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Abstract

In recent years, display technology has evolved to the point where displays can be both non-
stereoscopic and stereoscopic, and 3D environments can be rendered realistically on many types
of displays. From movie theatres and shopping malls to conference rooms and research labs, 3D
information can be deployed seamlessly. Yet, while 3D environments are commonly displayed in
desktop settings, there are virtually no examples of interactive 3D environments deployed within
ubiquitous environments, with the exception of console gaming. At the same time, immersive 3D
environments remain – in users’ minds – associated with professional work settings and virtual
reality laboratories. An excellent opportunity for 3D interactive engagements is being missed
not because of economic factors, but due to the lack of interaction techniques that are easy to use
in ubiquitous, everyday environments.

In my dissertation, I address the lack of support for interaction with 3D environments in ubiq-
uitous settings by designing, implementing, and evaluating 3D pointing techniques that leverage
a smartphone or a smartwatch as an input device. I show that mobile and wearable devices
may be especially beneficial as input devices for casual use scenarios, where specialized 3D
interaction hardware may be impractical, too expensive or unavailable. Such scenarios include
interactions with home theatres, intelligent homes, in workplaces and classrooms, with movie
theatre screens, in shopping malls, at airports, during conference presentations and countless
other places and situations.

Another contribution of my research is to increase the potential of mobile and wearable de-
vices for efficient interaction at a distance. I do so by showing that such interactions are feasible
when realized with the support of a modern smartphone or smartwatch. I also show how multi-
modality, when realized with everyday devices, expands and supports 3D pointing. In particular,
I show how multimodality helps to address the challenges of 3D interaction: performance issues
related to the limitations of the human motor system, interaction with occluded objects and re-
lated problem of perception of depth on non-stereoscopic screens, and user subjective fatigue,
measured with NASA TLX as perceived workload, that results from providing spatial input for
a prolonged time.

I deliver these contributions by designing three novel 3D pointing techniques that support
casual, “walk-up-and-use” interaction at a distance and are fully realizable using off-the-shelf
mobile and wearable devices available today. The contributions provide evidence that democra-
tization of 3D interaction can be realized by leveraging the pervasiveness of a device that users
already carry with them: a smartphone or a smartwatch.
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Chapter 1

Introduction

In 1991 Mark Weiser offered a vision of calm computing, where computing devices “weave
themselves into the fabric of everyday life until they are indistinguishable from it” (Weiser,
1991, p.1). He predicted that in the future technology will be omnipresent, but non-invasive
and will facilitate interactions that do not require learning or specialized input devices. In 2015
we are much closer to fulfilling that vision, largely thanks to the vast proliferation of mobile
technologies and the pervasiveness of digital displays. A few years after their introduction to the
consumer market, smartphone proliferation rose to 77% in North America (Dediu, 2015), and it
is predicted that 84% of the world’s population will be using some kind of mobile technology by
2018 (Radicati, 2014). Now we are on the verge of yet another revolution: smartwatches, which
may proliferate to a similar extent and at a similar speed.

However, Weiser’s vision is far from being fully realized, despite the fact that end-users fre-
quently possess a device that is convenient and available for interaction – such as a personal
smartphone or a smartwatch. Rather than forming a rich ecology, displays, mobile devices and
wearables exist largely independent of each other. Some efforts have been made towards com-
patibility, but the everyday use of interconnected devices is still not fully exploited. There is
insufficient support for interaction techniques that seamlessly utilize mobile and wearable de-
vices for input, thus facilitating casual, intuitive, low effort interaction with any and all displays.

Researchers have recognized the benefits of using mobile and wearable devices as conve-
nience input devices for computing environments (Ballagas et al., 2006). The advantages of
mobile devices have been discussed previously by Ballagas et al., who note that:

“Mobile phones’ prevalence gives them great potential to be the default physical
interface for ubiquitous computing applications... However, realizing this potential
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will require intuitive, efficient, and enjoyable interaction techniques for applications
in the ubiquitous computing domain” (Ballagas et al., 2006, p.1)

Yet, while researchers have already exploited mobile devices (Boring et al., 2010, 2009;
Katzakis, 2012; Medeiros et al., 2013) and wearables (De La Hamette et al., 2002; Kim et al.,
2012; Haque et al., 2015; Houben et al., 2015) as input devices for 2D interaction in comput-
ing environments, mobile- and wearable-based interaction with 3D environments is an under-
explored topic (Pietroszek et al., 2014). Because display technologies continue to evolve to the
point where displays can be both non-stereoscopic and stereoscopic and 3D environments can
be rendered realistically on almost any kind of display, the need for seamless 3D interactions
is more critical than ever. From movie theatres and shopping malls to conference venues and
research labs, 3D information can be deployed seamlessly, but cannot be seamlessly interacted
with.

Among a myriad of 3D interaction that can be performed in 3D environments, the most
elementary is the 3D target acquisition task. 3D target acquisition is a pre-requisite for further
object manipulation and 3D pointing is one of the ways in which 3D target acquisition can be
realized. In my dissertation, I focus on facilitating 3D target acquisition through distant pointing
by using mobile and wearable devices for input.

1.1 Thesis Statement

Mobile and wearable devices are carried by everyone. At the same time, for many application do-
mains the presentation of 3D content is already realized through off-the-shelf display technology,
both stereoscopic and non-stereoscopic. Advances in 3D image rendering such as autostereo-
scopic, volumetric, fog and holographic displays imply that 3D environments will become even
more commonly deployed in the future than they are today. Yet, while 3D environments can be
and are deployed everywhere, users cannot point at them from a distance. Thus:

Mobile and wearable devices can serve the attendant, unfulfilled need to support
pointing for 3D environments without a use of specialized input devices.

While some progress has been made in the domain of pointing in 2D environments, the need
for casual pointing techniques is apparent in the context of 3D environments. Pointing techniques
are needed that will help the proliferation of interactive 3D environments within computing envi-
ronments other than virtual reality laboratories and similar professional settings. My dissertation
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attempts to break the barrier to proliferation of 3D environments by leveraging current mobile
and wearable devices as a platform of opportunity to interact with 3D environments rendered on
ubiquitous displays.

1.2 Contributions

I address the lack of support for distant pointing in 3D environments with use of mobile and
wearable devices by designing, implementing, and evaluating thee novel 3D pointing techniques
that leverage a smartphone or a smartwatch. I show that mobile and wearable devices may be
especially beneficial as pointing devices for casual use scenarios, where specialized 3D inter-
action hardware may be impractical, too expensive or unavailable. Casual interaction scenarios
happen in settings such as home theatres, intelligent homes, in workplaces and classrooms, with
the movie theatre screens, in shopping malls, at airports, or during conference presentations.

The contributions of my dissertation can be grouped into three categories:

1. Leveraging mobile and wearable devices for casual 3D pointing
While 3D environments are commonly displayed in desktop settings, there are virtually
no examples of interactive 3D environments deployed within casual environments such as
public and semi-public settings, with the exception of console gaming. At the same time,
immersive 3D environments remain – in users’ minds – associated with professional work
settings and virtual reality laboratories. I hypothesize that an opportunity for 3D interac-
tive engagements is being missed not because of economical factors, but due to the lack of
interaction techniques are easy to use and that have no need for specialized equipment. As
the first step toward easier casual interaction with 3D environments, I present three novel
3D pointing techniques that are implemented on an off-the-shelf mobile and wearable de-
vices.

2. Enabling mobile and wearable pointing at a distance
Research on casual pointing often relates to interaction performed from close proximity to
the display, such as touch interfaces. Work on display interaction seems to assume that the
interaction intensity is a function of a distance from the display: the further from the dis-
play users are, the “less” interactivity is offered to them (Vogel and Balakrishnan, 2004).
At the same time, technological limitations inherent to interaction at arm’s length prevent
large groups of users from simultaneously interacting with a single display. Despite these
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limitations of direct, arm’s length pointing, mobile and wearable pointing at a distance is
much less explored in the literature than multi-touch pointing. My dissertation shows to
what degree 3D pointing at a distance can be realized with the support of a modern smart-
phone or smartwatch.

3. Identifying and addressing challenges of 3D pointing
Hardware developments in mobile and wearable technology open new opportunities in
multi-modal interaction. For example, a touchscreen combined with motion sensors offers
multi-modal – yet single-handed – input that can read touch events, recognize non-touch
gestures and provide an additional screen. My dissertation shows how multimodality, when
realized with mobile and wearable devices, helps to address challenges for 3D pointing:
performance issues related to the limitations of the human motor system, selecting oc-
cluded objects and related problem of perception of depth on non-stereoscopic screens,
and high fatigue that results from providing spatial input for a prolonged time.

I realize these contributions by designing and evaluating three novel 3D pointing techniques
that are implemented on off-the-shelf mobile and wearable devices available today. The contri-
butions provide evidence that pointing in 3D environments can be implemented by leveraging
the pervasiveness of a device that users already carry with them: a smartphone or a smartwatch.

1.3 Definitions

Due to the interdisciplinary nature of human computer interaction, the terminology used in this
dissertation comes from a number of fields, such as large display interaction, immersive envi-
ronments, and 3D user interfaces. To clarify my terminology, I hereby provide an definition of
essential terms.

Unless explicitly stated otherwise, I use the word “smartphone” and “mobile device” inter-
changeably, although mobile devices include larger form factor devices such as tablets and, more
recently, phablets. Similarly, I use the word “wearable” as a synonym of smartwatch, although
wearable devices come in various forms and include devices such as smart glasses, armbands,
and smart rings.

The term “large display” evolved over time. A 17” computer monitor that was considered
“large” twenty years ago is no longer is considered as such today. In the field of large display
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interaction, displays that are multi-view, and support more than one user simultaneously inter-
acting with them, are usually designated as “large”, even if their diagonal size is only 50” or so,
and that is how I use the term “large display”.

The term “fatigue” may be understood as a quantitative measure of consumed endurance
(Hincapié-Ramos and Guo, 2014) of muscles, or a subjective “feeling” of fatigue. Because I
am interested in the subjective perception of the comfort or discomfort felt by users during 3D
pointing task, throughout this dissertation I use an established NASA Task Load Index (Hart
and Staveland, 1988) measure of perceived workload, instead of measuring the muscle’s fatigue
directly.

I use the term “3D pointing” as a shortcut for “pointing at an object in a 3D environment”.
Sometimes I use the words “pointing” and “selection” interchangeably, as is common in the
literature, keeping in mind that pointing is just one of the methods that object selection may
be initiated with, while selection itself additionally requires a selection confirmation (Bowman
Doug A. et al., 1999).

