different sub-regions within the administrative boundaries 

of Bahia province in Brazil. As the user filters the means, with the sliders, he notices 

three clusters. Means with high values are grouped together in the area near Salvador, 

BA. They form a cluster with the red centroid and orange markers. Another orange 

cluster is located in the northwest, near Petrolina, PE. This cluster is not entirely in Bahia; 

it crosses the administrative boundary of Pernambuco which would not have been 

noticeable if data were aggregated by administrative boundaries. The red and orange 

clusters are hotspots of ZIKV. Through interacting with the GW means representation of 

ZIKV cases, the user determines these clusters and possibly develops a hypothesis about 

breeding sites of mosquitoes that carry ZIKV. 
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Figure 5-3: The GM means representation shows that incidents of ZIKV vary not 

only across administrative boundaries but also within 

Next, the user may decide to examine the GW standard deviation to ascertain if there are 

areas of high variability. Areas of high variability may exist because of a variety of socio-

economic and/or environmental factors. The GW standard deviation also highlights 

transitional zones between low and high incidence areas. Figure 4 shows the orange 

cluster near Petrolina, PE; this is the area that has the highest standard deviations. The 

user may notice that in addition to Petrolina, Salvador, BA, also has high standard 

deviations. These two clusters may not be of usual interest to the user because their 

means are also high. However, the next cluster (emphasized in Figure 4 by the circle) 

may be of interest because it includes yellow markers located south from Salvador, BA. 

By using the available sliders, the user identifies zones between low and high incidence 

areas (i.e., transitional zone). While this area does not have means as high as the other 

two clusters, based on its GW standard deviations it can be considered an area of interest.  

Because the user needs to understand the variability of the diseases, he selects 

Differences from the dropdown for ZIKV and then for microcephaly. Both ZIKV and 

microcephaly have local variability in areas remote from the clusters with high means. 
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Microcephaly’s coefficient of variation falls within the range -2.1 – 0.8, and ZIKV’s falls 

within the range -5.4 – 2.1. If the coefficient of variation is constant across all locations, 

it implies that the degree of variability as a percentage is fixed across all locations 

(Fotheringham et al., 2002), even though the absolute values of means and 

standard deviations may fluctuate more. However, that is not the case here. While a 

majority of the areas have a coefficient of variation close to 2 (i.e., red-colored markers in 

Figure 5), there are areas where high means of microcephaly are observed in combination 

with low differences (i.e., yellow markers). This lets him know that there is spatial 

variability. Spatial variability is important because it suggests that further analysis should 

be done with geostatistical methods and not classical statistics to better understand the 

spread of the disease. 

 

Figure 5-4: The GW standard deviation representation for ZIKV shows that the 

clusters near Petrofina, PE, and Salvador, BA, have high standard deviations and 

the annotated area may be a transitional zone 
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As the user continues his exploration, he observes that the ellipses for ZIKV and 

microcephaly look different, despite significant overlaps. While both ellipses enclose 

95% of disease incidents, the angles of rotation and radii from east to west and north to 

south in ellipses are different as shown in Figure 6. The ZIKV ellipse covers a highly 

concentrated cluster along the South Atlantic belt.  The microcephaly ellipse covers 

almost the entire territory of Brazil. The area of microcephaly ellipse is larger because the 

distribution of microcephaly is more homogenous and is more spread out than the 

distribution of ZIKV. The overlap suggests that diseases are co-occurring. 

 

Figure 5-5: The GW coefficient of variation representation for microcephaly 
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Figure 5-6: (a) ZIKV standard devotional ellipse; (b) Microcephaly standard 

deviational ellipse 

In this brief scenario, we have demonstrated how an interactive visualization tool can 

support making sense of the spatial-temporal distribution of ZIKV and microcephaly. 

Users can explore different time frames, select specific statistical measures of interest, 

filter out extraneous data, compare the distribution of ZIKV and microcephaly, as well as, 

examine the disease dispersion around the mean center. Based on these interactions, users 

can make sense of disease prevalence, prioritize communities, and develop hypotheses 

that can be followed upon later.  

5.5 Summary 

PH stakeholders engage in a variety of decision-making tasks as they seek to control, 

prevent, and treat vector-borne diseases. While involved in these tasks, PH stakeholders 

encounter a variety of challenges arising from the nature of VBD data, the impact of 

human-environment interactions on vector, and the changing disease dynamics. As a 

result, computational tools that can support decision-making tasks are greatly needed. 

Through a discussion of interactive visualization tools, this article has demonstrated how 

such tools can address some of the challenges facing stakeholders.  
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Visualization tools use interactive visual representations to communicate information and 

support decision-making tasks by allowing users to control the flow of information, to 

customize visual representations, and, in certain tools, to perform analytical reasoning 

tasks. Capitalizing on the strengths of the human visuoperceptual system, visual 

representations can enhance the stakeholders’ ability to perform numerous decision-

making tasks. In particular, interactive visual representations have been shown to be more 

effective than static ones in reasoning activities in which stakeholders engage. Through 

interaction, stakeholders engage in meaningful discourse with information.  Stakeholders 

can filter, drill, compare, categorize, and perform other actions that promote the 

distribution of decision-making tasks between the user and the tool. Decision-making 

tasks are user-guided and, as a result, stakeholders can incorporate their knowledge into 

the decision-making process. This synergetic discourse between the user and the 

visualization tool ameliorates challenges previously discussed.  

Visualization tools can process massive amounts of data. They provide timely and 

comprehensible assessment and help with the discovery trends, patterns, correlations, and 

outliers. In addition, visualization tools facilitate the storage, transformation, and analysis 

of data, thus supporting the systematic use and conversion of data into actionable 

information. These tools allow for collaboration and customization so as to support a 

diverse group of stakeholders. Visualization tools can include models that promote the 

understanding of human-environment interactions that can negatively impact 

intervention, treatment, and control measures. Furthermore, these tools can increase the 

memory and processing resources available to users and communicate visually difficult 

information such as the complex dynamics of VBDs.   

In this paper, we also presented a visualization designed to support decision-making 

related to the recent Zika outbreak in Brazil. As stakeholders develop control responses, 

they may need to explore the incidence rates so as to prioritize communities for 

intervention. The interactive visualization we created uses a map-based representation 

layered with geographically weighted statistical measures to describe non-stationary 

processes common in vector-borne diseases. The GW statistics we used describe datasets 

similar to standard descriptive statistics; however, by using a map-based representation, 
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they show patterns that have well-interpretable meaning in epidemiology. With a brief 

scenario, we demonstrated how interaction allows users to explore different time frames, 

examine specific statistical measures, and filter out extraneous data.  

In conclusion, visualization tools can help PH stakeholders engaged in decision-making 

tasks dealing with VBDs. These tools should not be viewed as a cure-all for the 

challenges facing PH stakeholders. The effectiveness of visualization tools in PH practice 

is dependent upon their proper design. This calls for more research in this area. In this 

article, we have presented the utility of visualization tools through a discussion of their 

characteristics, examination of challenges facing stakeholders, and presentation of 

existing tools. As VBDs are multifaceted, complex, and changing constantly, what has 

been presented here can serve as a starting point for researchers in this area. Research 

into tools must evolve so that stakeholders can effectively treat, prevent, control, and, 

eventually, eradicate these diseases. 

 

 

 

 

 

 

 



130 

 

Chapter 6  

6 Understanding the Discussion of Health Issues on 
Twitter: A Visual Analytic Study 

To be submitted to Health Informatics Journal. 

Please note that the format has been changed to match the format of the dissertation. 

Figure numbers mentioned herein are relative to the chapter number. For instance, 

“Figure 1” corresponds to Figure 6-1. Additionally, when the term “paper” or “article” is 

used, it refers to this particular chapter.  

6.1 Introduction 

People gather health information from diverse mediums, including social media. Using 

social media allows individuals to explore conversations occurring outside of the 

traditional health space in a rapid fashion (Cole-Lewis et al., 2015; Park, Rodgers, & 

Stemmle, 2013). Twitter is one of the largest social media platforms with over 317 

million active accounts as of January 2017 (Aslam, 2017). This platform allows users to 

post short comments (i.e., tweets) that contain 140 characters or less. Tweets may also 

contain pictures, videos, or links to webpages.  Users can like, retweet (i.e., repost a 

tweet), and reply to tweets. Unregistered users can only read tweets. The unrestricted 

access to opinions and large user base has made Twitter a source for the collection and 

dissemination of information for various domains including health (Gurman & Clark, 

2016; Hughes, 2016).  

Currently, health organizations are using Twitter to promote healthy lifestyle choices, 

identify disease outbreaks, explore human behavior, and assess the public’s perception of 

health issues (Charles-Smith et al., 2015; Finfgeld-Connett, 2015; Park et al., 2013; 

Salathé & Khandelwal, 2011; Weeg et al., 2015). Various health organizations use 

Twitter for health promotion. The Department of Health and Human Services in the 

United States is one such organization that uses Twitter to provide the public with 

actionable health information (Osborne, 2012). A study on three health organizations 
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observed that the organizations used Twitter to inform people about services, educational 

programs, and events; solicit for readers to take action; inform people about health risks; 

and encourage them to receive preventative screening or modify their lifestyles (Park, 

Reber, & Chon, 2016). In addition to health organizations, individuals, news 

organizations, businesses, interest groups, and a host of other entities discuss health on 

Twitter.  

On any given day, over 500 million tweets are posted (Aslam, 2017). The sheer number 

of tweets present challenges for the public as they seek to use Twitter to improve their 

knowledge on a wide variety of health issues. Observational studies on specific health 

issues on Twitter shows an abundance of both formal and informal conversations taking 

place. While following a health organization’s Twitter account may be beneficial for 

learning about a specific health hazard, for individuals who want to obtain a high-level 

understanding of the social discourse on a wide variety of health issues, challenges 

abound. Currently, it is difficult for users to understand the overall sentiment on a health 

issue, the types of users involved in the discourse, and what they are tweeting about. The 

brevity of the message can result in its true meaning being distorted and possibly taken 

out of context (Chou, Hunt, Beckjord, Moser, & Hesse, 2009; Kamel Boulos, 2013). In 

addition, the quality of the information is highly variable and the identity of the tweeter 

(i.e., who is tweeting), which is an important clue in assessing information credibility, is 

not always known (Kamel Boulos, 2013; Schein, Wilson, & Keelan, 2010). For Twitter 

to be an effective tool for health promotion, people need to be equipped to understand 

and appraise health information on the platform (Sørensen, 2017). A high-level 

understanding can help address misinformation and equip individuals with a better 

mental structure to assess how health issues are discussed. In addition to supporting the 

information-seeking tasks of the public, an analysis of the health discourse on Twitter 

benefits health professionals and social scientists. It provides them with a lens through 

which they can better understand the public’s perception of health issues and determine 

how best to utilize Twitter for health promotion (Ghosh & Guha, 2013; Korda & Itani, 

2013). 
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Manual content annotation and computational models have been used to analyze the 

discourse of health on Twitter. Studies that utilize manual content analysis have looked at 

health issues such as swine flu (Chew & Eysenbach, 2010), dental pain (Heaivilin, 

Gerbert, Page, & Gibbs, 2011), concussions (Sullivan et al., 2012), breast cancer 

(Thackeray, Burton, Giraud-Carrier, Rollins, & Draper, 2013), and  marijuana usage 

(Krauss, Grucza, Bierut, & Cavazos-Rehg, 2016). These studies involve content analysis 

of a small set of tweets (e.g., 1,000 to 10,000).  Manual content analysis studies are 

typically time-consuming because they require the manual coding of tweets by 

individuals. On the other hand, computational models have been employed to analyze 

large samples of Twitter data in a timely manner. Some of the work has focused on 

sentiment analysis. Sentiment analysis is concerned with the use of natural language 

processing and computational linguistics to identify and extract subjective information, 

such as opinion, sentiment, evaluations, attitudes, and emotion from written language 

(Cao & Cui, 2016).  Salathé and Khandelwal (2011) applied sentiment analysis to 

understand the perception of the H1N1 vaccine on Twitter.  Myslin et al., meanwhile, 

used machine learning classifiers to detect sentiment and relevance for tobacco-related 

tweets (2013). In addition to sentiment, Cole-Lewis et al. used machine learning 

techniques to classify tweets based on user description, genre, theme, and relevance to the 

topic of e-cigarettes (2015). Existing research has focused predominantly on 

understanding one or two health topics on Twitter.  

