1,193 research outputs found

    The Need to Support of Data Flow Graph Visualization of Forensic Lucid Programs, Forensic Evidence, and their Evaluation by GIPSY

    Full text link
    Lucid programs are data-flow programs and can be visually represented as data flow graphs (DFGs) and composed visually. Forensic Lucid, a Lucid dialect, is a language to specify and reason about cyberforensic cases. It includes the encoding of the evidence (representing the context of evaluation) and the crime scene modeling in order to validate claims against the model and perform event reconstruction, potentially within large swaths of digital evidence. To aid investigators to model the scene and evaluate it, instead of typing a Forensic Lucid program, we propose to expand the design and implementation of the Lucid DFG programming onto Forensic Lucid case modeling and specification to enhance the usability of the language and the system and its behavior. We briefly discuss the related work on visual programming an DFG modeling in an attempt to define and select one approach or a composition of approaches for Forensic Lucid based on various criteria such as previous implementation, wide use, formal backing in terms of semantics and translation. In the end, we solicit the readers' constructive, opinions, feedback, comments, and recommendations within the context of this short discussion.Comment: 11 pages, 7 figures, index; extended abstract presented at VizSec'10 at http://www.vizsec2010.org/posters ; short paper accepted at PST'1

    Data in Business Process Models. A Preliminary Empirical Study

    Get PDF
    Traditional activity-centric process modeling languages treat data as simple black boxes acting as input or output for activities. Many alternate and emerging process modeling paradigms, such as case handling and artifact-centric process modeling, give data a more central role. This is achieved by introducing lifecycles and states for data objects, which is beneficial when modeling data-or knowledge-intensive processes. We assume that traditional activity-centric process modeling languages lack the capabilities to adequately capture the complexity of such processes. To verify this assumption we conducted an online interview among BPM experts. The results not only allow us to identify various profiles of persons modeling business processes, but also the problems that exist in contemporary modeling languages w.r.t. The modeling of business data. Overall, this preliminary empirical study confirms the necessity of data-awareness in process modeling notations in general

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    Towards business integration as a service 2.0 (BIaaS 2.0)

    Get PDF
    Cloud Computing Business Framework (CCBF) is a framework for designing and implementation of Could Computing solutions. This proposal focuses on how CCBF can help to address linkage in Cloud Computing implementations. This leads to the development of Business Integration as a Service 1.0 (BIaaS 1.0) allowing different services, roles and functionalities to work together in a linkage-oriented framework where the outcome of one service can be input to another, without the need to translate between domains or languages. BIaaS 2.0 aims to allow automation, enhanced security, advanced risk modelling and improved collaboration between processes in BIaaS 1.0. The benefits from adopting BIaaS 1.0 and developing BIaaS 2.0 are illustrated using a case study from the University of Southampton and several collaborators including IBM US. BIaaS 2.0 can work with mainstream technologies such as scientific workflows, and the proposal and demonstration of BIaaS 2.0 will be aimed to certainly benefit industry and academia. © 2011 IEEE

    Towards Business Integration as a Service 2.0

    No full text
    Cloud Computing Business Framework (CCBF) is a framework for designing and implementation of Could Computing solutions. This proposal focuses on how CCBF can help to address linkage in Cloud Computing implementations. This leads to the development of Business Integration as a Service 1.0 (BIaS 1.0) allowing different services, roles and functionalities to work together in a linkage-oriented framework where the outcome of one service can be input to another, without the need to translate between domains or languages. BIaS 2.0 aims to allow full automation, enhanced security, advanced risk modelling and improved collaboration between processes in BIaaS 1.0. The benefits from adopting BIaS 1.0 and developing BIaS 2.0 are illustrated using a case study from the University of Southampton and several collaborators including IBM US. BIaS 2.0 can work with mainstream technologies such as scientific workflows, and the proposal and demonstration of BIaaS 2.0 will certainly benefit industry and academia

    STATE PROPAGATION FOR BUSINESS PROCESS MONITORING ON DIFFERENT LEVELS OF ABSTRACTION

    Get PDF
    Modeling and execution of business processes is often performed on different levels of abstraction. For example, when a business process is modeled using a high-level notation near to business such as Event-driven Process Chains (EPC), a technical refinement step is required before the process can be executed. Also, model-driven process design allows modeling a process on high-level, while executing it in a more detailed and executable low-level representation such as processes defined in the Business Process Execution Language (BPEL) or as Java code. However, current approaches for graphical monitoring of business processes are limited to scenarios in which the process that is being executed and the process that is being monitored are either one and the same or on the same level of abstraction. In this paper, we present an approach to facilitate business-oriented process monitoring while considering process design on high-level. We propose process views for business process monitoring as projections of activities and execution states in order to support business process monitoring of running process instances on different levels of abstraction. In particular, we discuss state propagation patterns which can be applied to define advanced monitoring solutions for arbitrary graph-based process languages
    • …
    corecore