When referring to “3D environment” in my dissertation, I mean a computer-generated graph-
ics environment that preserves information on the depth of the object, in addition to its x and y
location and size. For example, an image that creates an illusion of depth by using perspective
or stereoscopic rendering does not, in my definition, constitute a 3D environment, while a 3D
model rendered on a non-stereoscopic screen does constitute a 3D environment.

1.4 Overview of Research

The remainder of this dissertation is organized as follows.

In Chapter 2, I review relevant literature on 3D environment technologies and 3D interaction
techniques, with a focus on 3D pointing and selection techniques. I discuss in detail techniques
for pointing at a distance, as opposed to at arm’s length, as well as pointing techniques that
leverage a mobile or wearable device for input. Finally, I review research where mobile or
wearable devices are leveraged for 3D pointing. I identify areas the literature does not address
comprehensively, including use of Bring Your Own Device (BYOD) approach to 3D pointing
and interaction, support for interaction on non-stereo 3D environments, and designing for low
perceived workload by utilizing multimodality of mobile and wearable devices.

In Chapter 3, I list challenges that 3D pointing techniques must address: speed-accuracy
tradeoff, problems related to occlusion and depth perception, and high perceived workload. First,
I discuss how the tradeoff between selection accuracy and speed is modelled with Fitts’s Law,
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and how hand tremor (Myers et al., 2002) and the Heisenberg effect (Bowman Doug A. et al.,
2001) affect selection time. Second, I discuss three problems related to the perception of 3D
environments. I start with the problem of occlusion, when a 3D target is hidden behind (or
within) another object. Related to occlusion is the problem of depth identification: a user’s
inability to determine the z-position of a 3D target. Then I discuss the target disambiguation
problem that is common in dense environments. I also discuss how 3D pointing techniques often
result in high perceived workload and the related gorilla-arm effect (Schultz, 1988). The list of
challenges identified in Chapter 3 provides a framework against which all my novel 3D pointing
techniques are evaluated. I describe an experimental design that I use through this dissertation.

In Chapter 4, I develop a 3D pointing technique called Smartcasting (Pietroszek et al., 2014).
Smartcasting is a smartphone-based interaction technique based on Raycasting (Liang and Green,
1994) that allows for the manipulation of a 3D cursor with the use of two modalities: a wrist ro-
tation and a touch input. Smartcasting comes in two versions: a basic design where selection of
3D objects does not require manipulation of depth position of a cursor, but also does not support
dense, occluded 3D environments, and an advanced version that allows for fully addressable 3D
pointing (accessing any point in a 3D control space) and provides an occlusion removal mecha-
nism that enables selecting targets hidden behind other objects. I formally evaluate Smartcasting
and verify that it performs on a par with a Raycasting implementation for specialized input de-
vices, such as a WiiMote. I conclude that a smartphone can replace specialized input hardware
for casual 3D interaction.

In Chapter 5, I extend my work to wearable devices, such as a smartwatch, by designing
and evaluating a technique called Watchcasting, I validate the extent to which a wearable de-
vice can be used in place of a smartphone, or other specialized devices, such as Thalamic Myo
(www.thalmic.com), in order to perform 3D pointing tasks. While Watchcasting borrows from
Smartcasting, its design is tailored for wrist-worn devices. I show that Watchcasting performs
on a par with both Myo-based and smartphone-based 3D pointing.

In Chapter 6, I describe the design of a novel 3D interaction technique called Tiltcasting.
Tiltcasting is a smartphone-based 3D interaction technique that takes full advantage of a modern
smartphone’s modalities. Tiltcasting’s design is an extension of my work on the Smartcasting,
but it also incorporates elements of spatial correspondence targeting (Pietroszek and Lank, 2012),
a smartphone-based 2D interaction paradigm. My goal in developing Tiltcasting was to design a
3D pointing technique that both outperforms specialized low cost input hardware and addresses
the challenges of 3D interaction. Through a formal evaluation I find that Tiltcasting speeds
up selection of 3D targets in dense occluded environments, improves the target disambiguation
process, offers perspective and depth cues that eliminate depth confusion, reduces the Heisenberg
effect and hand tremor inaccuracy and reduces perceived workload.
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In Chapter 7, I reflect on the proposed interaction design and techniques, pointing at the lim-
itations of human motor system and the constraints imposed by mobile and wearable devices.
I also discuss approaches to design that may improve future interaction design for 3D environ-
ments leveraging mobile and wearable devices such as a smartphone or a smartwatch.

Finally, in Chapter 8, I conclude my dissertation by summarizing the work presented and
discussing the future directions in which the work can be extended.
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Chapter 2

Literature Review

To identify what is needed to advance Weiser’s vision, in this Chapter I review previous research
on pointing techniques that utilize mobile and wearable devices and identify gaps in the litera-
ture that I bridge in my dissertation. I start by providing a brief overview of 3D environments
and display technologies that enable rendering 3D content. Next, I provide an in-depth review
of the relevant literature on interaction technologies, and the division of interaction techniques
into two categories: interaction at arm’s length and interaction at a distance. I focus on “at
a distance” pointing as these are most relevant to the 3D pointing techniques I propose in the
later chapters of this dissertation. Because I have identified mobile and wearable devices as the
convenience device for casual pointing, I review research on mobile and wearable device-based
pointing techniques, noting limited research on 3D pointing techniques that leverage these types
of devices. I summarize my related studies chapter by discussing how gaps in the previous work
have motivated my dissertation.

2.1 3D Environments

3D environments are computer-generated graphic environments that preserve the information
about the depth dimension of presented objects. Such defined 3D environments are common –
to different degrees of pervasiveness – in all kinds of settings, from home desktop computers
to public 3D cinema screens. Each setting poses different requirements and constraints on the
pointing techniques that are commonly used. While in some settings the user may expect to be
equipped with or have access to a specialized 3D interaction device, such a requirement is not
always feasible. For example, in public settings users usually do not carry specialized 3D input
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devices, while installation of alternative 3D input hardware in such settings may be too expensive
or may not work well due to occlusion of some users by other users.

Desktop interaction with 3D environments is quite common and varies from 3D modelling
software, Computer-Aided Design (CAD) software, scientific visualization software to 3D en-
tertainment such as games and movies. The technology facilitating the 3D interaction includes
desktop 3D mice, 3D joysticks, and game controllers such as a WiiMote. Desktop 3D envi-
ronments can be rendered on consumer displays that support active or passive 3D stereoscopy.
Polarized TVs that create a 3D rendering effect through passive polarized glasses use similar
technology to the one used in many 3D movie theatres. More recently, head-mounted displays
like Oculus Rift are entering the consumer market, especially for gaming applications. Earlier,
active shutter glasses (NVIDIA 3D Vision) and anaglyph 3D rendering were commonly used to
create the illusion of depth on the 2D surface of a monitor or projection screen.

For specialized applications such as flight simulation, modelling, scientific visualization, ex-
hibitions, or virtual reality research, 3D environments are often realized in immersive systems,
such as CAVE, or spherical (360°), or semi-spherical projection systems. Such environments
usually come with specialized input devices. Use of a mobile device for these environments was
criticized by Medeiros et al. (2012), who argue that engineering applications require precision
tests that cannot be performed easily for mobile devices. Yet, it is possible that some 3D applica-
tions that do not require high precision, such as architectural or interior design walk-throughs for
customers, could benefit from the cost-to-quality ratio and ease of use that mobile devices afford
when used as inputs for 3D environments.

The settings in which the 3D environments are deployed are important for my dissertation,
because they constrain and guide the design of the 3D pointing techniques that I am proposing
in the next chapters. Although smartphones and smartwatches as convenience devices may be
useful in every kind of setting, I expect that they will be used primarily for casual interaction,
and thus should support “walk-up-and-use” scenarios. Users who often interact with 3D envi-
ronments (e.g. architects, graphic artists, scientists) may be expected to have a specialized 3D
input device. However, even in these settings, smartphones and smartwatches may still be useful
as input devices for economical reasons. Those users who are interested in exploring 3D en-
vironments, but want to avoid the additional expense of specialized 3D input devices, may be
interested in using the device they already own as long as it performs on a par with a specialized
device.
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2.2 Rendering 3D content

Recent advances in display technologies have rendered all kinds of displays cost effective, ac-
cessible, and mass-deployable. Specialized displays, such as obstructive head-mounted displays
(Bowman Doug A. et al., 2004): the Oculus Rift (www.oculus.com) and Sony’s “Project Mor-
pheus”, or non-obstructive holographic (Grossman and Balakrishnan, 2004), volumetric (Gross-
man and Balakrishnan, 2006), fog (Diverdi et al., 2006), autostereoscopic displays (Lee et al.,
2008) and CAVE systems (DeFanti et al., 2009) are also slowly making their way from research
labs to the consumer market, mainly for immersive gaming, modelling and scientific applications.
Smaller displays are present on most electronic devices and commonly have direct interaction,
through touch input or peripheral devices such as a mouse, a keyboard or a trackpad. Large
displays are also more common than ever, available in both vertical and horizontal (tabletop) de-
ployments and appearing in private (e.g. home theatre), semi-public (e.g. workspace) and public
(e.g. digital signage) settings.

Large displays have attracted the attention of multiple researchers, who have noted produc-
tivity gains (Czerwinski et al., 2003) and improved collaborative interactions around displays
(Russell et al., 2002; Wallace et al., 2009). Czerwinski et al. (2003) list the cognitive benefits
of larger size displays, noting that they improve information recognition and peripheral aware-
ness. These properties make large displays well-suited for many applications, such as command
and control (Dudfield et al., 2001), automotive design (Buxton et al., 2000), geospatial imagery
(Sandstrom et al., 2003), scientific visualization (Sandstrom et al., 2003), tele-medicine (Garner
et al., 1997), collaboration in tele-immersive environments (Maimone and Fuchs, 2011), edu-
cation and training (Lanir et al., 2008), and virtual reality applications (DeFanti et al., 2009).
Another common application of large displays is their deployment as digital signage. Digital
signage deployed in shopping malls, amusement parks, airports, stadiums, hospitals, city halls,
shop windows, workspaces and building walls often aims to provide personalized or shared user
experiences. Many research questions arise in this context, with recent research paying particular
attention to interactivity awareness, territoriality, proxemics, and interaction techniques for these
displays.