Our goal is to build on this research and provide insight into a variety of health issues 

through a visual analytic study. Visual analytics enhances the understanding of data by 

combining computational models with interactive visualizations (May, Hanrahan, Keim, 

Shneiderman, & Card, 2010; Ola & Sedig, 2014). Our study is meant to demonstrate how 

machine learning techniques and visualizations can be used to analyze and make sense of 

the discussion of health on Twitter. To this end, we retrieved over half a million health-

related tweets, and randomly selected a sample of 3000 on which we conducted manual 

content analysis. We used the sample to create models that classified tweets based on 

their content and user category. These models were then applied to the larger tweet 

dataset. Finally, we created a visualization that allows us to explore the discourse of 

health issues on the social-media platform. In this paper, we report our findings and 
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discuss implications. The rest of the paper is organized as follows. Section 2 presents the 

research methods. Section 3 discusses the results. The final section, Section 4, presents 

general conclusions.  

6.2 Research Methods 

In this study, supervised machine learning was used to build classification models that 

predict the theme of a tweet and a user category for the person who posted the tweet. For 

our analysis, we do not include re-tweets, as we are more concerned about what is being 

said about certain health issues as opposed to its frequency or popularity. In addition to 

the tweet, Twitter allows developers to access relevant metadata about the user who 

posted the tweet. User information includes username, description of the account, the 

number of followers, the number of people the user is following, and the number of 

tweets the user has posted (Twitter, 2007). In this section, we describe how the data was 

collected and processed. 

6.2.1 Data Collection 

In the past, hashtags and search terms have been used  to retrieve health-related tweets 

(Palomino, Taylor, Göker, Isaacs, & Warber, 2016; Paul & Dredze, 2014; Symplur, 

2010). We opted to use search terms.  Our initial list of search terms is comprised of 

causes of death identified by the Institute for Health Metrics and Evaluation (IHME) 

(Lozano et al., 2012). We utilized these causes as search terms primarily because this 

work is part of a larger research plan to facilitate sensemaking of health data and we 

wanted to ensure consistent terminology. IHME classifies causes into 21 cause-clusters 

which are aggregated into three main groups: 1) non-communicable, 2) injury-based, and 

3) communicable, maternal, neonatal, and nutritional.  

To get a better understanding of the ability of these terms to provide relevant tweets we 

collected a sample of over 50,000 tweets in December of 2015. We utilized Tweepy—a 

Twitter application programming interface—to search for and retrieve the tweets 

(Tweepy, 2009). In an iterative fashion, for each search term, we retrieved up to 200 

recent tweets to determine whether the search terms predominately retrieved health-

related tweets. In certain situations, search terms were combined or shortened to improve 
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results. For instance, our initial list included cirrhosis of the liver secondary to hepatitis 

B, cirrhosis of the liver secondary to hepatitis C, and cirrhosis of the liver secondary to 

alcohol use. These three causes were combined and the search term used was liver 

cirrhosis. Another search term that was adjusted was exposure to forces of nature; it was 

expanded to include earthquake deaths, tsunami deaths, flood deaths, and hurricane 

deaths. Appendix 1 includes the full final list of the 117 search terms used. Over a 1-

month period between March 17, 2016 and April 17, 2016 we retrieved tweets using the 

search terms. The total number of unique English language tweets retrieved during this 

period was 535,973. The tweets were stored in a MongoDB database. 

6.2.2 Analysis 

6.2.2.1 Sentiment Analysis 

Similar to existing research practice we measured sentiment as being either negative, 

positive, or neutral (Cole-Lewis et al., 2015; Palomino et al., 2016; Salathé & 

Khandelwal, 2011). In our research, we utilized AlchemyAPI’s sentiment analysis tool to 

assign polarity and sentiment value to our tweets. We selected AlchemyAPI because at 

the time it was one of the leading free sentiment analysis tools with a high accuracy rate 

(Meehan, Lunney, Curran, & McCaughey, 2013; Saif, He, & Alani, 2012; Serrano-

Guerrero, Olivas, Romero, & Herrera-Viedma, 2015). For example, in a previous study, 

sentiment analysis by AlchemyAPI was compared to manual testing on 5370 tweets and 

the accuracy rate was 86.01% (Meehan et al., 2013). When we used the product, 

AlchemyAPI was a text mining platform that extracted metadata such as concepts, 

keywords, categories, sentiment, and relations from text-based documents. The company 

has since been acquired by IBM, and its functionality incorporated into Watson Natural 

Language Understanding Service (Devarajan, 2017).  For a text fragment, AlchemyAPI 

returns a sentiment category and score. The sentiment score is in the range (-1, 1) and 

expresses the strength of the sentiment. The category is based on the score value. For a 

score less than 0, the category is negative, for a score over 0, the category is positive, and 

for a score of 0, the category is neutral. Table 1 includes some of the tweets and the 

corresponding sentiment score and category it was assigned. 
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Table 6-1: Sample of AlchemyAPI sentiment analysis 

Tweet Score Category 

Involved lymph nodes in HPV positive oropharyngeal cancer 
Regional control is preserved after dose de excavated 

0.0000 neutral 

Ambulance came In hospital with trial flutter On t like this -0.2296 negative 

a treat of an occasional cup of coffee won t give you diabetes 
you’d have to have a lot of sugary coffee to be at risk him V xx 

0.4292 positive 

hi guns doing a skyline for prostate cancer can i get a shout out 
please birmingham fan cheers 

0.0000 neutral 

I think I’m donna die of drug overcome I’ve taking so many pills 
and my headache still won’t go away 

-0.9750 negative 

Share the love via CandyGram amp support to feed people 
affected by HIV AIDS valentinesday 

0.4615 Positive 

6.2.2.2 Manual Annotation 

To obtain a better understanding of who was tweeting and the content of each tweet we 

performed content analysis on 500 tweets that were randomly selected from the corpus. 

Based on previous research (Cole-Lewis et al., 2015) and our analysis, five content 

themes and six categories of users were established. The five identified content themes 

are as follows:   

• Educational: post about relevant health-related news, factoid, resource, research, 

or public health announcement. Tweet that contains general health information, 

research, or information to raise awareness on a health issue. For example,  

o “Brain cancer two essential among acids might hold key to better outcome 

cancer News” 

o “Preparation and Characterization of Irinotecan Loaded Cross Linked 

Bovine Serum Albumin Heads for River Cancer” 

• Fundraising:  post that seeks to raise funds or solicit money or services for a 

health organization, cause, or individual needing medical treatment. For example,   

o “That dollar goes to the Measles and Rubella Initiative to buy a vaccine 

for a child against Measles and Rubella” 
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o “LETS SAVE A LIFE Baron has suffered with Throat cancer for 5 years 

and lung cancer for eyes Your contribution matters” 

• Personal: post in which the user is giving an opinion on a health issue, reporting 

on their own personal health status, or asking health-related questions. For 

example,  

o “His bronchitis has my chest feeling heavyyyyyy” 

o “I am wheeling like an old man with asthma after a joy Thank you of” 

o “Migraine all day yet again Time to go see a Neurologist” 

• Promotional: post promoting or advertising a for-profit health event or product. 

For example,  

o “Find out how you can prevent and reverse diabetes won The At Real 

Good Health Summit” 

o “Out And You The Ultimate Out Diet and Cookbook with recipe to get 

you started on a proper diet” 

o “Or Lane Vishnubala will be teaching our coming Of Obesity and 

Diabetes Specialist Instructor course” 

• Unrelated: post that contains search terms but is unrelated to health. For example, 

o “I feel like I am drowning without your loooooveeeeeeeeee” 

o “Nationalism is an infantile disease It is the measles of mankind” 

The user categories are as follows:  

• Businesses: for-profit organizations, e.g., retailers, pharmaceutical companies, 

fitness companies.   

• Celebrities: famous people in pop culture, politics, sports and news media. 
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• Interest Groups: unofficial organizations for specific health interests, e.g., school 

groups, health food groups, anti-vaccination groups.  

• Media: reputable news source such as New York Times, Washington Post, Wall 

Street Journal, Associated Press and reputable journals that publish health 

research. 

• Official Agencies: government agencies and large non-government health 

agencies, e.g., National Institutes of Health, Centers for Disease Control and 

Prevention, American Heart Association. 

• Public: general public that does not fall into one of the aforementioned categories. 

Four analysts independently coded a subset of 3000 tweets. The classification data are 

presented in Table 2. The predominant user category is public with 2264 tweets which 

account for 75.5% of the total number of tweets. For the themes, the most predominant 

theme is education with 45.7%. Of the coded tweets, 74.3% of the tweets were found to 

be health-related tweets. In the next section, we describe how classification models were 

built. 

Table 6-2: Categorization of tweets by user and content 

User Content 

Category Frequency Theme Frequency 

Public 2264 (75.5%) Educational 1370 (45.7%) 

Interest Groups 227 (7.6%) Personal 770 (25.7%) 

Media 227 (7.6%) Unrelated 761 (25.3%) 

Businesses 215 (7.2%) Promotional 66 (2.2%) 

Celebrities 40 (1.3%) Fundraising 33 (1.1%) 

Official Agencies 27 (0.9%)   

6.2.2.3 Model Construction 

Our models were constructed with the Scikit Learn library (version 0.17.1) for Python 

(version 3.5.2). We used the Bag of Words approach to extract numerical features from 

text content. The Bag of Words approach is comprised of three main parts.  The first is 

tokenization, which involves splitting each document (i.e., tweet or text) into words based 

on whitespace and punctuation. Next, the occurrences of each word are counted and 
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stored in a matrix. The third part of the strategy involves normalizing and weighting the 

occurrences. Normalization is important because when dealing with a large corpus, 

common words like ‘a’ and ‘the’ which frequently appear typically convey little 

meaningful information about the content of the document.  Re-weighting was done with 

the term frequency-inverse document frequency transform (tf-idf), which helps to 

measure how important a word is to a document in a collection by taking into 

consideration the number of times a word appears in a document and the frequency of the 

word across the entire corpus (Silge & Robinson, 2017). In the following subsections, we 

discuss how models were constructed for the user category and the content themes.  

6.2.2.3.1 User Category 

As previous research points to the benefits of using Support Vector Machines for short 

text (e.g., tweets), we utilized this technique (Cole-Lewis et al., 2015; Myslín et al., 

2013). Variations of the classification technique were used based on the following 

attributes: 

• User description: user-provided string that describes their account (e.g., “United 

Nations Development Programme helps empower lives & build resilient nations. 

To learn more, follow @ASteiner & visit: http://www.undp.org”).  

• User verified: indicates whether the account has been deemed authentic by 

Twitter. Twitter authenticates an account so that the public is aware that the 

account holder’s identity has been verified. This is typically done for individuals 

in the entertainment, government, religious, news, business, or sports industries.  

• User screen name: unique user name or handle name that is used to identify the 

tweeter, typically preceded by the @ symbol in tweets (e.g., @UNDP, @WHO, 

@UNICEF). 

• Influence score: this attribute helps determine how influential an account is on 

Twitter. Past research notes that influence is not solely based on the number of 

people that follow you on Twitter but is also affected by the number of people 

you follow (Anger & Kittl, 2011). The score is calculated by dividing the number 

http://www.undp.org/
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of followers by the number of people that the account followers. For instance, for 

@UNDP the number of followers is 1.13 million while the following is 4656. The 

influence score is 242.70.  

Table 3 shows the average accuracy rate for 100 runs for four different models. Accuracy 

rate is defined as the percentage of observations that were correctly classified in the test 

dataset. 80% of the coded data was used to train the model while 20% was used to test 

the model. The experiment was run 100 times for each of the models created. The model 

with the highest accuracy rate was Model A1, which used the user description alone. 

Subsequent models that incorporate the username, influence score, and verified status of 

the account resulted in lower accuracy rates.  

