6 research outputs found

    DatAR: An immersive literature exploration environment for neuroscientists

    Get PDF
    Maintaining an overview of publications in the neuroscientific field is challenging, especially with an eye to finding relations at scale; for example, between brain regions and diseases. This is true for well-studied as well as nascent relationships. To support neuroscientists in this challenge, we developed an Immersive Analytics (IA) prototype for the analysis of relationships in large collections of scientific papers. In our video demonstration we showcase the system’s design and capabilities using a walkthrough and mock user scenario. This companion paper relates our prototype to previous IA work and offers implementation details

    Concept embedding-based weighting scheme for biomedical text clustering and visualization

    Get PDF
    Biomedical text clustering is a text mining technique used to provide better document search, browsing, and retrieval in biomedical and clinical text collections. In this research, the document representation based on the concept embedding along with the proposed weighting scheme is explored. The concept embedding is learned through the neural networks to capture the associations between the concepts. The proposed weighting scheme makes use of the concept associations to build document vectors for clustering. We evaluate two types of concept embedding and new weighting scheme for text clustering and visualization on two different biomedical text collections. The returned results demonstrate that the concept embedding along with the new weighting scheme performs better than the baseline tf–idf for clustering and visualization. Based on the internal clustering evaluation metric-Davies–Bouldin index and the visualization, the concept embedding generated from aggregated word embedding can form well-separated clusters, whereas the intact concept embedding can better identify more clusters of specific diseases and gain better F-measure

    Semantic text mining support for lignocellulose research

    Get PDF
    Biofuels produced from biomass are considered to be promising sustainable alternatives to fossil fuels. The conversion of lignocellulose into fermentable sugars for biofuels production requires the use of enzyme cocktails that can efficiently and economically hydrolyze lignocellulosic biomass. As many fungi naturally break down lignocellulose, the identification and characterization of the enzymes involved is a key challenge in the research and development of biomass-derived products and fuels. One approach to meeting this challenge is to mine the rapidly-expanding repertoire of microbial genomes for enzymes with the appropriate catalytic properties. Semantic technologies, including natural language processing, ontologies, semantic Web services and Web-based collaboration tools, promise to support users in handling complex data, thereby facilitating knowledge-intensive tasks. An ongoing challenge is to select the appropriate technologies and combine them in a coherent system that brings measurable improvements to the users. We present our ongoing development of a semantic infrastructure in support of genomics-based lignocellulose research. Part of this effort is the automated curation of knowledge from information on fungal enzymes that is available in the literature and genome resources. Working closely with fungal biology researchers who manually curate the existing literature, we developed ontological natural language processing pipelines integrated in a Web-based interface to assist them in two main tasks: mining the literature for relevant knowledge, and at the same time providing rich and semantically linked information

    Exploratory visual text analytics in the scientific literature domain

    Get PDF
    corecore