Rendering 3D environments can be realized on all the above displays, even those that are
not able to render depth dimension. However, recent advances in stereoscopic, autostereoscopic
(Ueda et al., 2014; Nii, 2013; Liao et al., 2011; Lee et al., 2008; Travis, 1990) and fog display
technologies (Diverdi et al., 2006) enable rendering of 3D environments that presents depth in-
formation, often on large format displays and in non-private settings. While the presentation of
3D content can be realized, it comes with certain limitations. For example, stereoscopic displays
require active or passive glasses to be worn by the user, with the exception of head-mounted
displays that can provide separate images for each eye. Stereoscopic rendering is also known to
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create visual discomfort in humans (Lambooij et al., 2007). Autostereoscopic displays do not
require glasses, but provide a 3D effect only from a limited number of “sweet spots”, resulting
in disappearance of the 3D effect if the user moves his head or walks by the display.

2.3 Interaction Techniques for 3D Environments

Interaction with displays can be more engaging for users than a passive presentation of infor-
mation. However, while interaction with 2D environments is well understood in research and
supported by many input technologies, interaction with 3D environments continues to be a chal-
lenge (Bowman Doug A. et al., 2004). In general, interaction with 3D environments can be
realized in two ways: at arm’s length or at a distance.

2.3.1 Interaction at Arm’s Length

Arm’s length interaction is possible by making the display itself interactive, a metaphor com-
monly realized through a multi-touch interface (Lee et al., 1985; Azad et al., 2012). Techniques
developed for multi-touch displays usually implement multi-touch gestures, either similar to the
gestures used on mobile devices such as smartphones and tablets, or specific to the size of the
display (Voelker et al., 2013). Some techniques combine mid-air gestures close to the display
with multi-touch gestures on the display itself, e.g. MirrorTouch (Müller et al., 2014). In “walk-
up-and-use” (Izadi et al., 2003) interaction scenarios, interaction must support first-time users
who have no previous experience with similar systems. One of the most comprehensive studies
of large display deployment that supported this assmption was CityWall (Peltonen et al., 2007),
yet it was a 2D environment study. Jacucci et al. (2010) implemented a version of CityWall that
featured 3D spherical widgets to manipulate 2D photos. However, the study focused on observed
user behavior rather than the interaction technique itself.

With the noted exception of immersive environments that are outside of the scope of this
work, the use of arm’s length interaction techniques to select and manipulate objects in 3D en-
vironments is less common than it is for 2D environments. One method of direct multitouch
interaction with 3D objects is to point at the 2D coordinates of the 3D target projection on the
viewport (the 2D plane of the monitor). The position of the viewport can be also manipulated
by changing the virtual camera position. Alternatively, a separate viewport may be provided for
each of the x, y, and z axes. A single view is sufficient to select a 3D object via its 2D projection
as long as objects are sparsely distributed.
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When stereoscopy is used, an essential problem with touch-based direct selection is the very
presence of the depth dimension: the z-axis point of any object that is positioned in non-zero
parallax space (e.g. inside the displayed scene) by definition cannot be touched. Direct touch
interaction within a 3D environment becomes a form of interaction at a distance. Due to the
close distance of the user to the display, the problem here is a mismatch between the eye line
and the imaginary extension of the finger into the depth dimension of the display. One solution
is to adjust the pointing direction based on the eye-line direction (Möllers et al., 2012). Another
solution was presented by Valkov et al. (2011), who provided a set of techniques in which 3D
objects are shifted onto the 2D surface when the user touches an object at depth. The disadvan-
tage of this solution is that the 3D environment is temporarily modified, complicating tasks such
as translation.

When 3D objects are rendered using stereoscopy, direct pointing is technically challenging
because stereoscopic effects rely on eye convergence (Reichelt et al., 2010) to convey 3D infor-
mation. Perceiving stereoscopy requires a user to stand within a certain range from the display
when interacting, thus limiting the possibility of touch interaction with large displays that require
standing at a distance that excludes possibility of direct interaction. Another issue, called stereo
fusion, arises when using 2D cursors to select 3D content rendered with stereoscopy (Argelaguet
and Andujar, 2009), resulting in a depth mismatch between the cursor and the target object, thus
preventing the user from “fusing” both objects in order to complete the selection.

Other challenges of direct interaction include multi-touch technologies that usually support a
limited number of simultaneous touch points, thus limiting the number of users who can interact
concurrently with the same display. The maximum number of users simultaneously interacting
with a display is also limited by the number that can physically fit in front of a vertical or around
a horizontal (tabletop) display. Another problem is that multi-touch interaction with content
distributed across the entire display may not be possible, as large public displays may stretch
beyond arm’s reach.

When the display is out of arm’s reach (e.g. it is mounted too high), or is shared between
large number of users, all of whom would not fit in front of the display, or in settings when the
position of user is fixed at a certain distance from the screen (e.g. in movie theatre), interaction
at arm’s length must be replaced by interaction at a distance, discussed next.

2.3.2 Interaction at a Distance

The distinction of interaction at a distance vs. interaction at arm’s length is somewhat blurred
as there exists a mixed approach that combines touch input with mid-air gestures in front of
the display (Vogel and Balakrishnan, 2005; Müller et al., 2014) or above the display (Bruder
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et al., 2013). Thus, for the purpose of this dissertation, I define distal pointing as direct pointing
performed at such a distance from the display that direct interaction is out of arm’s reach. Such
defined “pointing at a distance” techniques typically make use of two metaphors: virtual hand
and virtual pointing (Poupyrev et al., 1998).

2.3.2.1 Virtual Hand Metaphor

In the virtual hand metaphor, objects are acquired and manipulated in a way that closely resem-
bles real-world touching and grabbing. That is, users make use of a virtual hand that they control
in order to acquire and reposition objects in the 3D world. Grabbing is too difficult to be reliably
implemented without specialized equipment such as Leap Motion (Sutton, 2013), Virtual User
Concept (VICON) motion capture system or a virtual glove (Bowman Doug A. et al., 2001).
Some research towards achieving this goal was presented by Kim et al. (2012) and Quian et al.
(2014), who showed how robust hand tracking can be realized using depth cameras. When spe-
cialized equipment is used, virtual hand techniques are prone to many of the same disadvantages
as interaction in the real world such as limited reach and the potential for high perceived work-
load (Liao et al., 2011). Variants, such as the Go-Go technique (Poupyrev et al., 1996), address
reach limitations by extending a user’s arm using a nonlinear transformation: The user’s hand is
represented as a virtual hand in the 3D environment, that is positioned on a ray extending from
the torso and intersecting their physical hand. This approach allows for extended – although not
unlimited – reach within the control space of the 3D environment.

In general, the metaphor of the virtual hand falls within the Natural User Interfaces paradigm,
which focuses on designing gestural interaction for both 2D and 3D environments in such a way
that they resemble the way that people interact with everyday objects. Norman criticized that
approach, stating that natural interfaces are not at all “natural” (Norman, 2010). He argues that
the interaction research should focus on designing for ease of use and learning, for low mental
demand and low perceived workload interaction that results in better than natural interaction,
instead of trying to imitate natural interactions, which are expressions of our physical and bio-
logical limitations rather than the best possible solutions. Although it may be argued that the
metaphor of grabbing is easy to use due to its resemblance to the way that people interact with
objects in the real world, it is known to cause fatigue (Schultz, 1988) due to prolonged use of the
same group of muscles (Hincapié-Ramos and Guo, 2014).

2.3.2.2 Virtual Pointing Metaphor

The pointing metaphor closely resembles real-life pointing with a finger: the user points at the
object and selects it with a hand gesture or button click. One of the earliest examples of such
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an interaction technique was called “Put-that-there” (Bolt, 1980). This interaction technique
combines voice input with mid-air gestures, allowing objects to be moved on a large display
deployed in a private environment, such as a media room, and shows how multimodality can
enhance pointing.

A recent survey of 3D pointing techniques by Angelaguet and Andujar (2013) proposes to
classify selection techniques into three categories: point cursor, Raycasting and curve. The most
basic 3D pointing technique is to freely move a 3D point cursor (Argelaguet and Andujar, 2008)
within a 3D environment. The technique resembles a mouse cursor, but requires manipulation
of the cursor position along the z-axis. Moreover, the 3D cursor is usually represented not as an
arrow, but as a sphere or a crosshair. In this technique, the input device’s position in motor space
is directly translated into the cursor position in the control space of 3D environments. Thus, to
reach the target, the user moves the input device. This simple solution comes with a number of
problems related to accuracy and speed tradeoff and occlusion. A detailed discussion on these
issues, including related literature, is presented in Chapter 3.

One of the first virtual pointing techniques designed is Raycasting (Liang and Green, 1994),
where an object is selected when a user points at that object using an input device such as a
tracker, a glove, or in a freehand manner. Raycasting is a technique similar to laser-pointing
described in the 2D interaction section. The difference is that in Raycasting, the ray travels into
the depth dimension of the 3D display.

Raycasting exists in many variations (Argelaguet and Andujar, 2013), developed to address
various challenges in 3D interaction, that are discussed in Chapter 3. One of the common modifi-
cations is to adjust the shape of the selection cursor, or the ray. For example, in 3D BubbleCursor
(Vanacken et al., 2007), the size of the spherical cursor expands or shrinks automatically to reach
the object closest to its centre. Similarly, ApertureSelection (Forsberg et al., 1996) allows for
the manual adjustment of the the selectable area’s apex angle. Some techniques combine a ray
with a 3D point cursor that is contained along the ray. For example, in Depth Ray (Grossman
and Balakrishnan, 2006). In Depth Ray, from all objects intersected by the ray the one that is
closest to the 3d cursor that can move along the ray, is the one that is selected. Another option is
to zoom in the area surrounding the target (Cashion et al., 2012).

A significant shortcoming of many Raycasting techniques is that their performance degrades
in dense environments due to ambiguity in targeting. Specifically, a cast ray represents an infi-
nite set of candidate points along a single line, and when targets are grouped closely together it
may not be clear which candidate a user wishes to interact with. Moreover, the technique does
not allow for the selection of distant/small objects due to the angular accuracy required. That
is, small angular rotations (a tremor) of the user’s hand can result in large movements at a dis-
tance on screen (Myers et al., 2002; Steed, 2006). Despite these disadvantages, Raycasting is
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widely used for 3D selection (Steed, 2006), and is publicly known for its use in devices such as
Nintendo’s WiiMote. The popularity of these techniques can be attributed to their simplicity and
intuitiveness, arising from a “natural” extension of the user’s finger.