Table 6-3: Accuracy rate for user category model construction 

Model Average Accuracy Rate (%) 

A1: description 86.86 

B1: description and screen name 79.83 

C1: description, name, and influence score  79.84 

D1: description, name, influence score, and verified 79.75 

6.2.2.3.2 Tweet Theme 

Machine learning models were built for the tweet theme based on the tweet text and user 

verified status. We used a Bag-of-Words approach and Support Vector Machine 

technique for our models. The first model uses the tweet, the second model uses the tweet 

text as well as the number of reserved news words (e.g., newspaper, news, official), the 

third model uses the tweet and the verification status of the tweeter’s account, and the last 

model uses the tweet, the verification status, and the number of reserved news keywords. 

Table 4 shows the average accuracy rate for the tweet themes for the four models. 

Table 6-4: Accuracy rate for tweet theme model construction 

Model Average Accuracy Rate (%) 

A2: tweet 80.99 

B2: tweet and count of reserved keywords 81.09 

C2: tweet and user verification status 81.14 

D2: tweet, count or reserved keywords and 
user verification status 

81.44 
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Based on the experimental analysis of model construction, we used Model A1 and Model 

D2 to classify the entire tweet corpus. 24% of the tweets were classified as unrelated and 

were removed. In the next section, we discuss the results of the remaining tweets.  

6.3 Results 

A total of 416,900 tweets remained in our corpus after unrelated tweets were removed. 

These tweets represent 117 different causes that contribute to mortality. Each tweet also 

has a sentiment score and type, category for the user who sent the tweet, and content 

theme. In this section, we first present a brief overview of the results, describe the design 

of a visualization we created to facilitate making sense of the discourse of health on 

Twitter, and then highlight results for certain cause-clusters.  

Table 5 shows the frequency of tweets categorized by sentiment, theme, and user group. 

73% of the tweets were deemed negative, while 27% of the tweets were either positive or 

neutral. Similar to the manually coded data, the majority of tweets in our corpus were 

tweeted by the general public (83.5%). The tweets by the media and official agencies 

made up less than 5% of corpus. This is important to note because for the general public, 

they may assume that a significant portion of the information they are reading is from 

reputable sources, which is not the case. In terms of the content, 66% of the tweets were 

educational tweets, while personal themed tweets made up 33% of the corpus. Combined, 

fundraising and promotional tweets were less than 1 percent. 

Table 6-5: Frequency for sentiment, theme, and user categories 

Sentiment Frequency (%) Theme Frequency (%) User Frequency (%) 

negative 72.85 educational 65.99 businesses 4.98 

neutral 14.47 fundraising 0.16 celebrities 0.01 

positive 12.68 personal 33.62 interest groups 6.71 

  
promotional 0.23 media 4.73 

    
official agencies 0.04 

    
public 83.52 
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The visualization described in this section is part of a tool that allows users to explore 

causes and risk factors from multiple perspectives, including geography, demography, 

and chronology (Ola & Sedig, 2016).  In addition to the metrics previously discussed, our 

visualization includes prevalent words (i.e., non-search terms that frequently appear in 

the corpus) and the net sentiment rate for causes as well as for clusters of causes. In the 

context of tweets, net sentiment rate is defined as the subtraction of the number of 

negative tweets from the number of positive tweets divided by the total number of tweets.  

𝑁𝑒𝑡 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑤𝑒𝑒𝑡𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑡𝑤𝑒𝑒𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑤𝑒𝑒𝑡𝑠
 

The visualization, depicted in Figure 1, has three main parts. The first part is comprised 

of circular arcs that frame the rest of the visualization. These arcs represent the top 50 

words across the entire corpus. The size and location of each arc depict its prevalence. 

The larger the arc, the more times it appeared in the corpus. By hovering over the arc 

(i.e., a word), the number of occurrences appears. The arcs are arranged from left to right 

in descending order based on prevalence. As shown, the words get, health, like, women, 

may, type, and new are frequent words in the corpus. 
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Figure 6-1: Default configuration of the sentiment visualization 

Some of the screenshots used in the figures only include partial representations of the 

entire visualization; this is done so as to aid in the reading of the textual content in the 

visualization. The central portion of the visualization (see Figure 1) depicts the 

breakdown of tweets by cause-clusters, user category, and tweet theme. In the center of 

the visualization is a list of the 21 cause-clusters arranged in descending order according 

to the number of tweets. The diabetes, urogenital, blood/endocrine cluster has the most 

number of tweets in the corpus, while the transport injuries cluster has the least. On the 

left side of the cluster list is a sub-visualization of the tweets by content themes. The links 
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that branch out of each theme represent the presence of tweets for a cause-cluster. For 

instance, when the promotional theme is selected, users of the tool can observe that there 

are 13 links (see Figure 2). This is because in our tweet corpus, there are only 

promotional-related tweets from causes in 13 clusters. The clusters that do not have 

promotional-themed tweets are greyed out.  

 

Figure 6-2: Screenshot of sentiment visualization with promotional theme selected 

The right sub-visualization which shows the breakdown of tweets by user categories is 

encoded in a similar fashion. For instance, Figure 3 shows the state of the visualization 

when the celebrities user category is selected. It is worth mentioning that the content 

themes and user categories are arranged based on the number of tweets. In other words, 

we use both size and location to encode quantity so that users do not have to strain to 

determine which group is bigger. For example, for the user categories (see Figure 1), the 

media (4.73%) and businesses (4.98%) arcs appear to be the same size but because the 

arcs are ordered, users of the tool can deduce that the businesses category has more 

tweets.  
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Figure 6-3: Screenshot of sentiment visualization with the celebrities user category 

selected 

The lower portion of the visualization has two alternating views. The first view is shown 

in Figure 1 and it depicts the net sentiment rate for cause-clusters. The second sub-

visualization depicts sentiment for the causes that make up a specific cluster. This sub-

visualization contains curved heatmaps and is divided into two parts. The first part shows 

the breakdown of sentiment by the user categories and the second part by the theme of 

the tweets. The sections of the heatmap are encoded with color, where red is used to 

indicate negative polarity, green for positive, and grey is used to depict the absence of 

data. For instance, as shown in Figure 4 when the cardiovascular & circulatory diseases 

cluster is selected, the visualization shows that there are no tweets from official agencies 

or celebrities for all the causes that make up the cluster. In addition, the atrial flutter, 

hemorrhagic stroke, cardiomyopathy, and peripheral arterial disease causes have a net 

sentiment score that is positive for certain themes and user categories. With this 

visualization, users can explore the sentiment for different causes and cause-clusters, 

learn about the different user groups that tweet and also get a sense of what those tweets 

are about.  
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Figure 6-4: Screenshot of sentiment visualization with the cardiovascular & 

circulatory diseases cluster selected 

Now that the visualization has been described let us take a close look on how it aids in 

the understanding of the discourse on health issues. In particular, we will focus on the 

HIV/AIDS&TB, mental and behavioral disorders, and neglected tropical diseases 

clusters. Figure 5a depicts the breakdown of tweets for the HIV/AIDS&TB cluster by 

user category and content theme. This cluster is one of the few clusters in which tweets 

on all four content themes are present in the corpus. In addition, all user categories are 

tweeting on at least one cause in this cluster. Figure 5b depicts the sentiment across the 

various categories. With this sub-visualization, one is able to notice that the tweet corpus 

does not include any tweets from celebrities on tuberculosis, but the discussion on 

HIV/AIDS includes all user groups. Another observation is that for promotional and 

fundraising tweets, the sentiment is positive for both HIV/AIDS and tuberculosis. It may 
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seem intuitive that promotional and fundraising tweets are more positive, but the same 

pattern is not observed for other cause-clusters.  

 

Figure 6-5: (a-b) Screenshots of sentiment visualization with the HIV/AIDS & TB 

cluster selected 

For the mental and behavioral cause-cluster, the tweets in the corpus do not include 

fundraising- and promotional-themed tweets. Furthermore, official agencies are not 

tweeting on alcohol use disorders, but they are tweeting on drug use disorders. Figure 6a 

shows the lower portion of the visualization when the mental and behavioral cause-

cluster is selected. Another observation worth highlighting is the positive net sentiment of 

alcohol use tweets and the negative sentiment of drug use tweets by personal accounts. 

This finding corroborates a recent content analysis study that noted a preference for 
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marijuana use over drinking alcohol (Krauss et al., 2016). The discussion on tropical 

diseases such as malaria, dengue, ebola, and chikungunya is highly varied. Figure 6b 

depicts the net sentiment rate for tropical diseases. The sentiment for the discussion of 

Ebola is mostly positive.  This may seem erroneous, given the 2014-15 outbreak that 

resulted in thousands of deaths. But it is important to remember that our corpus includes 

twitter chatter from March – April in 2016. This coincides with a statement released by 

the World Health Organization in which the public emergency alert raised because of the 

outbreak was terminated (WHO, 2016). Our study provides a cross-sectional analysis of 

the discussion on Twitter for a broad range of health issues for a limited time frame. Next 

steps would be to provide real-time analysis that includes historical data so that users can 

understand the discussion of health issues and how it changes over time.  
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Figure 6-6: (a-b) Screenshots of sentiment visualization with the mental & 

behavioral cluster and the neglected tropical diseases cluster selected 

6.4 Discussion and Conclusion 

This paper has presented a visual analytic study that contributes to the growing body of 

literature on understanding how health issues are portrayed on social media platforms. 

The main contributions of the study are a demonstration of how supervised machine 

learning methods can be combined with interactive visualizations to make sense of the 

discourse of health issues on Twitter. In this research, we analyzed over half a million 

tweets based on 117 unique search terms. Although we tried to apply as much rigor as 

possible, certain limitations exist. First, we only utilized one month of data in 2016 which 

may have resulted in certain health issues being oversampled and others being 



149 

 

undersampled. Future studies can examine the discourse for longer periods. Secondly, we 

only retrieved English-language tweets. As a result, our findings cannot be generalized to 

other languages. Despite this limitation, we did not specify a geographical location, and 

consequently, our analysis may be relevant in countries in which English is widely used. 

It is worth mentioning that our analysis is of the discourse on Twitter and as Twitter is 

not widely used across all demographics, our study cannot be generalized to be a true 

reflection of the entire public discourse on health issues. Lastly, our constructed 

classification models are based on manual content analysis, which may be subject to bias.  

Despite the limitations mentioned above, findings emerge from this study. The online-

discourse on health topics is largely mediated by the public. This indicates that Twitter is 

a platform that can be used for health promotion as it is currently being used 

predominantly by the public to discuss health issues. The discourse is largely on 

educational materials such as information on treatments and news reports on health 

ailments. For health professionals and policy makers, the fact that the public plays a 

significant role and that the majority of the content is educational in nature may present 

challenges for health promotion efforts. The recent use of Twitter to spread 

misinformation on yellow fever and Ebola outbreaks across the globe highlights this issue 

(Ortiz-Martínez & Jiménez-Arcia, 2017; Oyeyemi, Gabarron, & Wynn, 2014). More 

research is needed to determine the influence (i.e., reach of tweets) for different types of 

users. Official health and news agencies which typically provide reputable data are 

largely underrepresented in the discussion. While efforts exist to use social media 

platforms for health education, our research highlights that there is still more work to be 

done. Though educational tweets make up 66% of the tweet corpus, most of these tweets 

come from the general public and not reputable health organizations. These findings 

corroborate research that health organizations are yet to effectively use Twitter to educate 

or engage in dialogue with the general public (Gurman & Clark, 2016). Overall, we 

expect that our findings can improve the ethical use of Twitter data by equipping 

individuals with the ability to weigh information based on the reputability of the source 

of the tweet. In addition, the computational model for classifying themes emphasizes the 

ability to use machine learning techniques to understand the content of tweets for a wide 

range of health issues.  
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In conclusion, this work is an important step in understanding the health discourse on 

Twitter. Findings from this study highlight the need for future studies to understand the 

reach of content by various user groups. Our work demonstrates the efficacy of a visual 

analytic approach to making sense of social media data. Furthermore, it provides a 

foundation on which further research that involves real-time analysis of Twitter data can 

be built upon. It also provides the general public with a way to understand which topics 

are being discussed and by whom, which has implications for health literacy. 

Furthermore, this research provides a reference point for public health officials engaged 

in using social media to promote health policies. 
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Chapter 7  

7 Health literacy for the General Public: Making a Case 
for Non-trivial Visualizations 

This chapter has been accepted to the Informatics journal.  

