3 research outputs found

    WEBCAM-BASED LASER DOT DETECTION TECHNIQUE IN COMPUTER REMOTE CONTROL

    Get PDF
    ABSTRACTIn this paper, the authors propose a method to detect the laser dot in an interactive system using laser pointers. The method is designed for presenters who need to interact with the computer during the presentation by using the laserpointer. The detection technique is developed by using a camera to capture the presentation screen and processing every frames transferred to the ara computer. This paper focuses on the detection and tracking of laser dots, based on their characteristics to distinguish a laser dotfrom other areas on the captured frames. Experimental results showed that the proposed method could reduce the rate of misdetection by light noises of a factor of 10 and achieve an average accuracy of 82% of detection in normal presentation environments. The results point out that the better way to describe the laser dots’ features based on visual concept is to use the HSI color space instead of the normal RGB space.Keywords.  laser pointer; laser dot/spot; laser pointer interaction; control; mouse; computer screen/display

    3D Pointing with Everyday Devices: Speed, Occlusion, Fatigue

    Get PDF
    In recent years, display technology has evolved to the point where displays can be both non-stereoscopic and stereoscopic, and 3D environments can be rendered realistically on many types of displays. From movie theatres and shopping malls to conference rooms and research labs, 3D information can be deployed seamlessly. Yet, while 3D environments are commonly displayed in desktop settings, there are virtually no examples of interactive 3D environments deployed within ubiquitous environments, with the exception of console gaming. At the same time, immersive 3D environments remain - in users' minds - associated with professional work settings and virtual reality laboratories. An excellent opportunity for 3D interactive engagements is being missed not because of economic factors, but due to the lack of interaction techniques that are easy to use in ubiquitous, everyday environments. In my dissertation, I address the lack of support for interaction with 3D environments in ubiquitous settings by designing, implementing, and evaluating 3D pointing techniques that leverage a smartphone or a smartwatch as an input device. I show that mobile and wearable devices may be especially beneficial as input devices for casual use scenarios, where specialized 3D interaction hardware may be impractical, too expensive or unavailable. Such scenarios include interactions with home theatres, intelligent homes, in workplaces and classrooms, with movie theatre screens, in shopping malls, at airports, during conference presentations and countless other places and situations. Another contribution of my research is to increase the potential of mobile and wearable devices for efficient interaction at a distance. I do so by showing that such interactions are feasible when realized with the support of a modern smartphone or smartwatch. I also show how multimodality, when realized with everyday devices, expands and supports 3D pointing. In particular, I show how multimodality helps to address the challenges of 3D interaction: performance issues related to the limitations of the human motor system, interaction with occluded objects and related problem of perception of depth on non-stereoscopic screens, and user subjective fatigue, measured with NASA TLX as perceived workload, that results from providing spatial input for a prolonged time. I deliver these contributions by designing three novel 3D pointing techniques that support casual, "walk-up-and-use" interaction at a distance and are fully realizable using off-the-shelf mobile and wearable devices available today. The contributions provide evidence that democratization of 3D interaction can be realized by leveraging the pervasiveness of a device that users already carry with them: a smartphone or a smartwatch.4 month

    Digital tabletops and collaborative learning

    Get PDF
    People collaborate around tables at home, school and work. Digital tabletop technology presents an opportunity to bring computer support to these traditional face-to-face collaborative settings. This thesis principally addresses the challenge of designing digital tabletop applications for small group learning in the classroom and makes contributions in two distinct, but closely related areas: (i) interaction techniques for digital tabletops; and (ii) the design and evaluation of a digital tabletop-based system for supporting collaborative learning. A review of previous literature combined with a preliminary observational study on collaboration around traditional tables indentifies a number of requirements for tabletop interaction. These include the need for fluid interaction techniques that allow control of interface object attributes when these objects are moved between tabletop territories. Attribute gates are proposed as a solution to this problem through utilizing a novel, crossing-based, interaction technique. A recognition of the territorial focus in existing interaction techniques, and their limiting assumption that users work at relatively fixed locations around the table, led to the identification of another challenge, supporting the mobility of users around the shared workspace of the table. TANGISOFT is presented as a hybrid tangible-soft keyboard designed specifically for applications that require mobile users with moderate text entry requirements. The investigation of the potential of tabletop technology to support collaborative learning was carried out through the design, development, and evaluation of Digital Mysteries. From an interaction design perspective, the design aimed to utilize the unique affordances of tabletops in terms of combining the benefits of traditional tables and digital technology. From a learning perspective, the design aimed to support higher-level thinking skills, feedback, reflection, and metacognition by focusing on activities that promote these skills and supporting effective collaboration. The evaluation of Digital Mysteries demonstrated that the design was successful in encouraging the targeted learning activities. The design process and validation of Digital Mysteries embody a significant contribution to the development of our understanding of digital tabletop technology at the application level, and collaborative learning applications in particular. This understanding is summarized in the form of general guidelines for designing collaborative learning applications for digital tabletop technology.EThOS - Electronic Theses Online ServiceDiwan Software LtdGBUnited Kingdo
    corecore