61,318 research outputs found

    Multicolumn Networks for Face Recognition

    Full text link
    The objective of this work is set-based face recognition, i.e. to decide if two sets of images of a face are of the same person or not. Conventionally, the set-wise feature descriptor is computed as an average of the descriptors from individual face images within the set. In this paper, we design a neural network architecture that learns to aggregate based on both "visual" quality (resolution, illumination), and "content" quality (relative importance for discriminative classification). To this end, we propose a Multicolumn Network (MN) that takes a set of images (the number in the set can vary) as input, and learns to compute a fix-sized feature descriptor for the entire set. To encourage high-quality representations, each individual input image is first weighted by its "visual" quality, determined by a self-quality assessment module, and followed by a dynamic recalibration based on "content" qualities relative to the other images within the set. Both of these qualities are learnt implicitly during training for set-wise classification. Comparing with the previous state-of-the-art architectures trained with the same dataset (VGGFace2), our Multicolumn Networks show an improvement of between 2-6% on the IARPA IJB face recognition benchmarks, and exceed the state of the art for all methods on these benchmarks.Comment: To appear in BMVC201

    Aggregated Deep Local Features for Remote Sensing Image Retrieval

    Get PDF
    Remote Sensing Image Retrieval remains a challenging topic due to the special nature of Remote Sensing Imagery. Such images contain various different semantic objects, which clearly complicates the retrieval task. In this paper, we present an image retrieval pipeline that uses attentive, local convolutional features and aggregates them using the Vector of Locally Aggregated Descriptors (VLAD) to produce a global descriptor. We study various system parameters such as the multiplicative and additive attention mechanisms and descriptor dimensionality. We propose a query expansion method that requires no external inputs. Experiments demonstrate that even without training, the local convolutional features and global representation outperform other systems. After system tuning, we can achieve state-of-the-art or competitive results. Furthermore, we observe that our query expansion method increases overall system performance by about 3%, using only the top-three retrieved images. Finally, we show how dimensionality reduction produces compact descriptors with increased retrieval performance and fast retrieval computation times, e.g. 50% faster than the current systems.Comment: Published in Remote Sensing. The first two authors have equal contributio

    An Unsupervised Autoregressive Model for Speech Representation Learning

    Full text link
    This paper proposes a novel unsupervised autoregressive neural model for learning generic speech representations. In contrast to other speech representation learning methods that aim to remove noise or speaker variabilities, ours is designed to preserve information for a wide range of downstream tasks. In addition, the proposed model does not require any phonetic or word boundary labels, allowing the model to benefit from large quantities of unlabeled data. Speech representations learned by our model significantly improve performance on both phone classification and speaker verification over the surface features and other supervised and unsupervised approaches. Further analysis shows that different levels of speech information are captured by our model at different layers. In particular, the lower layers tend to be more discriminative for speakers, while the upper layers provide more phonetic content.Comment: Accepted to Interspeech 2019. Code available at: https://github.com/iamyuanchung/Autoregressive-Predictive-Codin

    View Independent Vehicle Make, Model and Color Recognition Using Convolutional Neural Network

    Get PDF
    This paper describes the details of Sighthound's fully automated vehicle make, model and color recognition system. The backbone of our system is a deep convolutional neural network that is not only computationally inexpensive, but also provides state-of-the-art results on several competitive benchmarks. Additionally, our deep network is trained on a large dataset of several million images which are labeled through a semi-automated process. Finally we test our system on several public datasets as well as our own internal test dataset. Our results show that we outperform other methods on all benchmarks by significant margins. Our model is available to developers through the Sighthound Cloud API at https://www.sighthound.com/products/cloudComment: 7 Page
    • …
    corecore