Please note that the format has been changed to match the format of the dissertation. 

Figure numbers mentioned herein are relative to the chapter number. For instance, 

“Figure 1” corresponds to Figure 7-1. Additionally, when the term “paper” or “article” is 

used, it refers to this particular chapter.  

7.1 Introduction and Rationale 

Health literacy can be defined as an individual’s ability to make health decisions based on 

a sound analysis of relevant data. Over the last few decades, health literacy has garnered 

attention across the world. This in part is due to research that suggests that health literacy 

is a key determinant of health. For instance, according to the American Medical 

Association, health literacy is a stronger predictor of a person’s health than age, income, 

employment status, education level, or race (“Health literacy: report of the Council on 

Scientific Affairs. Ad Hoc Committee on Health Literacy for the Council on Scientific 

Affairs, American Medical Association.,” 1999). A survey conducted across eight 

European countries notes that individuals with lower levels of health literacy tend to have 

worse health (Sørensen et al., 2015). In addition to the health implications, low health 

literacy has financial implications for individuals as well as governments (Kickbusch et 

al., 2013; Rasu, Bawa, Suminski, Snella, & Warady, 2015; Vernon, Trujillo, Rosenbaum, 

& Debuono, 2007).  

Health literacy is multifaceted and encompasses a person’s ability to access, understand, 

process, and apply health information relevant to disease prevention, healthcare, and 

health promotion (Sørensen et al., 2012). Disease prevention is an important aspect of 

public health (National Research Council, 1988). In 2000, 35% of deaths in the United 

States were linked to tobacco and alcohol use, poor diet, and physical inactivity (Mokdad, 
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Marks, Stroup, & Gerberding, 2004) . On a global scale, 10% of mortality is attributed to 

physical inactivity and dietary risk factors (Lim et al., 2012). From a disease prevention 

standpoint, individuals with low health literacy have been shown to make poor health 

choices, engage in risky behavior, and have low self-management (Kickbusch et al., 

2013). Though professionals are charged with educating the public about health risks, 

hazards, and issues, there is need for personal empowerment as well (Lemire, Sicotte, & 

Paré, 2008; Nutbeam, 2000; Schulz & Nakamoto, 2013). Improving health literacy is a 

nontrivial endeavor. Currently, individuals seeking to access and understand health data 

are confronted with a myriad of data-related challenges. For instance, health data is often 

voluminous and originates from heterogeneous sources (Gotz & Borland, 2016; Herland 

et al., 2014; E. Liu et al., 2016; Ola & Sedig, 2014; Shneiderman et al., 2013). As a 

result, people find themselves having to engage in a time-consuming traversal of multiple 

websites to access relevant data. In addition to access, presenting data to individuals in a 

dense and understandable fashion is crucial to improving health literacy for the public (E. 

Liu et al., 2016). Given the scale and complexity of the data related to disease prevention, 

visualizations have the potential to play a crucial role.  

Interactive visualizations predominately represent data in a visual format and allow users 

to manipulate how the data is shown.  Simple visualizations such as bar charts, scatter 

plots, and pie charts have been used extensively over the last two centuries in the health 

domain. However, as the size of data increases, there is a need for visualizations that can 

mirror the complexity of the data and facilitate its understanding without straining the 

cognitive resources of users (Ola & Sedig, 2016). While the development of elaborate 

non-trivial visualizations has increased in recent years, research on instructional materials 

for visualizations is sparse (Lee et al., 2015; Ruchikachorn & Mueller, 2015; Tanahashi, 

Leaf, & Ma, 2016). As users’ understanding of the tool influences their ability to use the 

tool to complete tasks effectively, more research on visualization literacy—which is the 

ability of users to interpret and extract information from visualizations—is necessary.  

Borner et al. highlight the need for instruction so that individuals are better equipped to 

understand novel visualizations (Borner et al., 2016). While some may avoid using non-

typical visualizations because of their complexity, it is important to investigate if with 

training individuals can learn to use such visualizations.  Therefore, before we can 
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explore the use of non-typical visualizations for health literacy, it is important to first 

examine visualization literacy. 

The purpose of this paper is twofold. First, to present research that investigates the ability 

of individuals to learn to use elaborate interactive visualizations. Second, to examine the 

ability of non-trivial visualizations to improve health literacy. To this end, we have 

created a visualization tool, HealthConfection, that allows individuals to make sense of 

the causes and risk factors that contribute to mortality across the world. Using this tool, 

we have conducted two user studies.  The results from the first study, which is for 

visualization literacy, informs the second study that investigates health literacy. In this 

paper, we report our findings and discuss the implications for the visualization and health 

communities. The rest of the paper is organized as follows. Section 2 provides some 

conceptual and terminological background. Section 3 describes the visualization tool that 

we have created. Section 4 presents the research methodology and results from the 

visualization literacy study. Section 5 presents the health literacy study that we 

conducted. The final section, Section 6, presents the general conclusions. 

7.2 Background 

7.2.1 Health Literacy 

Health literacy is concerned with the ability of an individual to access, read, and 

understand health information, and act based on that information (Sørensen et al., 2012). 

Health literacy is a public health imperative (Gazmararian et al., 2005; Kickbusch et al., 

2013). Studies indicate that individuals with low health literacy are at a greater risk of 

long-term and life-limiting health conditions, as well as earlier mortality (Berkman et al., 

2011; Bostock & Steptoe, 2012). Individuals with low health literacy are less likely to be 

able to make sense of information related to clinical issues, risk factors, and social and 

physical determinants of health. In addition to the individual repercussions, low health 

literacy increases healthcare utilization and expenditure (Rasu et al., 2015). A 2007 report 

estimates that the cost of low health literacy to the U.S. economy was between $106 and 

$238 billion each year (Vernon et al., 2007). Advancing health literacy may also lead to 
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more equity and sustainability of changes in public health (Rowlands, Shaw, Jaswal, 

Smith, & Harpham, 2017; Sørensen et al., 2012). 

In this paper, we focus on disease prevention. From a health literacy standpoint, 

individuals need to be able to access, understand, and interpret information on risk factors 

for health (Sørensen et al., 2012). Disease prevention data is sourced from hospital 

records, demographic and health surveys, mortality reports, and research studies. Even 

after the data has been aggregated, individuals typically need to traverse multiple text-

based tables to find information. To understand the causes that lead to mortality and the 

implications of certain risk factors is an exploratory process, in which individuals need to 

be able to ask questions, get answers, and observe trends. In other words, they need to be 

able to interact with the data seamlessly. While videos and infographics have been 

beneficial in helping to improve health literacy (Occa & Suggs, 2016), when it comes to 

large sets of data there is a need for tools that allow users to control the flow of data and 

how data is represented. 

 

7.2.2 Visualizations for Health Literacy 

Visualizations, otherwise known as visual representations, have been used in varying 

capacities to help promote the understanding of health data. In the mid-19th century, 

Florence Nightingale used the coxcomb to visualize patient data and educate the Crown 

on sanitation related deaths of soldiers during the Crimean War (B. Cohen, 1984). 

Visualizations have evolved in complexity both with respect to how data is represented 

and how users can interact with the data. On one hand, simple visualizations, such as bar 

charts and scatter plots, are being replaced with visualizations that allow users to encode 

multiple aspects of the data simultaneously (Ola & Sedig, 2016). On the other hand, static 

visualizations are being replaced with interactive ones that allow users to control how and 

what data is shown at a specific point in time. In this section, we highlight some of the 

recent work aimed at providing the public with an accessible manner to make sense of 

health data.  
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HealthMap provides a comprehensive view of the current global state of infectious 

diseases by bringing together disparate data sources (Freifeld et al., 2008). Health 

GeoJunction extracts textual information from scientific literature, PH reports, and news 

reports to support the discovery of relationships between documents (MacEachren, 

Stryker, Turton, & Pezanowski, 2010). Weave is a web-based analysis and visualization 

environment that has been used to facilitate the exploration of breast and ovarian cancer 

data (Purushe, Grinstein, Smrtic, & Lyons, 2011).  Community Health Map allows users 

to explore and compare the health-care indicators across counties in the United States 

(Sopan et al., 2012). Zhao et al. (Zhao et al., 2013) integrate ringmaps into the 

InstantAtlas software environment to explore complex socio-spatial patterns of 

cardiovascular disease in New Zealand. Their tool supports the exploration of 

cardiovascular disease at multiple levels of granularity. Liu et al. (E. Liu et al., 2016) 

have developed a tool that allows patients to visualize data from PubMed on cardiorenal 

disease and its comorbidities as well as patient data from wearable sensors.  

While existing research has advanced the use of visualization tools to make sense of 

health data, most tools typically focus on a specific disease or viewpoint. For instance, 

the tool by Zhao et al. focuses solely on cardiovascular diseases. Similarly, HealthMap 

supports heterogeneous data sources, but only for one group of diseases—infectious 

diseases.  One notable exception is the suite of visualizations created by the Institute for 

Health Metrics and Evaluation (Institute for Health Metrics and Evaluation, 2013). Our 

visualization prototype, HealthConfection, which will be described in Section 3, builds 

on existing research and seeks to advance the use of visualizations for health literacy.  

 

7.2.3 Visualization Literacy 

Visualization literacy has been defined as the ability and skill to read, interpret, and 

extract information from visualizations (Lee, Kim, & Kwon, 2017). How people learn to 

use a visualization can influence their ability to understand the underlying data and 

complete tasks with the tool (Tory & Möller, 2004). A study that involved 273 

participants and 20 common visualizations provides strong evidence that a very high 
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proportion of adults and youth have low visualization literacy (Borner et al., 2016). 

Although users can improve visualization literacy through trial-and-error processes, past 

research indicates that sometimes when a faulty conceptualization of a visualization is 

formed users tend not to revise that conceptualization (Lee et al., 2015). If users do not 

know how to properly use a visualization, they are less likely to use it and may abandon 

the information-seeking tasks entirely if they become frustrated. To support information-

seeking behavior, it is necessary to provide users with tools that support, rather than 

hinder, their tasks. 

More work on empowering individuals to understand visualizations is needed (Borner et 

al., 2016). The visualization community recognizes this and is taking steps to improve 

visualization literacy within the general public. Recent efforts to improve visualization 

literacy investigate how instructional materials should be designed (Alper, Riche, 

Chevalier, Boy, & Sezgin, 2017; Kwon & Lee, 2016; Ruchikachorn & Mueller, 2015; 

Tanahashi et al., 2016). Ruchikachorn and Mueller demonstrated that by morphing 

visualizations from the familiar to the unfamiliar, participants could learn new 

representational forms (Ruchikachorn & Mueller, 2015). Alper et al. (Alper et al., 2017) 

have developed an online platform for children in grades K to 4 to learn about 

pictographs and bar charts. Tanahashi et al. (Tanahashi et al., 2016) investigated the top-

down and bottom-up teaching methods, and active or passive learning types for the 

scatter plot, graph, storyline, and treemap. In general, they observed that participants who 

used the instructional materials that utilized the top-down teaching method and catered to 

active learning showed the greatest improvement in the test segment. Kwon and Lee 

further studied active learning strategies. Using the parallel coordinates visualization and 

three tutorials types: static, video, and interactive, they observed that participants with the 

interactive and video tutorials outperformed participants with static or no tutorials (Kwon 

& Lee, 2016). Some of the studies mentioned above have focused on simple 

visualizations, while others have investigated visualization literacy for static 

visualizations. Our research builds on this foundation and explores the impact of video 

tutorials for complex, sophisticated interactive visualizations. 
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7.3 HealthConfection 

HealthConfection is a visualization tool that allows users to explore and make sense of 

the risk factors and the causes of mortality. The tool incorporates selected datasets 

aggregated by IHME (Institute for Health Metrics and Evaluation, 2013). The datasets 

include over 12 million records that estimate the 57 risk factors and over 235 causes that 

lead to death. Part of the challenge when working with large datasets is determining how 

users will explore the data. In visualizations, providing an overview is beneficial. When 

properly designed, overviews can provide users with an immediate appreciation for the 

size and extent of the data space, and support the navigation and exploration of the data 

space (Hornbæk & Hertzum, 2011). Previous visualization tools have shown the 

importance of providing users with a high-level overview of the data (Purushe et al., 

2011; Zhao et al., 2013). In addition to creating an overview visualization, we have also 

developed visualizations that emphasize four different perspectives through which users 

improve their health literacy: demography, geography, chronology, and sentiment. 