2.3.3 Virtual 3D Pointing

Most interaction tasks in 3D environments start with a selection of a target of interest, thus
target selection is the fundamental task in 3D user interfaces (Bowman Doug A. et al., 2004).
Bowman et al. (1999) note that a selection technique must facilitate the indication of an object,
confirmation of its selection, and should provide feedback during the selection task (visual, haptic
or audio). One way selection can be realized is through virtual pointing, other methods include
grabbing, or manually entering the 3D coordinates of objects. However, unlike virtual hand and
direct touch techniques, virtual pointing allows the user to select objects beyond their reach.

Consequently, multiple user studies have found that virtual pointing results in higher selec-
tion effectiveness (Zhai et al., 1997). For example, an evaluation by Bowman et al. (1999)
compared Raycasting efficiency with that of the virtual hand technique over a wide range of
object distances, sizes, and environment densities. They found Raycasting to perform better,
because the target could be reach by the ray at infinite distance, as opposed to a limited reach of
virtual hand techniques. From the ergonomic perspective the most common implementation of
selection is done by simply changing the pitch and yaw of the wrist, thus requiring relatively less
physical movement in comparison with direct touch input and virtual hand techniques, that both
require large movements of the hand. For that reason, Bowman recommends to “use Raycasting
techniques if speed of remote selection is a requirement” (Bowman Doug A., 2002).

Another distinction that differentiates 3D pointing is its realization as a direct pointing or
indirect pointing. While indirect 2D pointing at a distance have received a lot of attention from
the research community (Pietroszek and Lank, 2012; Nancel et al., 2013), indirect 3D pointing at
a distance is rarely addressed outside of the context of immersive environments. Rare examples
of an indirect 3D pointing for ubiquitous displays include CubTile (Hachet et al., 2013) and
Toucheo (Hachet et al., 2011).

2.4 Input Technologies for 3D Pointing

Input for 3D interaction can be realized in a number of ways. For desktop 3D applications the
most common way of interacting with 3D environments is a traditional, 2D mouse and key-
board. Professional users of 3D modelling or CAD software may use more specialized input
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devices such as a 3D mouse or 3D joystick. In immersive 3D environments one method is to
use specialized handheld devices, that I discuss in detail below. Finally, other methods of input,
such as image processing and gaze-based input were developed and evaluated and have gained
increased popularity the recent years thanks to technological advances.

Regardless of the input technology used for interaction with 3D environments, it will usually
support more degrees of freedom (DoFs) than input technologies for 2D environments. Although
it is possible to use 2DoF input technology, such as a regular mouse, for interaction with 3D
environments, the missing degree of freedom slows down interaction (Takemura and Tomono,
1988). Thus, to support fully addressable 3D pointing and translation, the input technology
should allow for manipulation of at least 3 DoFs in order to provide values for any of the x,
y, or z axes to define position within a Cartesian 3D coordinate system. Raycasting techniques
utilize five DoFs: three to determine the ray’s origin and two to determine its orientation. For
further 3D object manipulation such as rotation, an additional 3 DoFs may be provided, thus
most input devices support six DoFs (Zhai, 1995). However, for ease of use, it is recommended
to minimize the number of DoFs used in the interaction technique and match the number of
degrees of freedom with the technique’s requirements (Bowman Doug A. et al., 2004).

2.4.1 Handheld Input Devices

As mentioned, 3D pointing can be realized with specialized handheld input devices, such as
magnetic trackers (Zhai, 1998), gyroscopic mice (MacKenzie and Jusoh, 2001), Soap (Baudisch
et al., 2006), or wearables such as interactive gloves (Bowman Doug A. et al., 2001). However,
research on the performance of virtual pointing versus the most commonly used mouse pointing
is inconclusive. The performance and usability results depend on both the input technologies
used and the interaction technique. On one hand, when MacKenzie and Jusoh (MacKenzie and
Jusoh, 2001) compared a regular mouse with two air mice – a GyroPoint, with gyroscope-based
cursor movement, and RemotePoint with a joystick for moving a cursor – they reported that both
GyroPoint and RemotePoint was slower than the regular mouse. Also, both input devices had
higher error rates than a regular mouse. On the other hand Takemura and Tomono (1988) found
the mouse to be slower and more error-prone than a magnetic tracker. Jota et al. (2009) compared
the performance of grabbing, pointing and mouse cursor. Their study finds that pointing was the
fastest and the least tiresome technique, although it was performed using a motion-tracking input
with high precision.

Pointing may be also accomplished using technologies other than magnetic trackers, air mice
or 3D joysticks. In a 2D interaction context researchers considered using a laser pointer as an
input device (Eckert and Moore, 2000; Kirstein and Muller, 1998) and performing selection by a
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1s dwell time. The Stanford iRoom took the idea further by using a laser pointer to draw gestures
and interact with pie menus (Winograd and Guimbretière, 2003). Others tested a variety of laser
pointers for menu selection, scrolling, and text entry (Olsen and Nielsen, 2001).

2.4.2 Input via Image Processing

Another option is to use image processing, which can be used in conjunction with passive objects
such as wands or labels. A example of such a project is VisionWand (Cao and Balakrishnan,
2003), which is a passive wand marked at its ends with two colours and tracked by two cameras.
The movement of the markers is reflected on the screen in real time. Combinations of the wand’s
rotation and its distance from the screen allow not only for pointing and selection, but also for rich
interaction including pan-zoom gestures, displaying additional information about the objects, or
performing pie menu selections.

Yet another idea is to process the perspective distortion of the user’s shadow (Shoemaker
et al., 2007). Another study where image processing was used for interaction with a large screen
was presented by Malik et al. (2005), who designed a finger-movement-based interaction tech-
nique. In the public screen context, the limitation of this technique is that the users had to be
seated in order to perform the interaction. Hamette et al. (2002) designed a system called Finger-
mouse, where input from wearable cameras is analyzed in order to determine a finger pointing
direction.

High precision pointing can be achieved using a motion-capture system, such as Virtual User
Concept (VICON) (Kopper et al., 2010). Vogel and Balakrishnan (2004) designed a number of
high-accuracy, high performance, and high comfort freehand gestures using a VICON system.
Although their study focuses on 2D pointing, the techniques presented could be extended for
non-occluded 3D environments, because, as noted by Bowman et al. (2002), in non-occluded
environments, 3D selection is essentially reduced to 2D selection. Lower precision interaction
can be achieved using low cost equipment such as webcams or Kinect in place of VICON, and
WiiMote game controller (Yang and Li, 2011) or Myo armband (Haque et al., 2015) in place of
a hardware tracker.

2.4.3 Gaze-control Input

A large number of studies have examined 3D pointing through gaze-control interfaces, where the
eye’s focus is tracked in order to determine the pointing vector, including depth. In the context of
3D gaming, Castellina and Corno (2008) propose to control camera view and keyboard through

17



a gaze-based input. Kwon et al. (2006) offer a depth estimation method for gaze-based pointing
on stereoscopic displays, while Ki et al. (2008) provide a similar method and evaluate it for
autostereoscopic displays. In general, gaze-based pointing techniques suffer from the Midas
touch (Jacob, 1991), that is an unintentional selection of object resulting from leaving the cursor
pointed at an object for the period of a dwell time without the intention of selecting it.

2.4.4 Limitations of 3D Input Technologies

As exemplified by the studies listed above, many current technologies for 3D pointing at a dis-
tance require specialized, often expensive input hardware. Moreover, using trackers, gloves,
or WiiMotes prerequisites possession of such devices by the interacting users. In some con-
texts, such as a casual interaction, users cannot be expected to carry specialized 3D interaction
hardware with them. On the other hand technologies such as motion-capture cameras are also
prohibitively expensive for most applications and require labeling passive interaction objects
or augmenting users with special markers. Technologies that utilize image processing and can
support interaction without providing a device to a user do not provide enough precision and
robustness for many applications. For example, Microsoft Kinect’s input can be easily confused
by dynamically changing lighting conditions, background or occlusion of camera view on the
user.

In contexts where other input technologies are either too expensive or not readily available,
a smartphone or a smartwatch emerges as the convenience device for “at a distance” interaction,
including 3D pointing. This observation motivates the focus of my dissertation on smartphones
and smartwatches as input devices for pointing in 3D environments. However, before discussing
mobile-based interaction techniques, I present a review of previous work on using smartphones
and smartwatches for 3D interaction with displays.

2.5 Interacting with a Smartphone

Historically, mobile devices were used for pointing not at virtual 3D environments, but as a re-
mote controller for the objects in the physical world. Fitzmaurice (1993) was one of the first
to propose mobile devices – a palmtop – for selection and retrieval of information from physi-
cal objects, such as active maps or computer-augmented libraries. One of the first high-fidelity
implementations of this concept was presented by Rekimoto and Nagao in a system called Navi-
Cam (Rekimoto, 1995). It combined a mobile device with a digital camera that could read
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labels attached to physical objects, similar to QR codes. Another project used mobile-based im-
age/object recognition techniques to facilitate retrieval of additional information in a museum
(Foeckler et al., 2005). Valkkynen and Tuomisto (2003) built a mobile pointing solution that
could retrieve information from printed posters. They used light-sensor-triggered RFID tags that
were illuminated using a built-in infrared beam (from a close distance) or using a laser beam
attached to the mobile device.

Research at the ACM Conference on Human Factors in Computing Systems and related con-
ferences has also explored the use of portable and mobile devices to enable interactions, often
collaborative in nature, with nearby displays (Elwart-Keys et al., 1990; Stewart et al., 1999). For
example, Myers et al.’s seminal Pebbles Project (Myers et al., 1998) explored the use of Personal
Digital Assistants, precursors to today’s smartphones, as input devices to a large, shared display.
An example of a direct pointing for a tabletop display using a mobile device was investigated
by Schmidt et al. (2010). They proposed a pick-and-drop style technique that allows for ac-
quisition of targets by touching the display with a mobile phone. At the moment of contact the
phone either acquires or drops the target. The technique was designed for 2D interaction, but
could be extended for 3D interaction, if combined with the technique proposed by Valkov et al.
(2011). While this work has established the feasibility of supporting interaction via a user’s per-
sonal device, several challenges have also been observed, including logistics such as facilitating
connectivity between devices (Hinckley et al., 2004; Lucero et al., 2012).