When working with multiple visualizations, it is important to provide users with 

consistent structures and navigational cues and anchors (Hornbæk & Hertzum, 2011; R 

Spence, 2014). As users navigate a data-centered tool, they find themselves confronted 

with familiar questions, including where am I? where can I go? and how do I get there? 

Visual metaphors can help to provide consistent structures. When users internalize visual 

metaphors, they can navigate visualizations effectively (Ziemkiewicz & Kosara, 2007). 

One technique to organize several representations is to use the visual confection 

metaphor. A visual confection is an assembly of visual representations, juxtaposed to tell 

a story, present visual comparisons, and show relationships and transitions (Tufte, 1997). 

Confections focus on the organization of representations through compartments, which 

can then be used to zoom in on visual elements. The consistent structure and navigation 

allow users always to be aware of their current location. Based on the Gestalt principle of 

symmetry, one viable technique for juxtaposing visual confections is to have a central 

representation around which other representations are arranged (Gadanidis, Sedig, & 

Liang, 2004). Placing a representation at the center implies that the representations 

surrounding it are conceptually related to it (Gadanidis et al., 2004). The central 
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representation, then, is where users begin their exploration of the story of the data. Figure 

1 shows the visual organization of our tool. 

 

 

Figure 7-1: HealthConfection visualization tool 

HealthConfection provides cues that allow users to explore health data from different 

perspectives while at the same time minimizing visual discontinuity. By interacting with 

the ‘+’ anchor to the right of each compartment, users can explore a perspective, control 

which visualization is in the center, watch the tutorial, and hide other visualizations.  The 

Overview visualization in Figure 1 shows the relationships between causes of death and 

risk factors at a global level and allows users to select specific age groups, geographic 

locations, or points in time for investigation. The surrounding compartments allow users 

to explore the story of the data from the four perspectives. In the IHME datasets, causes 

and risk factors are grouped at the level of clusters and groups. For causes, there are 21 

clusters and three groups: communicable, non-communicable and injury. For risk factors, 

there are ten clusters and three groups: metabolic, behavioral, and environmental and 

occupational risks. In our visualizations, we use a consistent color coding to emphasize 

the hierarchical structure of causes and risks. Non-communicable, communicable, and 
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injury causes are encoded with blue, red, and black respectively. For the risk groups, we 

use light shades of orange, green, and pink for metabolic, behavioral, and environmental 

and occupational risk groups, respectively. 

The Demography visualization allows users to explore which risks and causes affect 

different age groups. It also ranks the regions of the world based on their mortality rate 

for each age group. The visualization, enlarged in Figure 2a, has five main components, 

four of which are arranged as tracks. The innermost track represents the age groups at 

which the data is aggregated (e.g. 1-4, 50-54). The second track depicts the ranking of 

cause-clusters for each age group. Clusters are arranged in descending order, with the 

cause-cluster with the highest rank on the outside. The third track depicts the ranking of 

risk-clusters. The gray circles in the cause or risk tracks depict clusters that do not 

contribute to mortality for the age group. The last track shows the ranking of location 

clusters. Risk, cause, and location clusters are ranked and arranged according to their 

mortality rate per 100,000 people. The sub-visualization placed in the center of the tracks 

depicts the relationship between causes and risks for specific locations for a specific age 

group. The Demography visualization is a dense visualization that encodes over 800 data 

items in its initial configuration. Through interaction, users can control the amount of 

data shown and perform a variety of tasks. For instance, users can filter to understand 

how a risk-cluster affects different age groups. Users can also search for a specific cluster 

and then drill to get more information on the causes or risk factors that make up that 

cluster.  
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Figure 7-2: (a) Demography visualization; (b) Geography visualization; (c) 

Chronology visualization; (d) Sentiment visualization 

The Geography visualization (Figure 2b) allows users to explore the relationships 

between causes and risk factors at three levels of granularity: global, regional, country. 

The top half of the visualization encodes the relationship between risk factors and causes 

at a global level and the regional distribution of mortality for a selected cause or risk 

factor. The circular sub-visualizations on either side of the map show the same 

relationships but from different perspectives. The left one shows risk factors as circles 

and the causes related to them as arcs, while the sub-visualization on the right shows 

causes as circles and risk factors as arcs. The map shows how a selected risk or cause 

affects different regions of the world. The bottom half of the visualization allows users to 

explore the cause-risk relationship for a specific region of the world. The oval track is 

comprised of 21 visual elements each representing a region. By selecting a region, cause, 

and risk related mortality rates are shown as heatmaps, for the countries in the region. 
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Connecting the risk and cause heatmap portions of the visualization are links that 

emphasize the relationship between cause-clusters and risk-clusters for that specific 

region. By interacting with the Geography visualization, users can determine the regions 

of the world that are most affected by a cause, cause-cluster, risk, or risk-cluster. They 

can also compare the impact that certain diseases have on countries and make sense of 

the relationship between causes and risk factors at multiple levels of granularity. 

The Chronology visualization (Figure 2c) allows users to explore how mortality has 

changed over time. This visualization has two main controls and three panels. The first 

control allows users to filter data by selecting a specific time period. The second control 

is part of the first panel and allows users to select a cause-cluster for further examination. 

The first panel depicts the ranking of cause-clusters at a global level over the specified 

time frame. Each cause-cluster is arranged based on its rank for a specific year and links 

are drawn between each year’s placement to help users understand the temporal trend. 

The second panel depicts the proportion of mortality for causes in a selected cluster. The 

third panel portrays the temporal distribution of cause-cluster specific mortality for each 

region of the world. With interaction, users can determine which cause-cluster results in 

the highest mortality at a global level and explore how mortality has changed over time. 

The Sentiment visualization (Figure 2d) allows users to explore the public’s perception of 

different health hazards. This visualization uses Twitter data (data not from IHME) that 

includes over half a million health-related tweets. Using machine learning models, we 

classified each tweet by its user category and subject theme. The circular arcs at the top 

of the visualization represent the top 50 words for the dataset. The middle portion depicts 

the categorization of tweets by user groups and tweet themes. In its initial configuration 

(see Figure 1), the bottom of the sentiment visualization shows the sentiment rate for 

cause-clusters. Users can drill to retrieve additional information for a selected cause-

cluster. For instance, in Figure 2d, when cancer is selected, the curved heatmaps depict 

the sentiment for each cause in the cluster for each user group and tweet theme. 

Interaction plays a crucial role in the exploration of data. To facilitate the understanding 

of health patterns and trends, each visualization has different interactions such as 

filtering, drilling, selecting, searching, and comparing that are operationalized in a 
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consistent manner. For an in-depth discussion of how the visualizations were designed, 

the interested reader is directed to (Ola & Sedig, 2016). 

7.4 Visualization Literacy Study 

7.4.1 Research Methodology 

Ethics approval for this study was granted by the University of Western Ontario 

(Appendix 2). To investigate how instructional material influences individuals as they 

seek to make sense of non-typical visualizations, we utilized the Demography and 

Geography visualizations from HealthConfection (see Figure 2a and 2b). We selected 

these two visualizations as the testbed because they include novel and unfamiliar sub-

visualizations. For each visualization, we used two versions in our study, one that had a 

video tutorial and one that did not include the tutorial. The video tutorials were hosted on 

Youtube (https://youtu.be/HaR7sRfaVtY and https://youtu.be/HwKF9Cbozpo). 

7.4.1.1 Participants 

A total of 33 participants were recruited from a university in Canada. All of the 

participants had to be at least 18 years of age and registered students. Participants also 

needed to be able to use a mouse, keyboard, and computer without any assistance. To 

recruit participants, we visited first- and second-year class sessions and presented a five-

minute summary on the study and allowed students to sign up or send emails to indicate 

that they desired to participate. Posters and flyers were also posted on university boards. 

All of the participants were volunteers, and none had seen or used the visualizations 

before.  

7.4.1.2 Procedure 

The experiment was conducted in the following steps. After providing consent, each 

participant was randomly assigned to either the control or the treatment group. Next, we 

provided a general introduction to the study. The participant then completed a short 

demographics form. Following this, the participant was given access to the Demography 

visualization and allowed to explore it. If the participant was a part of the treatment 

group, they watched the tutorial (i.e., short 5-minute video) and then explored the tool for 

https://youtu.be/HaR7sRfaVtY
https://youtu.be/HwKF9Cbozpo
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an additional 5-minutes. If the participant was a part of the control group, they did not 

receive the tutorial but were given an equal amount of time to familiarize themselves with 

the tool (i.e., a total time of 10 minutes regardless of the group). Next, the participant was 

given access to the online question set for demography and instructed to use the 

visualization to complete the question set in 25 minutes. At the end of the timeframe, the 

participant could take a short break. Similar to the first part, the participant explored the 

Geography visualization, was provided access to the second question set, and instructed 

to use the visualization to complete the question set. Following this, the participant was 

given an experience questionnaire to self-report their experience of using the 

visualizations. Finally, the participant was asked to fill out a form to indicate whether 

they would like to participate in the interview session. The entire procedure took 

approximately 90 minutes.  

Of those who did not object to being interviewed, some participants were invited to 

participate in an interview session.  During the interview session, after signing the 

consent form, the participant was asked questions to elaborate on their previously written 

responses. Also, they were shown the other version of the two visualizations and asked a 

series of questions. The interview session was audio-recorded. The entire procedure for a 

participant in this session took approximately 30 minutes. 

7.4.1.3 Sources of Data 

Four sources of data were used in the study: (1) achievement results and confidence 

scores obtained from the statistical analysis of the scores on the two question sets; (2) 

demographics forms; (3) experience questionnaires; and, (4) interview transcripts, 

obtained from the audio recording during the interview sessions.  

Instead of paper and pencil tests, online tests were used to keep track of the overall time 

spent by each participant. The purpose of the tests was to provide a comparative measure 

to ascertain participants’ understanding of the visualizations. The questions were 

multiple-choice and fill-in-the-blank type questions. The questions were designed to 

assess an individual’s understanding of how data was encoded and how to interact with 

the visualization. Some questions required users to perform one sub-task. For example, 
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for the Geography visualization users were asked, within the environmental and 

occupational risk group, which risk factor contributes to the most deaths worldwide? To 

answer this question, participants had to use one of the circular sub-visualizations to 

identify the largest risk that belonged to the specified group. Other questions required 

users to perform multiple sub-tasks. For instance, for the Demography visualization, to 

answer the question, what country in sub-Saharan Africa has the highest mortality rate for 

individuals between the ages of 35 and 39, participants had to perform three sub-tasks. 

They had to identify or search for all of the regions of sub-Saharan Africa for the age 

group. Next, they needed to select each region and then drill to determine which country 

had the highest mortality rate. In addition to answering the questions, for each question, 

participants were asked to rank their confidence in the correctness of their answer on a 7-

point Likert scale.  The demographics form included questions relating to participants’ 

age, major, and gender. The form also asked questions about participants’ previous use 

of, and exposure to, visualizations. The experience questionnaire was used to collect 

quantitative and qualitative data detailing participants’ opinions of the visualizations and 

tutorials (the treatment group only). The purpose of the interviews was to provide further 

information about the responses on the experience questionnaire and to help provide a 

deeper understanding of quantitative data. During the interview, participants from the 

control group viewed the tutorials and were asked for their opinions. Audio recordings 

were made of all the interviews. The recordings were later transcribed by the 

investigators. 

7.4.1.4 Hypotheses 

The visualization literacy study attempted to test the following two hypotheses.  

• Hypothesis I: Instructional materials (i.e., short, minimalist video tutorials) will 

improve participants’ understanding of non-typical visualizations. The group with 

instructional materials will outperform the control group. Performance will be measured 

using two main indicators (1) question set scores and (2) self-reported confidence scores. 

• Hypothesis II: This was the null hypothesis of the study: the performance of the 

two groups would be the same. 
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7.4.2 Results 

To provide a clearer picture of the participants, prior to a discussion of the results, we 

present a summary of some data gathered from the demographics forms. The participants 

came from a wide range of departments, including creative writing, health science, urban 

development, medical science, kinesiology, music, computer science, biology, 

geography, women’s studies, economics, actuarial science, psychology, media studies, 

linguistics, and library information science. On a 7-point Likert scale, participants were 

asked to measure their use of typical and non-typical visualizations on a weekly basis. 

64% of the participants in both groups reported using typical visualizations at least 

occasionally. On the other hand, 64% of participants in both groups reported using non-

typical visualizations rarely, very rarely, or never. Table 1 shows a summary of 

demographic information of the participants by their group.  

Table 7-1: Summary of participant demographics for visualization literacy 

study1 

Gender 

Group Male Female 

Control 6 11 

Treatment 7 9 

Program Level 

 Undergraduate Graduate 

Control 15 2 

Treatment 14 2 

Use of Typical Visualizations 

 Always Very 
Frequently 

Frequently Occasionally Rarely Very 
Rarely 

Never 

Control 1 3 0 7 4 1 0 

Treatment 2 0 4 3 4 1 0 

Use of Non-Typical Visualizations 

 Always Very 
Frequently 

Frequently Occasionally Rarely Very 
Rarely 

Never 

Control 0 0 0 2 5 6 3 

Treatment 0 1 1 3 2 3 4 

1 Two participants PT08 and PT10 declined to answer the questions relating to their use 

of visualizations. 
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The rest of this section is divided into two subsections. In the first section, we present an 

analysis of the quantitative results. In the second section, we present an analysis of the 

qualitative data gathered from the experience questionnaires and during the interview 

sessions. 

7.4.2.1 Analysis of Quantitative Results 

In this section, we first discuss the scoring of the test. Next, we present an analysis of the 

overall score, and in the last section, we present an in-depth analysis of the quantitative 

data for each visualization separately.  

Scoring of the tests 

A simple scheme was utilized; and, questions were awarded points based on the number 

of sub-questions. The first seven questions on the Demography visualization were 

awarded one point each, while the last three questions were awarded four points each 

because they each included four sub-questions. For the geography test, the first eight 

questions were awarded one point each, while the last two questions were awarded four 

points each. Skipped or incomplete questions were awarded a mark of zero. The points 

were added and then converted to a percentage. For the scoring of confidence, the Likert 

scale values were converted to numerical numbers (i.e., 7 - strongly agree, 1 - strongly 

disagree). The values were then added and converted to percentages. The overall 

achievement and confidence score is the average of the Demography and Geography 

visualization score for each participant.  

Overall 

Statistical analysis was conducted on the achievement and confidence scores. Table 2 

shows the descriptive statistical summary. The treatment group generally performed 

better than the control group. The mean difference for the achievement score between the 

groups is 13.4%. Figure 3 shows the box plot of the overall achievement scores per 

group. The mean difference for the self-reported confidence is 9.5%. 
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Table 7-2: Overall descriptive statistical summary for the visualization literacy 

study 

 Question Set Confidence Level 

 Control Treatment Control Treatment 

Mean 57.31 70.68 75.92 85.38 

Standard Error 4.16 4.16 2.85 2.43 

Median 56.41 69.33 80.18 85 

Mode 48.68 88.49 82.14 N/A 

Standard Deviation 17.17 16.66 11.74 9.72 

 

 

Figure 7-3: Box plot of the overall achievement scores for the control and treatment 

groups 

To examine whether there is any statistical significance to using the tutorial a one-way 

analysis of variance (ANOVA) test was performed. The analysis results are depicted in 

Table 3. We found that participants who used the tutorial performed significantly better 

on the question sets than participants in the control group, F(1, 32) = 5.15, p <.05. A one-

way ANOVA statistical test was performed on the confidence levels as well. The results 

indicate the difference in confidence scores is significant, F(1,32)= 6.31, p < .05. Based 

on the ANOVA tests and the descriptive statistical analysis of the achievement and 



168 

 

confidence scores, Hypothesis I can be accepted and the null hypothesis can be rejected 

for the study. 

Table 7-3: One-way variance analysis test for the visualization literacy study 

 Question Set Confidence 

F(1,32) 5.15 6.31 

Fcrit 4.16 4.16 

p-value 0.030 0.017 

 

Further analysis was performed to assess if there was any difference in literacy for each 

visualization by splitting the results into two categories based on the visualizations.  

Analysis by visualization 

Statistical analysis was conducted on the question set and confidence scores for each 

visualization. Table 4 shows the descriptive statistical summary. The treatment group 

generally performed better than the control group. For the Demography visualization, the 

mean difference for the question set was 17.4%, while the difference for the confidence 

was 10.7%. For the Geography visualization, the difference in means is smaller, 9.4% for 

the question set scores and 8.2% for confidence. These results seem to suggest that the 

tutorial was more effective for the first visualization (i.e., Demography) than for the 

second visualization. 

Table 7-4: Descriptive statistical summary by visualization 

 Demography Visualization Geography Visualization 

 Question Set Confidence Level Question Set Confidence Level 

 Control Treatment Control Treatment Control Treatment Control Treatment 

Mean 51.39 68.77 71.77 82.50 63.24 72.66 80.06 88.26 

Standard 
Error 

4.59 4.69 3.02 3.18 5.41 4.49 3.05 2.74 

Median 47.37 68.42 71.43 83.98 62.50 78.13 80.00 90.71 

Mode 47.37 89.47 66.67 85.71 81.25 87.50 92.86 98.57 

Standard 
Deviation 

18.93 18.76 12.45 12.72 22.30 17.95 12.56 10.95 
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ANOVA tests were performed to examine whether there is any statistical significance to 

using the tutorial for each visualization. The analysis results are depicted in Table 5. The 

results show that using the tutorial improved participants’ performance on the question 

set for the Demography visualization (p < .05) but not for the Geography visualization (p 

> .05). Regarding the confidence level, the same is observed, the Demography 

visualization results indicate statistical significance to using the tutorial visualization 

while the Geography visualization results are not statistically significant.  

Table 7-5: One-way variance analysis test by visualization 

 Demography  Geography 

 Question Set Confidence  Question Set Confidence 

F(1,32) 7.01 5.99  1.77 3.97 

Fcrit 4.16 4.16  4.16 4.16 

p-value 0.013 0.020  0.193 0.055 

 

Although this would require further investigation, we believe that the lack of statistical 

significance for the Geography visualization is in part due to transferable skills learned 

while participants interacted with the first visualization. Participants were already 

familiar with the structure of the underlying data (i.e., risks, causes, cause-clusters, and 

groups) and how to interact with visualizations based on their previous exposure to the 

Demography visualization. Even the participants without tutorials had engaged in a trial-

and-error process that impacted their understanding. During the interview session, we 

asked participants follow-up questions to further explore this difference.  

7.4.2.2 Analysis of Qualitative Results 

As the above quantitative analysis shows, using the tutorials improved participants’ 

achievement and confidence scores. In this section, we present the analysis of the 

qualitative data to get a better understanding of the experience of participants and the 

effect of the tutorials. These results include a combination of responses from the 

experience questionnaire and comments during the interview sessions. Participants are 

referred to by their number and their group, participants in the control group are referred 

to as PC<#>, while those in the treatment group are referred to as PT<#>. 
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Effect of the Tutorial  

On the experience questionnaire, participants were asked to speak to the effect of the 

tutorial on their ability to complete the question set. Some of the comments are: 

• “I had never seen a Demography visualization before so the video introduced it to 

me and taught me how to use it. The video, although short, really explained how to use 

the visualization and made it clear where to find the things I needed to find.” (PT06) 

• “Simply looking at the 2 circles was a bit offputting; with the tutorial it was made 

clear what the purpose was. I was immediately confused about the lines; however tutorial 

cleared that up.” (PT10) 

• “At first glance, the geography visual is intimidating and the tutorial breaks it 

down nicely.” (PT12) 

• “Being told how to interpret complex diagrams is very helpful when presented 

with a wide array of options/buttons to click. Being told what things meant and how to 

find them was very helpful.” (PT13) 

• “The speaker was slow and she made it concise and short to understand. The 

demography visual was immediately intimidating but tutorial cleared confusion.” (PT14) 

• “Without any instructions on how the data is organized, it is difficult to get the 

hang of it yourself without spending lots of time.” (PT15) 

During the interview members of the treatment group were shown the version without the 

tutorial and asked if it would have been more or less difficult to use. PT07 said, 

“Extremely more difficult. I felt that I had difficulty even after having seen the tutorial, 

so I worry that without it I wouldn’t have managed to be slightly confident for the tasks”. 

PT13 had a similar opinion: “It would have been so much more difficult because the 

amount of data that you are trying to show to somebody. I’m sure I could have figured it 

out, but it would have taken me at least an hour to figure it out without the aid of the 

tutorial.” 
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Strategy for making sense without aid 

When asked how their strategy for using the visualization to complete the question set 

would have differed without the tutorial, PT07 said, “I can’t imagine how, but I want to 

say yes. Because for most of the questions I had an idea of where to start because I knew 

basically how most of the visualization worked, so I think I had a starting point. It would 

have been much more random guessing at the start of each question until I found 

something that answered the question and then I would have tried to figure it out from 

there.”  

This observation is similar to the responses of the participants in the control group who 

participated in the interview. When they were asked how they learned to use the 

visualization, they said: 

• “My process was just to click around until something happened and then try to 

understand what happened.  I was able to figure out the second one because of the color 

scheme; the reserved colors help me to know that they were related.” (PC06) 

• “Explore and understand it step by step. So, I break it down and go through the 

different sections to try and understand how they work together. It is kinda of funny. I 

didn’t notice the legend on the side until I had already gone through it and figured out 

what the categories meant on my own.” (PC10) 

• “I started looking at the headings and just stared at it for a while. I did not realize 

that you could click or interact with it. And then when I started looking at the questions 

and answering them it started to make sense. Then I saw the + sign at the top and all the 

other things that started popping up.” (PC12) 

Experience of participants without the tutorial 

Four participants from the control group participated in the interview session, where each 

of them was shown the tutorial and then asked a series of questions. In terms of 

interacting with the visualizations, three of the four interviewed participants were 

unaware of many interaction options that existed for the Demography visualization. PC10 
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said, “I did not know that [the menu with five different interaction options] was there. I 

didn’t know how to use the hive plot. I just put low for the answer because I did not know 

what to do”. After watching the tutorial, PC12 said “WHAT!!! I did not see that, no!!! I 

knew there was more but wasn’t sure how to get to it. There are so many things!!”.  PC06 

said, “Oh wow. This would have been beneficial to helping me use the tool.” When asked 

how using the tutorial might have impacted their exploration, they said: 

• “It would have potentially helped me to find the other elements a little more 

easily. The things in the tutorial where things I figured out along the way. Where I 

struggled was combining different parts to find the answer. Narrowing down to the region 

or a specific country within an age group for a cause or risk. I think it would have helped 

me to skim off that part of figuring it out.” (PC02) 

• “I would have been more purposeful in my interaction. I wouldn’t have had to 

click randomly to see the connection.” (PC06) 

• “It would have helped me to feel more secure in the knowledge and my 

understanding of it. I think that in terms of which one was highest or lowest that was 

definitely something that I had to poke around with to figure it out. To figure out which 

was highest or lowest, when I clicked on it, I would compare the actual numbers. 

Understanding how the interactions work, that was something I was iffy on, so that would 

have been something that the tutorial would have helped with.”  (PC10) 

• “It would have made it better for me to figure things out. It would have changed 

my strategy. Cause I would know where to look for things because at first it was going to 

try and see what pops up and one of the things that I assumed that the causes at the top 

were the highest but I wasn’t sure if it was that way.” (PC12) 

When asked about why their performance and confidence level improved when they used 

the second visualization (i.e., Geography). PC02 said, “For the first one, there were 

moments when I didn’t understand the differences between causes and risk factors. And 

maybe that is why the geography was more intuitive because I had a better understanding 

of geography”. PC12 mentioned, “because I already knew that I had to click on things to 
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get more information. For the first one, I did not know what I can click and do, and what 

would pop up. For the second one, I knew that there was more. So that kinda like made it 

easier.”  PC06 said, “Anxiety and nervousness, I was more calm during the second one. I 

did not know how to interact with the first one”.  