Yet another project, ARC-Pad (Mccallum and Irani, 2009), is an example of a system that
implements an absolute + relative pointing on a modern smartphone’s touchscreen. Absolute
pointing means that the touchscreen is mapped 1-to-1 to the display, while relative pointing
means that there is no relation between the position of the finger on a touchscreen and the position
of the cursor, but the cursor moves in the direction of the finger movement on the touchscreen.

3D pointing usually requires at least 3 DoFs. However, by projecting a 3D environment onto
a 2D display, and assuming that no target in such a view is fully occluded by other objects, 3D
pointing can be realized with 2 DoFs (Takemura and Tomono, 1988; Bowman Doug A., 2002).
Thus, an example of a pointing interaction technique provided by Boring et al. (2009) who
used a mobile phone’s sensors to move a mouse cursor on a large public display, is helpful in
determining the usability of mobile devices for 3D pointing. Their technique shows that moving
a cursor by reading accelerometer data is possible. Although their implementation results in a
high selection error rate, this finding may have been a result of the hardware limitations of the
smartphones used or lack of application of sensor fusion techniques. Selection techniques that
used only the tilt (up and down movement) of a mobile device was presented by Rahman et al.
(2009).

Another interesting form of a 3D selection, mediated through a mobile phone camera, is
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presented by Boring et al. (2010). In their Touch Projector project, users interact with the
3D environments continuously captured by a smartphone’s built-in camera. When a display is
within view of the smartphone’s camera, any within-view object presented on this display can
be acquired and dragged within that display or into another display. To achieve that, the position
of the smartphone is continuously determined using optical flow analysis. This requirement can
be problematic in low lighting conditions or where other users and passersby can occlude the
camera view, thus changing the reference background.

Steinicke et al. (2008) discuss the possibilities that mobile devices offer for general interac-
tion with 3D environments that are presented on stereoscopic screens. They suggest using touch
input as a remote controller e.g. to adjust the parallax effect. Although the work does not discuss
the pointing techniques in detail, it suggests that technique similar to Image Plane (Pierce et al.,
1997) could be implemented using a mobile device’s 2D touchscreen.

The use of mobile devices as input devices for virtual environments was also proposed by
Medeiros et al. (2013), who combined gyroscope and accelerometer data and touch input from
a tablet to facilitate the selection of objects in a CAVE environment. The technique leverages
a tablet for control of a virtual camera represented in the 3D environment as a truncated, semi-
transparent pyramid. The camera view defines an area of the control space that is selectable. The
size of the pyramid is adjusted in a manner proposed in 3D Bubble Cursor technique (Vanacken
et al., 2007), defining the group of objects that are selectable. Once the list of selectable objects
(those within the cone of the camera view) is established, the camera view is projected onto the
tablet’s 2D surface, where they can be selected through touch input. Although the technique
provides an interesting application of mobile device multimodality, the technique is not formally
evaluated and it is not clear how it performs in comparison with other 3D selection methods.

In a casual setting, an example of a 3D interaction technique using a mobile device was pre-
sented by Katzakis et al. (2012). The technique translates the position of the phone in 3D space
into the control space of the 3D environment. The cursor can be moved on the touchscreen, but
its actual movement in 3D control space is also a function of the phone’s position and rotation.
Katzakis does not provide a formal evaluation of the technique and I expect that the technique
will have inconsistent selection performance, because it allows for 3 DoF movement of the smart-
phone touchscreen thus making it difficult to perform the movement of the cursor at majority of
smartphone’s positions in the 3D space. Also, because the interaction plane travels in space with
the smartphone movement, reaching some areas of the control space may result in awkward hand
positions, causing high perceived workload and gorilla-arm effect.

While the above research provides evidence that mobile devices may be a feasible option for
3D interaction, it does not provide clarity towards whether 3D pointing can be efficiently realized
using off-the-shelf smartphones. None of the techniques proposed in the literature were shown to
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provide similar performance and functionality to techniques realized with specialized 3D input
hardware. One of the contributions of my dissertation is to bridge that gap in the literature.

2.6 Interacting with a Smartwatch

Smartwatches are emerging as a ubiquitous digital companion, complementary to other devices
such as smartphones, tablets, traditional PCs, and embedded displays. As wearable technologies,
a smartwatch is always present, contains a advanced sensors such as a gyroscope, magnetometer,
and accelerometer, and provides access to high-power computational and graphics processors,
and high-speed networking. Where early work leveraged wearable devices for personal health
informatics, such as measurement of sleep patterns and heart rate (Bieber et al., 2013), a recent
focus has been understanding how these capabilities can serve as a convenience device for more
active tasks such as managing notifications (Schirra and Bentley, 2015), supporting navigation
(Lim et al., 2015; Kerber et al., 2014), or as a platform for assistive technologies (Kearns et al.,
2013; Porzi et al., 2013; Twyman et al., 2015).

When interacting with a smartwatch, users are often restricted to interacting with a smart-
watch’s powerful CPU and sensors through a small touchscreen. The physical size of human
fingers and wrists are often obstacles to interaction on such small devices, a design constraint
known as the ‘fat finger problem’ (Albinsson and Zhai, 2003; Siek et al., 2005). Research has
sought to overcome the fat finger problem to enable interaction with a watch. For example,
projects such as TouchSense (Huang et al., 2014), SplitBoard (Hong et al., 2015) and Beats
(Oakley et al., 2015) have explored alternative models for touch interaction on a small watch dis-
play. Others have sought to move interactions away from the display entirely. SkinWatch enables
input to on-watch applications through manipulations of the watch’s body to enable rotation and
zooming (Ogata and Imai, 2015). Funk et al. (2014), Knibbe et al. (2014) and Burstyn et al.
(2015) explore the use of specialized watch-bands for input. While this work has enabled more
powerful input to a smartwatch, it does so at the cost of learnability or the need for additional
hardware, and constrains interaction to the smartwatch itself.

Smartwatches were also explored for a use as a digital companion. Notably, Porzi et al.
(2013) explore the use of smartwatch, in tandem with a worn smartphone’s camera, to assist
visually impaired users to avoid obstacles while walking. After developing an initial prototype
that supports interaction via a limited set of two gestures, follow-up work improved recognition
of up to 19 gestures (Costante et al., 2014).

Previous work has also explored use of smartphone’s sensors for mid-air gesture recognition.
Protractor (Li, 2010) provides fast and reliable gesture recognizer for a set of gestures that can
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be both orientation-invariant or -sensitive. Gesture Watch (Kim et al., 2007) presents a custom-
made watch that recognizes gestures, thus allowing for control of other devices in computing
environments. More recently, Kim et al. (2012) presented a custom-made wrist-mounted device
that is equipped with depth camera and allows for more fine-grained gesture recognition. Xu et
al. (2015) exploit in-watch sensors to recognize 37 finger and whole arm gestures, and the writing
of english characters on a nearby surface. In fine-tuning their recognizers, Xu et al. demonstrate
recognition rates of 98% and 95%, respectively, for these tasks, and establish the feasibility of
smartwatch-based gestural input in the general case. However, their work focuses solely on the
development of these specialized recognizers, and does not investigate the appropriateness of
gestural interaction in real-world settings.

Specialized wearable devices similar to smartwatches have been previously leveraged for
pointing (De La Hamette et al., 2002; Kim et al., 2012; Haque et al., 2015). The most related
work on 2D pointing with a smartwatch is WatchConnect (Houben et al., 2015). WatchConnect
provides a framework for smartwatch-centric cross-device applications. The research mentions a
possibility of using a smartwatch’s touchscreen as an input sensor for another screen. Finally, in
the project called “Duet”, Chen et al. (2014) explore using a smartwatch to enrich the interactions
performed on a smartphone. For example, by using the smartphone’s screen in conjunction with
a smartwatch, the user is able to perform gestures, such as a “knuckle” or touching the screen
with a side of the finger, that otherwise could not be recognized by the smartphone’s touchscreen.
The literature review did not revealed any examples of previous work where a smartwatch is used
an input device for interaction with 3D environments.

2.7 Where Current Research Falls Short

The literature review indicates the pervasiveness of displays in computing environments. Among
their various types are specialized displays that are often used for 3D environments. Yet, as dis-
cussed, 3D environments can be also presented on non-stereo displays that are most common
in ubiquitous computing environments. I am focusing on the latter type of displays in my dis-
sertation, when designing and evaluating smartphone-based and smartwatch-based 3D pointing
techniques.

Use of displays depends on the settings of their deployment. While professional users of
desktop 3D environments may be expected to have a specialized input device for 3D interaction,
because they use 3D environments on a frequent basis, users who interact with 3D environments
casually can benefit from using a mobile device they already own. In public settings the benefits
of mobile-based interaction techniques are even more apparent. Passersby cannot be expected to
carry specialized input devices with them, while related work on freehand techniques that do not
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require such devices show that these input methods are either too expensive to deploy, or do not
work well in some environments. Thus, users may greatly benefit from the BYOD (Bring Your
Own Device) approach to 3D pointing and interaction.

The process of designing a 3D pointing technique does not start in a void and many previous
techniques were designed and evaluated. Among the types of interaction techniques I discussed
are “arm’s length” and “at a distance” techniques. While direct techniques that utilize touch in-
put directly on the display have many advantages, in the context of 3D environments they pose a
number of problems. For example, they are difficult to use with stereoscopic displays, and even
when no stereoscopy is needed, direct techniques pose problems such as the paradox of reaching
into the third dimension of the display (the depth), while using 2 DoF touch input. Consequently,
I argued that using interaction at a distance is a more natural choice for 3D pointing and manipu-
lation tasks than direct interaction through touch input. Many options for interaction at a distance
can be categorized into two metaphors: virtual hand and virtual pointing. The literature review
provides evidence that virtual pointing is considered – at least for non-immersive 3D interaction
– a preferable option, especially in terms of user fatigue. This result further motivates my choice
of using mobile devices for virtual pointing.

The literature review reveals many input technologies used for 3D interaction from those that
use input devices to those that utilize image processing or gaze-control for input. Yet in many
settings, users cannot be expected to carry or have access to specialized input devices, and in
the same settings the other input techniques may be prohibitively expensive or unreliable. The
lack of easy-to-use, reliable and economically viable input technology for 3D interaction not
only points at the limitations of the current 3D input technologies, but also further motivates my
choice of using a smartphone and a smartwatch as a convenience devices for 3D environments.