Our study reveals that the participants’ achievement and confidence scores increased with 

the use of the short, minimalist video tutorials. The qualitative data further underscores 

the benefits of instructional materials, especially when time is a factor. In addition, we 

observed that once participants have used a visualization, there is a transfer of skills to 

other visualizations. Some researchers believe that we should only use simple, chart-like 

visualizations and have argued against the use of elaborate visualizations. This study 

shows that even when individuals have a low exposure to complex visualizations, the 

majority of participants reported using non-typical visualizations rarely or less than that, 

they were able to increase their visualization literacy through focused exploration. This 

study helps to emphasize the benefits of video tutorials and the ability of humans to learn 

to use non-trivial visualizations. Now that we have evidence indicating that individuals 

can properly use non-typical visualizations, in the next section, we investigate 

HealthConfection’s ability to improve health literacy. 

7.5 Health Literacy Study 

7.5.1 Research Methodology 

In this section, we describe the research methodology to investigate the ability of 

visualizations to improve health literacy. Ethics approval for this study was granted by 

the University of Western Ontario (Appendix 3). Once again, our study tool was 

HealthConfection. Participants used the Geography, Demography, Chronology, and 

Overview visualizations and had access to the respective tutorials. The Sentiment 

visualization was not included in the study because the public’s opinion on health issues 

is not an aspect of disease prevention.   
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7.5.1.1 Participants 

A total of 28 participants were recruited from a university in Canada. All of the 

participants had to be at least 18 years of age and registered undergraduate or graduate 

students. Participants also needed to be able to use a mouse, keyboard, and computer 

without any assistance. To recruit participants, we visited first- and second-year classes 

and presented a five-minute summary on the study and allowed students to sign up or to 

send emails to indicate whether they desired to participate in the study. Posters and flyers 

were also posted on university boards. All of the participants were volunteers. None of 

the participants had seen or used the tool before.  

7.5.1.2 Procedure 

The experiment involved two sessions: a test session and an interview session. For the 

test session, the participants were randomly assigned to either the control or the treatment 

group, and were given the appropriate consent form. After obtaining consent, each 

participant completed a short demographics form. Next, for those in the control group, 

they were administered the health literacy quiz. This concluded their participation in the 

study. For a participant in the treatment group, they were given a brief overview of the 

tool and then given a task sheet to complete. The task sheet was designed to facilitate a 

guided exploration through each visualization. Upon completion of the tasks, the 

participant could take a short break. Next, the quiz was administered and then the 

participant was given an experience questionnaire to self-report their experience of using 

the tool. Lastly, the participant was asked to fill out a form to indicate whether they 

would like to be interviewed. The entire procedure for a participant in the treatment 

group was approximately 100 minutes, while for a participant in the control group it was 

approximately 25 minutes.  

Of those who consented to being interviewed, some participants were invited to 

participate in an interview session.  During the interview session, the participant was 

asked a series of questions. The entire procedure for a participant in this session took 

approximately 25 minutes. 
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7.5.1.3 Tasks 

Participants in the treatment group were asked to complete a series of tasks. Being that 

data space is large (i.e., over 12 million records), an unguided exploration by participants 

would result in different concepts being learned. The tasks were intended to provide 

participants with pre-determined goals to facilitate the learning of specific health 

concepts within the limited duration of the study. For each visualization, participants 

were asked to complete five tasks. Most tasks required users to perform a combination of 

sub-tasks and to interpret how the data was encoded. For instance, for the Geography 

visualization, participants were asked to determine which regions of the world are 

severely impacted by a diet low in fruits. This task can be completed in multiple ways. 

One way would involve, first locating, and then selecting the diet low in fruits risk factor 

from one of the two circular sub-visualizations in the top half of the Geography 

visualization. Next, a participant could use the map’s legend to select the regions that fall 

between the third and fourth quartiles. If a participant is unfamiliar with the regions 

highlighted, then he/she could select each region to determine its name. Participants were 

not told which steps to take. Instead, they were given the tasks and instructed to use the 

tool to complete them. Table 6 includes a sampling of tasks assigned. As users performed 

the assigned tasks, they were able to gradually explore the story of the data and discover 

different trends that exist. 

Table 7-6: Sample tasks for health literacy study 

Visualization Task 

Geography At a global level, what are the risk factors that contribute to death 
from tuberculosis? 

Chronology Which cause-clusters significantly increased in rank between 1990 and 
2010? 

Demography For which age groups, is dietary risk factor and physical inactivity the 
highest ranked risk-cluster that contributes to death? 

Overview Which cancer results in the highest number of deaths for adults in sub-
Saharan Africa? 

7.5.1.4 Sources of Data 

Four sources of data were used in the study: (1) achievement results obtained from the 

statistical analysis of the quiz scores; (2) demographics forms; (3) experience 
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questionnaires; and, (4) interview transcripts, obtained from the audio recording during 

the interview sessions. A paper-and-pencil quiz was constructed. The purpose of the quiz 

was to ascertain participants’ global health literacy. The quiz contained 20 multiple-

choice questions, which were based on the exploration tasks. The demographics form 

included questions relating to participants’ age, major, and gender. The form also asked 

questions about participants’ interest and exposure to global health concepts, as well as 

their previous use of and exposure to visualizations.  The experience questionnaire, which 

was only for the treatment group, was used to collect quantitative and qualitative data 

detailing participants’ opinions of the visualizations. On the questionnaire, we surveyed 

seven questions regarding HealthConfection on the 7-point Likert scale: 1) Engagement; 

2) Fun; 3) Ease of use; 4) Ease of learning; 5) Enjoyability; 6) Benefit to health literacy; 

and, 7) Layout of the visualization. During the interview sessions, participants in the 

treatment group were asked to expound on some of their responses on the experience 

questionnaire and provide detailed feedback on the efficacy of the tool. The investigators 

transcribed the audio recordings of the interviews.  

7.5.1.5 Hypotheses 

The health literacy study attempted to test the following two hypotheses.  

• Hypothesis III: The developed visualization tool improves health literacy. The 

group that uses the tool will outperform the control group on the quiz. Performance will 

be measured by achievement scores.  

• Hypothesis IV: This was the null hypothesis of the study: the performance of the 

two groups would be the same. 

7.5.2 Results 

Before a discussion of the results, we present a summary of some data gathered from the 

demographics forms. The participants were from diverse departments including biology, 

computer science, psychology, kinesiology, political science, chemistry, biochemistry, 

linguistics, occupational therapy, management and organizational studies, urban 

development, electrical engineering, and library information science. On a 7-point Likert 
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scale, participants were asked to measure their use of non-typical visualizations on a 

weekly basis. 70% of the participants in both groups use non-typical visualizations rarely, 

very rarely, or never. More than half of the participants in both groups mentioned that 

they had been exposed to global health in a formal school setting. Table 7 shows a 

summary of demographic information of the participants by their group.  

Table 7-7: Summary of participant demographics for health literacy study 

Gender 

Group Male Female 

Control 5 9 

Treatment 5 9 

Program Level 

 Undergraduate Graduate 

Control 8 6 

Treatment 9 5 

Use of Non-Typical Visualizations 

 Always Very 
Frequently 

Frequently Occasionally Rarely Very 
Rarely 

Never 

Control 1 0 0 0 4 4 5 

Treatment 1 0 1 2 3 1 6 

Exposure to global health concepts in school 

 Strongly 
agree 

Agree Somewhat 
agree 

Neither 
agree nor 
disagree 

Somewhat 
disagree 

Disagree Strongly 
disagree 

Control 1 3 4 0 4 1 1 

Treatment 1 3 5 1 3 1 0 

 

7.5.2.1 Quiz Results 

Each question on the global health literacy quiz was awarded one point. Skipped or 

incomplete questions were awarded a mark of zero. The points were then converted to 

percentage. The participants in the treatment group achieved a higher score than those in 

the control group. Table 8 shows the descriptive statistical summary by group and Figure 

4 shows the box plot of the overall scores. To determine if the effect of HealthConfection 

to improve health literacy is statistically significant, we applied a one-way ANOVA test 

on the quiz scores. The results of these analyses, F= 195.40, Fcrit = 13.74, p = 1.33 × 1013  
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thus p < 0.001, confirm our third hypothesis that the visualization tool improves health 

literacy.  

Table 7-8: Descriptive summary of quiz scores 

  Treatment Control 

Mean 78.93 21.07 

Standard Error 3.44 2.30 

Median 82.50 20.00 

Mode 60.00 15.00 

Standard Deviation 12.89 8.59 

 

 

Figure 7-4: Box plot quiz scores for the treatment and control groups 

7.5.2.2 Experience Questionnaire and Interview Feedback 

In this sub-section, we examine the quantitative and qualitative feedback received on the 

experience questionnaire and during the interview sessions. On the experience 

questionnaire, participants in the treatment group were surveyed to ascertain their 

experience with HealthConfection. Some of the questions were related to the layout of 

the visualizations and how engaging, fun to use, easy to use, easy to learn, and enjoyable 

to use the tool was. We also asked them to state whether they thought the tool improved 
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their understanding of global health concepts.  A 7-point Likert scale was utilized and 

Figure 5 details the responses. In addition to these questions, participants also provided 

written comments on their experience. Three of the 14 participants took part in the 

interview session. Participants are referred to as PT<#>, where # represents their 

identification number.  

Generally, the participants’ responses were positive. Thirteen of the 14 participants 

agreed or strongly agreed with the statements relating to engagement, fun, and 

enjoyability.  In the comments section, PT02 wrote “Super cool! I was very mesmerized 

by the entire program. Very interactive and fun to play around on. Good for visual 

learners. Elegant presentation of a mind-boggling amount of information”. PT13 wrote 

“Really neat! I think it could be really helpful for those who aren’t as mathematically 

inclined or those who learn visually”.  In terms of ease of use, one participant was 

ambivalent, while the majority of participants somewhat agreed with the statement. 

During the interview, both PT13 and PT07 alluded to having to return to the tutorials 

during their completion of the tasks because they were not sure how to use the tool 

properly. When asked about the layout of the visualizations, five of the participants 

strongly agreed that it was beneficial for navigation, while six agreed and three somewhat 

agreed. During the interview, PT13 mentioned that the benefit of having the layout is that 

you see everything together and know everything that is being offered. PT07 liked the 

layout and said, “it is like a mind map that improves navigation.” This sentiment was 

echoed by PT05 who said “The layout was beneficial for me; you can see how things are 

related.  It is easier to move through because they are all close together. This idea of 

being able to move through the visualization and thus navigate through the data is 

beneficial for exploration. 
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Figure 7-5: Responses on health literacy experience questionnaire 

On the questionnaire, regarding health literacy, 6 participants strongly agreed that the tool 

was beneficial, six agreed, and two somewhat agreed with the statement.  In the 

comments section of the question, PT08 wrote, “Very informative and really fun to play 

around with and learn about global health. As someone who does not know very much 

about global health, I really enjoyed using this tool to learn about this topic”. PT11 

commented “Very impressive; I wish they used these in class, it would really help the 

students learn better especially for health scientists”. During the interview session PT05 

who had his/her interview a week after the first session commented on the memorability 

of the data, “I still remember some of the information, like it was about my country, I was 

like Oh I didn’t know that. I would love to use it again”. Both PT05 and PT13 

highlighted that, as self-described people who are not good at mathematics or who do not 

like reading, the way information was represented was very beneficial for their learning. 

PT13 said that the tool made the data accessible to people who are not mathematically 

inclined while PT05 said, “I’m the type of person who doesn’t like reading information. 

A tool like this that you can go and eliminate data is easy. Better than Google. The 

information was very direct; you don’t have to go through a lot of reading to find it. I 

think it is really cool”.  
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In this study, we investigated whether non-trivial visualizations can be used as health 

literacy tools.  Our results were statistically significant and indicate that visualizations 

can be used to improve the general public’s understanding of health patterns and trends. 

An analysis of the qualitative data emphasizes the positive response of participants 

regarding HealthConfection as a health literacy tool. 

7.6 Discussion and Conclusion 

This paper has presented two multi-method empirical studies: the first investigated the 

use of short video tutorials to improve visualization literacy and the second investigated 

the use of visualizations to improve health literacy. The testbed for both investigations 

was a visualization tool that we created, HealthConfection. This tool uses aggregated 

datasets of global health data.  

The first study evaluated the effect of video tutorials on visualization literacy. The study 

showed that even without support structures, participants could learn how to use two 

sophisticated, non-trivial visualizations. In particular, participants with the tutorials 

achieved higher scores than those without instructional materials, indicating that the 

video tutorials improved participants’ understanding of the Geography and Demography 

visualizations. This study and its results have certain limitations. First, the participants 

are all university students who are not an accurate representation of the general public. 

Second, interviewees may have wanted to please the interviewer by providing desirable 

answers. Despite these limitations, the research can lead to a few general conclusions that 

have implications for the use of visualizations. First, our results can be generalized to 

other elaborate and unfamiliar visualizations; we believe that short, minimalist video 

tutorials can help to improve the public’s ability to use such visualizations. Second, 

contrary to our expectations, participants without the tutorial could make sense of aspects 

of the visualizations. These results suggest that if given time, the general public can make 

sense of and learn how data is encoded and how to interact with novel, non-typical 

visualizations, even though they are complex and unfamiliar. That being said, it is 

possible that the closed nature of the questions served as an unconscious tutorial. Further 

research is needed to design more advanced and open-ended questions to better ascertain 

such knowledge. Insights from this study also indicate that visualization knowledge is 
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transferable and people with limited exposure to or experience with visualizations can 

transfer their learned knowledge of certain visualizations to other visualizations. More 

research is needed to understand this phenomenon.  

The second study investigated the use of non-typical visualizations to improve health 

literacy. The study showed that during an hour of goal-oriented exploration, the 

participants were able to improve their understanding of global health trends. Some 

limitations of the study include the sample size and the fact that students are not 

representative of the general public. Another limitation was that the control group did not 

have any exposure to the data within the visualization tool before taking the quiz. Future 

research should compare the use of visualizations to the use of existing repositories of 

data, including reports and search engines.  In spite of these limitations, the study has 

implications for health literacy. The findings of this research demonstrate that non-trivial 

visualizations can be used to improve health literacy. In situations where individuals are 

motivated to learn, visualizations that initially may seem complex can be learned with 

short video tutorials.  While in the past, typical visualizations, such as column charts and 

line charts, have been advocated for because of their simplicity, our research implies that 

more complex visual representation forms can be used to improve health literacy. 

Furthermore, the research suggests that when confronted with large amounts of data, 

visualizations that allow users to disclose information gradually are beneficial. The ease 

of use highlighted by users and their quiz scores underscore this point. The interactive 

nature of visualizations is also important. The research suggests that providing users with 

diverse interactions allows them to perform various tasks. Also, when exploration is a 

key task of users, the layout of visualizations may impact their ability to navigate. While 

we did not test the impact of different layouts, both the comments of users and the 

quantitative data suggest that providing users with a single interface that provides an 

overview, clear and consistent structures, and navigational cues is beneficial. With these 

visualizations, participants were able to engage in an exploration of the story of the data. 

The findings of this research imply that visualizations can be used to empower the 

general public to learn about disease prevention in an engaging format. Overall, we 

expect that our findings on using tutorials to improve visualization literacy and non-

typical visualizations to improve health literacy could be generalized to other 
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visualizations and other domains where large repositories of data need to be made 

available to the public in an accessible manner. Ultimately, we hope that our work serves 

as encouragement to those seeking to advance health literacy.  
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Chapter 8  

8 Conclusion 

This dissertation has touched upon several aspects relating to the design of interactive 

visualizations and analytics for public health data. Chapter 2 presented a broad overview 

of the data-related challenges facing the public health community. Chapters 3 and 4 

focused on the design of visual representations and interaction. Chapter 5 demonstrated 

how analytics could be incorporated into visualizations. Chapters 6 and 7 presented 

studies relating to mining twitter data to understand the discourse of health issues on the 

platform and improving visualization and health literacy. This chapter concludes the 

dissertation and is divided into three main sections: (1) a summary of each chapter and 

some of its contributions; (2) general conclusions on the contribution of this research to 

the wider scientific literature; and (3) areas of future research. 

8.1 Dissertation Summary 

Visual analytics tools and public health. In Chapter 2, we discussed the challenges facing 

the public health community, described visual analytics tools, and discussed the role that 

visual analytics tools can play in addressing the challenges. In doing so, we demonstrated 

the potential benefit of incorporating visual analytics tools into public health practice and 

highlighted the need for further systematic and focused research. 

Visualization design. In Chapter 3, we presented how frameworks can guide designers in 

the creation of non-trivial visualizations. In this chapter, we made a case for the 

development and use of sophisticated visualizations that can represent the complexity of 

datasets by allowing multiple facets of the data to be encoded simultaneously. We also 

presented how the patterns in the data can help drive the design of visualizations in a 

systematic fashion. To make this point, we provided detailed explanations on how four 

non-typical visualizations were designed.  

Interaction design. In Chapter 4, we presented a design process for interaction based on 

elements of a framework. We also demonstrated the significance of understanding users’ 
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tasks and how tasks influence the design of interaction. We also discussed the limitations 

of interaction provided by existing visualization tools and presented a case for interaction 

that allows users to have a more meaningful discourse with data. This chapter ended with 

scenarios that highlighted the efficacy of a task-based approach to interaction design.  

Coupling visualization and analytics. In Chapter 5, we demonstrated how to combine 

analytics and visual representations to support the work of public health stakeholders. In 

particular, we showed how statistical measures that are typically difficult for the average 

person to comprehend could be understood with visualizations. In this chapter, we 

discussed a visualization tool we created to facilitate making sense of the spread of Zika 

and showed, with a case study, the efficacy of visualizations to confront emerging health 

issues. 

Visual analytic study. In Chapter 6, we conducted a visual analytic study to explore the 

discourse of health on Twitter. We reported on a process for conducting visual analytic 

studies and demonstrated how analytic models could be constructed to provide more 

insight on Twitter chatter. In this chapter, we also discussed the design of a visualization 

that will allow individuals to learn more about how health is being discussed on Twitter 

and demonstrated the role of visualizations in analysis.  

Visualization and health literacy studies. In Chapter 7, we presented the results of two 

research studies that we conducted with visualizations we developed. The first study 

explored visualization literacy. In particular, we explored how people go about learning 

to use non-trivial visualizations and the impact of instructional materials. One of the key 

findings of this research is that short minimalist video tutorials can improve visualization 

literacy. In the second study, we demonstrated that during an hour of goal-oriented 

exploration, participants were able to improve their understanding of global health trends.  

8.2 General Contributions 

As described in Chapter 1, the broad concern of this research surrounds the design of 

interactive visualizations and analytics for the domain of public health. Currently, there is 

a paucity of research in this area and our goal was to help bridge the gap between 
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theoretical concepts and practice. One contribution of this dissertation is the explication 

of the design process for visualizations and interaction for the public health domain and 

emphasizing the need for systematic design approaches. Using this dissertation, designers 

can approach the creation of health visualizations with a deeper understanding of the 

nuances of how the process unfolds.   

Another contribution of this dissertation is the visualization tool, HealthConfection, that 

is discussed in chapters 3, 4, 6, and 7. The five interactive visualizations that we designed 

are elaborate and sophisticated visualizations that can be implemented and used across 

the globe to improve health literacy. In addition, these visualizations can be reconfigured 

to work with different bodies of data. In particular, the Demography visualization can be 

explored as a new visualization technique.  

Other contributions emerge from the studies we conducted. Future studies can be 

modeled after the three studies presented in Chapter 6 and 7 to further explore how to 

improve visualization and health literacy and how to understand the discourse of health 

on social media platforms. While there has been an increased interest in the development 

of visualizations, research on how people make sense of visualizations has not been 

explored as much. In addition, most of the existing research on visualization literacy has 

focused on simple and/or static visualizations. Our work moves the visualization field 

forward by exploring visualization literacy for non-typical elaborate interactive 

visualizations. In the past, there has been reticence on using elaborate visualizations 

partially because of their perceived complexity, our research has challenged this notion 

and has opened the door for more use and research on advanced visualizations in the 

health domain.  

Finally, our research contributes to health literacy efforts. There is a need to empower 

individuals to seek and understand data. This dissertation provides the public health 

domain with evidence of the efficacy of visualizations for health literacy. This research 

has implications for other fields inundated with massive amounts of data that need to be 

made accessible and understandable for the general public.  
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8.3 Future Work 

The work presented in this dissertation lays the foundation for the design and use of 

visual analytics tools in public health. While we focused primarily on how visualizations 

are designed and how analytics can be incorporated into visualization tools, more 

research is needed to explore how to best couple the two distinct components together. 

Research on how information processing should be distributed between the components 

and how to externalize analytic processes is needed. In addition, as our work focuses on 

interaction at the level of actions, more research on understanding how interaction at the 

level of events influences the completion of tasks is needed. 

From a visualization literacy standpoint, more research is needed to better understand 

how people make sense of sophisticated visualizations. One line of research can 

investigate the transference of skills. In our study, we noticed that individuals performed 

better on the question set for the second visualization.  Empirical studies can explore 

what factors contributed to this increase. Another line of research relates to support 

structures for different demographics. Our study utilized students between the ages of 18 

and 35 as participants, additional studies can help ascertain the effectiveness of 

instructional materials for different age groups.  

This dissertation introduces the use of elaborate visualizations for health literacy. Our 

study was laboratory based, in that we required participants to use the visualizations for a 

fixed time in a location in which distractions were at a minimum. Studies that evaluate 

the use of visualizations in classrooms, public areas, and more realistic settings will 

contribute to a better understanding of the efficacy of such tools. Furthermore, studies in 

other countries can help make HealthConfection a tool that is beneficial to individuals 

around the globe.  
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Appendices 

Appendix 1: List of search terms for visual analytic study  

abortion hemorrhagic stroke pancreatic cancer 

alcohol use disorders hepatitis pancreatitis 

alzheimer hiv/aids paralytic ileus 

aortic aneurysm hurricane death parkinsons disease 

asthma 
hypertensive heart 
disease 

peptic ulcer 

atrial fibrillation influenza peripheral arterial disease 

atrial flutter 
interpersonal 
violence 

peripheral vascular disease 

bile duct disease 
intestinal ischemic 
syndrome 

pharyngeal cancer 

biliary tract cancer 
intestinal 
obstruction 

pneumoconiosis 

bladder cancer 
iron-deficiency 
anemia 

pneumonia 

brain cancer ischemic heart poisonings 

breast cancer ischemic stroke pregnancy hypertensive 

bronchitis kidney cancer 
preterm birth 
complications 

cardiomyopathy kidney disease prostate cancer 

cervical cancer laryngeal cancer 
protein-energy 
malnutrition 

chagas leukemia pulmonary sarcoidosis 

chikungunya liver cancer rheumatic heart 

chronic obstructive 
pulmonary disease 

liver cirrhosis rheumatoid arthritis 

colon cancer low back pain road injury 

congenital anomalies lung cancer self-harm 

dengue malaria sepsis 

diabetes male infertility skin disease 

diarrhea diseases 
maternal 
hemorrhage 

skin melanoma 

diffuse parenchymal 
lung disease 

measles stds 

drowning 
medical treatment 
adverse effect 

stomach cancer 

drug overdose meningitis subcutaneous disease 

earthquake death migraine syphilis 
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ebola mouth cancer tetanus 

encephalitis multiple myeloma tornado death 

endocarditis multiple sclerosis trachea cancer 

epilepsy myocarditis transport injury 

esophageal cancer 
nasopharyngeal 
cancer 

tsunami death 

falls neck pain tuberculosis 

fire death 
neonatal 
encephalopathy 

typhoid 

gall bladder 
nervous system 
cancer 

typhoon death 

gallbladder cancer 
non-hodgkin 
lymphoma 

urinary disease 

glomerulonephritis 
oropharyngeal 
cancer 

urinary organ cancer 

gout osteoarthritis uterine cancer 

heat death ovarian cancer whooping cough 
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i Here we refer to any individual seeking to use PH information in a professional capacity 

as a PH stakeholder. 

ii Here we refer to data as digitally stored, sensed changes in the environment. 

iii Unstructured data requires additional processing for it to be interpreted by the 

computer. 


	The Design of Interactive Visualizations and Analytics for Public Health Data
	Recommended Citation

	tmp.1509131328.pdf.BGTsE