As I am not the first to notice the potential of mobile and wearable devices for interaction
with displays, I have reviewed previous work on mobile- and wearable-device-based interac-
tions, showing how mobile and wearable devices were already recognized by researchers to be a
powerful and useful input device. I have discussed previous work that used mobile and wearable
device input for both direct as well as indirect pointing. I have noted previous work on 3D inter-
action using mobile and wearable devices, stressing that the topic is under-explored and that to
my knowledge no previous work focused on designing 3D pointing techniques that are easy to
use, work in a casual setting and result in low perceived workload. My dissertation bridges that
gap in the literature. I show through the design and evaluation of three novel interaction tech-
niques that in ubiquitous computing environments users can benefit from using a smartphone or
a smartwatch as an input device. Yet, before going into details on the design of these techniques,
I need first to discuss the challenges that 3D environments pose for 3D pointing.
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Chapter 3

3D Pointing Challenges

Universal smartphone or smartwatch-based 3D pointing techniques must address a number of
known 3D interaction challenges, both technical and ergonomic. If not carefully addressed, these
challenges will limit the use of pointing techniques to specific 3D environments (e.g. Raycasting
for sparse 3D environments) or specific conditions (e.g. short-term use due to high perceived
workload). Thus, before embarking on the design of novel mobile device-based 3D pointing
techniques, I first discuss challenges for 3D interaction. These challenges guide the design of
interaction techniques in Chapters 4-6 and provide evaluation criteria against which each they
are validated.

Hinckley et al. (1994) present a survey of issues that occur in the context of 3D pointing,
including high received workload, the need of recalibration, clutching, as well as motion and
orientation. Problems related to the perception of a 3D environment include difficulties with
discovering and selecting occluded objects (Elmqvist and Tsigas, 2006, 2008; Elmqvist, 2005;
Zhai et al., 1996a), distinguishing between nearby objects in dense environments (Grossman
and Balakrishnan, 2006, 2005; Steed, 2006; Steed and Parker, 2004; Wyss et al., 2006), and
accurately perceiving an object’s depth (Cipiloglu et al., 2010; Cook et al., 2008; Kytö et al.,
2013; Lee et al., 2008; Rogers and Graham, 1979).

As discussed in Chapter 2, the literature offers techniques for 3D pointing that address some
3D challenges using specialized hardware or input devices. However, many of the proposed so-
lutions work only in certain settings (e.g. private or semi-public), are prohibitively expensive and
do not support casual, casual interaction with 3D environments. One of the main contributions
of my dissertation is to bridge the gap between the increased pervasiveness of displays, the tech-
nological advances of mobile devices, and the lack of interaction techniques that leverage these
technological advances in support of 3D pointing.
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To provide a frame of reference against which interaction design can be validated in this
context, in this Chapter I identify a number of 3D pointing challenges. The first one, speed-
accuracy trade-off, is a consequence of Fitts’s Law (MacKenzie, 1992) which states that the
index of difficulty depends on the logarithmic ratio between the distance to the target and the
target width. Speed of selection is also affected by the natural hand tremor that influences the
accuracy with which a target can be selected. A related problem, known as the Heisenberg effect
(Bowman Doug A. et al., 2001), occurs at the moment of selection, when pressing a button may
cause small movements, resulting in a missed selection.

The second group of challenges relates to perceptual issues in presenting 3D environments on
a flat display. The first challenge in this group is occlusion: if the target is hidden behind another
object, it has a strong negative influence on the performance of most 3D pointing techniques. A
problem related to target disambiguation and common in dense environments is the target disam-
biguation problem that occurs in dense 3D environments. When objects are close to each other,
the performance of many 3D interaction techniques slows down, and additional means need to
be employed to distinguish between the target and its neighbours. The last perceptual problem is
the problem of depth identification. Even in stereoscopic rendering, when the depth information
is displayed, some users have problems with identifying the depth position of an object. In the
case of 2D displays, the problem is more severe, including the effect of so-called depth illusion
in which the user mis-guesses the position of the objects due to perceptual assumptions.

Finally, high perceived workload also affects the proliferation of 3D environments (Hinckley
et al., 1994; Bowman Doug A. et al., 2004). While 2D pointing with a mouse or a trackpad can
be performed for hours without significant user fatigue, pointing techniques for 3D environments
result in fatigue and gorilla-arm effect (Hincapié-Ramos and Guo, 2014).

While some of these problems have been addressed individually in the literature (see below),
I am not aware of a 3D pointing technique that performs well against all of the above challenges.
Thus, the quest for such a technique remains open. When proposing novel 3D pointing tech-
niques in Chapters 4, 5 and 6, I report on the extent that each of my techniques addresses the
following 3D interaction challenges.

3.1 Performance

Users of interactive systems are bounded by the limitations of the human motor system. Although
individual users differ in their ability to perform 3D pointing tasks, every user is subject to a
natural trade-off between the speed and accuracy of a selection. Performance is also tightly
coupled with the muscle groups involved (Poupyrev et al., 1997; Casiez et al., 2008), where
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smaller muscle groups (fingers, wrist) achieve higher motor precision than bigger ones (arms,
shoulders) (Zhai et al., 1996b). Thus, input devices relying on smaller muscle groups should be
employed for pointing tasks that require high accuracy (Argelaguet and Andujar, 2013).

One of the most successful in its predictive power human motor models is proposed by Fitts
(1964). Fitts’s Law accurately models the time required to perform aiming movements, such as
the movements that the user needs to perform in order to select a target directly, or using an input
device. In human computer interaction, the formulation of Fitts’s Law that is most commonly
used was proposed by MacKenzie (1992).

Predicting pointing performance is more difficult for the family of Raycasting techniques that
do not directly translate the position of the input device from the motor space to the 3D envi-
ronment’s control space. Instead, while the positioning of the ray’s origin can be modelled with
Fitts’s Law, the actual selection movement is usually realized as a two DoF angular movement
of the wrist. The distance of the cursor movement on the screen depends on the distance of the
user from the screen and the angular distance that the input device has travelled. MacKenzie’s
formulation of Fitts’s Law does not work well for this situation. The problem was better de-
scribed by Kopper et al. (2010), who developed an angular version of Fitts’s Law (MacKenzie,
1992), showing that the speed of the pointing task depends both on the distance of the user from
the screen, the angular size of the target and the angular amplitude of movement, both measured
from the user’s position.

3.1.1 Target-aware vs. Target-agnostic 3D Environments

The predictive power of Fitts’s Law, in its original as well as its angular formulation, allows for
the development of guidelines that improve the performance of 3D pointing tasks (Argelaguet
and Andujar, 2013). However, the application of those guidelines depends on the type of 3D en-
vironments, whether it is target-aware or target-agnostic. Target-agnostic 3D environments allow
for a fully addressable control space. In target-agnostic environments the input signal does not
have information about the structure of 3D environment at the time of selection (e.g. MRI model
of a brain tissue). In such 3D environments, the user interface designer must take measures to
ensure the user’s ability to select any 3D point in the control space. If increased precision is
needed, zooming, repositioning the camera, or mapping a fragment of the 3D environment onto
a 2D plane can be used, thus reducing the problem of 3D pointing to that of 2D pointing. Smart-
casting, Watchcasting and Tiltcasting all allow for pointing in target-agnostic 3D environments.

Smartcasting, Watchcasting and Tiltcasting can be also adapted for interaction in target-aware
3D environments, that is 3D environments where the information about the position and shape of
the target is available and can aid the pointing task. Such optimization may be beneficial, given
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that in target-aware environments the targets may be large and, as per Fitts’s law, the size of the
target influences selection time.

Optimizations of selection time are usually realized by increasing the size of the target. Bow-
man recommends temporarily increasing the target size itself during the selection process (Bow-
man Doug A., 2002). Another option is to zoom in the area surrounding the target (Cashion et al.,
2012). Other 3D pointing techniques, instead of rescaling the target itself, increase the effective
size (Forsberg et al., 1996; Pierce et al., 1997) of the target (that is the size of target’s selection
zone). For example, the 3D Bubble Cursor (Vanacken et al., 2007) divides the target-aware en-
vironment into a set of Voronoi regions, which equally distribute the space between targets. The
Bubble Cursor changes its selection volume such that the object closest to the cursor’s centre can
always be selected, even if the centre of the cursor is far away from it. In sparse 3D environments
the size of the Bubble Cursor – and consequently the effective width of the target’s selection area
– is much larger than the target width, thus significantly decreasing the selection time as per
Fitts’s Law.

3.1.2 Hand Tremor

Another aspect of human motor behavior that affects the speed and accuracy of selection is
hand tremor: the unintentional, rhythmic muscle movement (oscillations) involving a hand, wrist
or fingers (Elble and Randall, 1978). Myers et al. (2002), who tested a laser-based pointing
metaphor on small and distant targets reported that hand jitter negatively affects target selection.
Solutions to this problem, developed in 2D pointing, but which are applicable in 3D pointing
include a dynamic recursive low pass filter by Vogel and Balakrishnan (2005). Other techniques
include the application of a two-stage mean filter based on angular velocity (Wilson and Pham,
2003) or Kalman filters (Oh and Stuerzlinger, 2002).

Another approach called ARM/ZELDA (Kopper et al., 2008) enables users to magnify an
area of interest, however entering this mode slows down selection. Yet, in the context of 2D
pointing, a similar magnifying technique proposed by Nancel et al. (2013) was shown to perform
on a par with or faster than alternative pointing techniques, while enabling selection of targets as
small as 4mm on a 5.5m wide display. Importantly, Nancel et al.’s solution uses a tablet as an
input device and is realized as an indirect pointing technique.

3.1.3 The Heisenberg Effect

Another issue, the so-called Heisenberg effect, that affects pointing performance, is the sudden
movement of the cursor to the area outside the target that happens at the moment of selection.
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The term “Heisenberg effect” (Bowman Doug A. et al., 2001) draws upon the eponymous un-
certainty principle in physics, where the mere act of measuring a phenomenon interferes with
one’s ability to accurately observe it. For virtual pointing, the Heisenberg effect occurs when
the user’s physical actions, such as pressing a button on a pointing device, interfere with their
ability to accurately select onscreen targets through the introduction of angular jitter. For small
targets, particularly when the user is located far from the display, a cast ray may momentarily
move outside of the target, resulting in a missed selection.

One solution to reduce the Heisenberg effect that can be applied in target-aware 3D environ-
ments, is to interpret the recent history of a cursor’s movement (Bowman Doug A. et al., 2001).
If the selection button was pressed but no object was selected the algorithm checks whether the
cursor intersected any target recently, and if so, applies a correction. However, it is important
to note that in dense environments this approach may lead to false positives and does not elim-
inate incorrect selections resulting from the cursor moving onto a nearby target. Moreover, this
solution does not work for target-agnostic environments, when there is no information about the
possible targets that the user may have tried to select. A solution that addresses, to a certain
degree, the Heisenberg effect and that works for target-agnostic environments is proposed in the
design of Smartcasting in Chapter 4.

3.2 Occlusion and Depth

Most displays, even stereoscopic ones (with exception of volumetric and holographic displays),
are only capable of displaying a 2D image. Stereoscopy is an illusion and as such, it does
not support a realistic reach into the displayed 3D environment. In the context of immersive
environments some advances have been made to create a better illusion of the third dimension.
For example, objects presented in the positive parallax are perceived as if they could be touched
directly. Yet, the level of detail that immersive environments are able to present does not match
the real world and thus does not create a feeling of presence that matches reality. This disparity
between expectation and the physical fact that 3D environments are not really three-dimentional
results in a number of challenges for interaction with these 3D objects in 3D environments.

The most important perceptual challenge that results from technological limitation of non-
volumetric displays is the Problem of Occlusion, where users are unable to interact with objects
that are behind other objects (Elmqvist and Tsigas, 2006, 2008; Elmqvist, 2005; Zhai et al.,
1996a). Related to occlusion is the target disambiguation problem, where a user is unable to dis-
tinguish nearby objects in dense environments (Grossman and Balakrishnan, 2006, 2005; Steed,
2006; Steed and Parker, 2004; Wyss et al., 2006) and the depth identification problem, where a
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user is unable to accurately perceive an object’s depth (Cipiloglu et al., 2010; Cook et al., 2008;
Kytö et al., 2013; Lee et al., 2008; Rogers and Graham, 1979).

Below I discuss each of those problems in detail, briefly indicating how smartphone- or a
smartwatch-based techniques can address them.

3.2.1 Occlusion Management

In 3D environments, the occluded target problem arises when, from the perspective of the user,
a target is obstructed by another object or objects, thus inhibiting a user’s ability to select such
objects (Figure 3.1). Elmqvist and Taigas (2008) identify four object interactions that may cause
occlusion: proximity, intersection, enclosure, and containment. They also present a comprehen-
sive list of fifty occlusion management mechanisms (Elmqvist and Tsigas, 2008), that is a set of
strategies that allow users to reach occluded targets. Smartcasting and Watchcasting use virtual
X-ray, while Tiltcasting uses object removal as the occlusion management mechanism.

Most 3D pointing techniques require the object to be visible in order for it to be selectable. In
cases where a target is partially occluded, most techniques will allow for selection, but will suffer
from speed-accuracy tradeoffs resulting from the reduced target width in accordance with Fitts’s
Law (MacKenzie, 1992; Vanacken et al., 2009). Also, for ray-based 3D pointing techniques,
occlusion is closely related to target disambiguation, because a ray cast into a 3D control space
may intersect more than one target while the first intersected target may be occluding the other
intersected candidate targets.

A common solution to the occlusion problem is to modify the scene by hiding or removing
the occluding objects, or by repositioning the viewport so that a target becomes visible (Arge-
laguet and Andujar, 2013). If occluder objects need to be first selected and then removed one
by one, this approach may significantly slows down the selection process, especially in dense
3D environments. To address this issue researchers have explored other occlusion management
mechanisms. One idea is to interactively distort the space (Cipiloglu et al., 2010; Elmqvist, 2005)
or the viewing projection (Elmqvist and Tsigas, 2006), in order to unhide the candidate target.
Another option is to prompt the user about the presence of the target with haptic, audio or visual
feedback (Vanacken et al., 2009).

A number of explicit occlusion removal mechanisms have been developed. A group of tech-
niques were developed around the idea of a depth marker, or variable length ray (Dang et al.,
2003). In the most basic case, the user controls the end of the ray point and can select the target
that is closest to the endpoint (this technique uses a tracked wand as an input device). The pre-
viously discussed Depth Ray technique also introduces a depth marker that travels between the
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Figure 3.1: Four Types of Occlusion. Elmqvist and Taigas (2008) identify four possible ob-
ject interactions that may cause occlusion: proximity – target is close to the occluder, so that
from a certain perspective it is behind the occluder, intersection – target intersects the occluder,
enclosure - target is surrounded by an occluder, containment -target is within the occluder
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objects when the user moves the input device toward or away from the screen. Objects between
the ray’s origin and the depth marker are rendered semitransparent, so the occluded object closest
to the depth marker can be seen. The problem with this solution is that it limits the movement
along the z-axis to the user’s reach, a limitation that is common for virtual hand techniques, but
not for Raycasting techniques. More importantly, the movement changes the origin of the ray,
thus requiring further adjustments of the ray angle. The second problem is solved in a modified
version of Depth Ray called Lock Ray (Grossman and Balakrishnan, 2006), in which the ray
origin is locked before the depth marker can be moved along the ray, thus reducing confusion
between pointing and disambiguation phases.

Some methods used for target disambiguation may also serve as occlusion management
mechanisms. For example, menu selection techniques that provide candidate targets may include
those that are hidden from the user’s view. Examples of such techniques include Flower Ray
(Grossman and Balakrishnan, 2006), Daisy (Liang and Green, 1993), a circular menu technique
called Ring (Liang and Green, 1993), or a list menu technique called Floating menu (Ramos
et al., 2006). Similar to the disambiguation problem, this form of occlusion management does
not work well if the number of candidate objects to choose from is large.

Sometimes occlusion management mechanisms are built into the pointing techniques, In the
iSith technique (Wyss et al., 2006) the user controls two rays. Objects closest to the intersection
of two rays are selectable. This arrangement allows the user to reach targets that are behind other
objects. Yet another technique, called Flexible Pointing (Olwal et al., 2003), enables users to
bend the ray in order to reach partially occluded objects without intersecting the occluders.

While it slows down object selection and requires specific management mechanisms, occlu-
sion may also have a positive side effect on the 3D environment: it helps with depth identification
of the target position. An object that partially occludes the target, or that is partially occluded by
the target provides a depth cue about the position of the target on the z-axis. Depth identification
is another important challenge of 3D pointing, specific to the presentation of 3D environments
on 2D displays.

3.2.2 The Target Disambiguation Problem

Related to occlusion is the target disambiguation problem that occurs when interacting with
a target that has a dense neighborhood (Figure 3.2). In ray-based techniques, the problem is
further complicated by the fact that more than one target may be crossed by the same ray. Basic
Raycasting techniques usually allow the user to point only at the first intersected target (Balaa
et al., 2014). However, often the desired target may lay behind other targets – in such cases the
target disambiguation problem becomes the problem of occlusion.
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Figure 3.2: Targets that are close to each other and are crossed by a single ray result in a disam-
biguation problem, requiring a mechanism allowing the user to choose the desired target.

32



In response to target ambiguity, researchers have developed a number of disambiguation
mechanisms. Argelaguet and Andujar (2013) classify the disambiguation techniques into three
groups: heuristic, behavioral and manual. Kopper et al. (2011) note the tradeoff between the per-
formance of the technique and the introduction of the target disambiguation mechanism. Target
disambiguation mechanisms slow down the selection of easy targets, but speed up the selection
of targets that are otherwise difficult to select. Yet, for many 3D application domains target
disambiguation is necessary, thus I discuss some of the proposed mechanisms below.

One way to perform disambiguation is to attempt to interpret the user’s target. In Flash Light
(Liang and Green, 1994) the object closest to the axis of the flashlight cone is selected. This
approach was improved by Schmidt et al. (2006) by introducing a probabilistic selection model.
Finally, the behavioral approach takes into account cursor movements prior to the pointion and
continuously ranks all objects in the vicinity of the cursor as probable targets. The data consid-
ered includes the volume of the target and its distance from the cursor or ray. For moving targets,
the potential for intersection of the cursor’s movement vector and the target’s movement vector
or the probability that the cursor is following the target increases the rank of the target. Examples
of such techniques include IntenSelect (Haan et al., 2005) and SenseShapes (Olwal et al., 2003).

Manual techniques require that the user decides on the target. At the expense of cognitive
load and performance, manual techniques provide the greatest expressiveness and maximum flex-
ibility, for example, by cycling through all indicated targets with a press of a button (Hinckley
et al., 1994), but such methods only work if the number of indicated objects is relatively small.
Alternatively, Grossman and Balakrishnan (2006), propose a FlowRay technique that presents all
indicated objects in the form of a pie menu, thus creating additional, but relatively fast selection
tasks. Kopper et al. (2011) proposed a progressive refinement approach called SQUAD, that
divides the candidate targets into four groups and then asks the user to select a subgroup repeat-
edly, until each group has a maximum of one target candidate. This approach works for very
dense environments as it exponentially reduces the number of steps required to select a target. In
reference to the Raycasting technique, a number of manual disambiguation variants have been
proposed. Expand, a technique that improves on SQUAD by keeping the contextual information
intact, was proposed by Cashion et al. (2012), who show that it performs on par with SQUAD.
Grossman and Balakrishnan (2006) and Wyss et al. (2006) explore techniques that augment tra-
ditional Raycasting with a depth component. In their implementation the user can control not
only the position of the cursor along the x- and y-axes, but can also manipulate the position of
the cursor on the z-axis by moving the 3D cursor (the depth mark) along the ray so that any target
intersected by the ray can be selected.

One observation is that with increased dimensionality of the environments, the complexity of
target disambiguation increases. Consequently, methods used in dense 2D environments, such as
BubbleCursor (Grossman and Balakrishnan, 2004), do not generalize well, without modifications
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for 3D environments when objects are also densely distributed along the z-axis. One method that
could reduce the number of candidate targets is therefore to reduce the dimensionality of the
environment from 3D to 2D for the purpose of selection. Unlike many of the disambiguation
mechanisms discussed above, dimensionality reduction, if integrated into the pointing mecha-
nism, does not add another phase to the selection time. In Chapter 6, I introduce Tiltcasting that
applies dimensionality reduction to a target disambiguation mechanism.

3.2.3 The Depth Identification Problem

Humans rely on various types of sensory input to identify the depth position of an object: stere-
oscopy, occlusion, mental models, and motion parallax all contribute to the way that we perceive
our surroundings. One significant factor is stereoscopic vision, a quality that is lacking in tradi-
tional computer displays. For these displays, identifying the depth position of a target is often a
challenging problem without additional contextual cues, and humans may misjudge the relative
depth of two on-screen objects (Figure 3.3). Even when stereoscopic rendering is used, e.g. in
immersive systems, most systems do not provide as many details and cues as those present in the
real world, resulting in much slower selection of virtual objects than real-world physical objects
(Plumert et al., 2005)

With simple Raycasting techniques that do not require movements of the cursor along the
ray, the problem of depth identification is avoided by the fact that the ray intersects any object in
its way, regardless of its depth position. This property of simple Raycasting implicitly removes
the depth identification problem, reducing the selection into a 2D selection problem. However,
as discussed in the previous sections, simple Raycasting is unable to select occluded targets, thus
excluding its applicability in many 3D application domains.

The user’s ability to identify the depth position of a target is essential for any 3D pointing
technique that allows the user to manipulate the selection tool along the z-axis. For example, in
the experiment described in Chapter 6, I observed users having difficulties placing the 3D cursor
inside the target, when they could not determine the position of the target on the z-axis. The
behaviour observed – moving the 3D cursor there and back multiple times – significantly slows
down the pointing performance. Yet, many interaction techniques do not directly provide an on-
screen cue for the depth position of an object, thus requiring stereoscopic or immersive displays
to fully support 3D perception.

One of a few techniques that do provide a depth identification mechanism is the Silk Cursor
technique (Zhai et al., 1994). In Silk Cursor, the cursor is represented as a semi-transparent cube.
The occlusion levels are used to cue the relative depth positions of targets with no measure of
how much they are spatially separated. Kyto et al. (2013) also discusses how occlusion can help
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Figure 3.3: The blue sphere appears further from the user when viewed from the perspective of
the user (a), an illusion caused by its relative proximity to the user and smaller size (b), resulting
in depth identification problem
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users to infer the depth position of the object. However, these approaches have serious limita-
tions: inferring depth from occlusion requires scenes to include occluded objects, a requirement
that excludes entire classes of sparse 3D environments. Other techniques attempt to imitate 3D
rendering on 2D displays, by means of depth of field rendering (Mauderer et al., 2014) or linear
perspective (Cook et al., 2008; Wanger et al., 1992), thus imposing a specific rendering estetics
that may not be appropriate for all 3D environments.

Similar to an occlusion management mechanism, it is desirable to have the depth identifi-
cation mechanisms built into the pointing technique, to avoid the added cost of separate depth
identification phases. An example of such an approach is provided by (Wyss et al., 2006), who
introduce a two-handed technique that uses the cross point of two cast rays as an indicator of
the object position. Yet crossing rays is a bimanual technique that requires users to manipulate
double the number of degrees of freedom at the same time, thus increasing the technique’s com-
plexity (Argelaguet and Andujar, 2013) and perceived workload. Another contribution of my
thesis is the design of the Tiltcasting, presented in Chapter 6, that has the depth identification
mechanism built into the first phase of selection.

3.3 Perceived Workload

High perceived workload resulting from prolonged use of almost all 3D pointing techniques is an
important problem of 3D pointing and 3D interaction (Bowman Doug A. et al., 2004). Arguably,
interaction with 3D environments resembles the way humans interact with the real world as
compared to interaction with 2D environments. Yet, while 2D environments use techniques that
cause low perceived workload (e.g. computer mouse), 3D pointing techniques fail to provide
similarly comfortable solutions (Card et al., 1991). Mouse movements are made by movements
of small and fast muscle groups, while 3D pointing often requires a complex arm movement
involving larger and slower muscles (König et al., 2009). For that reason many 3D environments
used in professional semi-public settings, such as CAD and 3D modelling applications, use 2D
input techniques (e.g. mouse or trackpad), instead of 3D input.

One reason why 3D pointing techniques tend to produce high perceived workload is the use
of 1-1 spatial input (Hincapié-Ramos and Guo, 2014). For example, in 3D Depth Cursor and
related techniques, using a magnetic tracker requires that the users hold their hand raised in front
of them for a prolonged time. If targets are positioned in upper sections of the 3D environment
control space, users must reach into these sections with their hands. The same situation applies
to virtual hand techniques. Performing mid-air gestures was determined to cause high perceived
workload in the early stages of 3D pointing development, including the so-called “gorilla-arm”
effect.
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The “gorilla-arm” effect is a condition first reported by Schultz (Schultz, 1988). Perceived
workload in general, and the gorilla-arm effect in particular, is difficult to quantify, as it is a
subjective perception of the user. For the gorilla-arm effect, Ramos and Guo (2014) proposed a
metric called “consumed endurance” that quantifies the effect as a ratio of the interaction time
and the computed endurance time. Consumed endurance has its basis in sport sciences and er-
gonomics, using Rohnert’s formation of the endurance model, which is a function of the value
of force applied in relation to a maximum force of the muscle. Other methods of quantifying
perceived workload were tried, including heart-rate (Sjogaard et al., 1988), oxygen level (Fergu-
son et al., 2011) or EMG (Peres et al., 2009) as well as more subjective assessments, such as the
Borg CR10 scale (Borg, 1998).

While it might be desirable to leverage consumed endurance as a measure, much of the work
described in this thesis was performed prior to the development of consumed endurance measure
(Hincapié-Ramos and Guo, 2014). A more general way of quantifying perceived workload is
to perform NASA Task Load Index (TLX) survey (Hart and Staveland, 1988). NASA TSX is a
widely used method for quantifying a task’s load index, although it is often criticized for its high
scalar invariance, leading to biased mean scores, thus making the examination of mean differ-
ences misleading (Bustamante and Spain, 2008; Wiebe et al., 2010). However, the NASA TLX
index is still useful for within-subject comparisons of task difficulty between interaction tech-
niques. For that reason I use the NASA TLX as an additional metric of the quality of interaction
techniques proposed in this dissertation.

The number of degrees of freedom used to control the 3D pointing technique are also an im-
portant factor contributing to the technique’s overall comfort. The DoFs the user has to control
is a measure of the complexity of the selection technique: the more DoFs, the more complex
the control, but also the more expressive the technique (Argelaguet and Andujar, 2013). Conse-
quently, the more degrees of freedom used to control the technique, the higher its mental demand,
which contributes to the overall perceived workload.

In my dissertation, the issue of perceived workload is an essential consideration in the design
of the techniques I propose. I hypothesize that a 3D pointing technique offering low perceived
workload and thus increasing user comfort will be preferred by users over a high perceived
workload technique, even if it offers lower time performance. Some evidence for this postulate
is presented in Chapters 5 and 6, when I discuss the Tiltcasting and Watchcasting’ workload.
Additionally, in the case of the two ray-based techniques I propose, fixed-origin rays are used to
reduce the number degrees of freedom involved to 3.
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3.4 Validating 3D Pointing Techniques

3D pointing challenges related to speed, occlusion and perceived workload provide design guide-
lines for pointing techniques introduced in the next chapters. I used the same experimental setup
in all studies. By comparing the performance of each technique against an established hardware
device, I was able to quantitatively measure whether a smartphone or a smartwatch can in fact
replace specialized equipment, as postulated by my thesis statement. Formal validation of each
technique helped to identify strengths and weaknesses of smartphone- and smartwatch-based 3D
pointing.

In all experiments I measured selection time and error rate. I have always included occlusion
and target size as experimental conditions. To quantitatively measure perceived workload of each
technique, I used the NASA Task Load Index (Hart and Staveland, 1988). Together, selection
time, error rate and NASA TLX allowed me to evaluate to what degree my techniques address
the 3D pointing challenges.

3.4.1 Experimental Environment

My experiment was heavily influenced by the experiment presented in Vanacken et al. (2007). By
closely replicating their setup, I was able to perform a meta-analysis of each techniques’ results in
comparison with the performance results of Vanacken et al.’s Point Cursor technique. In Chapter
6, I discuss Vanacken et al.’s study results in the context of the performance of Tiltcasting.

3.4.2 Scene

The experiment consisted of an interactive 3D environment rendered on a black background.
Each trial scene consisted of a start object, a target, and 43 distractors (Figure 3.4).

The start object was rendered as a yellow sphere, the target as a red sphere, and the distractors
as blue spheres. Throughout the experiment the start object had a constant size of 1.5 cm and
was displayed in a fixed position in the center of the display at a zero depth.

To preserve the same Index of Difficulty between all experiments, I have ensured that the
target sizes and the 3D distance between the start point and the target was kept constant. The
size of the target was either 1.5 cm or 3 cm and the 3D distance between the start object and the
target was 40 cm in 3D space, resulting in ID = 4.79 and ID = 3.84, respectively. The index of
difficulty (ID) was the same as in Vanacken et al. (2007). In their study target sizes were 0.75
cm and 1.5 cm and the distance in 3D space equal to 20 cm. While preserving the ID, I have
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Figure 3.4: Experimental environment used in all experiments
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doubled both the distance and the size of the target because of larger size of the displays used in
my study.

The positions of the distractor targets were randomly determined, with constraints on their
position ensuring that they did not intersect with each other, the start target, or the goal target. In
each experimental block the distractor targets were randomly assigned sizes between 1.5 cm and
3 cm. The density of the scene was constant in the immediate area surrounding the target. Six
distractor objects were carefully placed around the target forming a cube-shaped Voronoi region.
For each trial the entire Voronoi region surrounding the target was further rotated by a random
angle.

3.4.3 Task

For each trial, participants first selected the start object. Once the selection tool entered the start
object, the object would disappear and the red target sphere would become selectable. Trying to
select the target without first selecting the start object was not possible.

After selecting the start objects, participants moved the selection tool to intersect the target.
Once that was done, participants had to confirm the selection of the target. The selection confir-
mation mechanism was technique-specific and is described in detail in each technique’s chapter.
Once the selection was confirmed, the task ended and the 3D environment was re-set for another
trial.

For trials with occluded targets, participants were first presented with the target for 500ms.
Then the target would be completely hidden behind an occluder. This method ensured that visual
search for the target was excluded from the selection time. Nevertheless, to reach the occluded
target the participants had to use the occlusion management mechanisms. The occlusion re-
moval mechanism was specific for each presented technique and is described in details in each
techniques’ chapters.

3.4.4 Independent Variables

In every experiment I used two target sizes (small and large), and two occlusion conditions
(visible, occluded). While target sizes condition was measured within each block, with every
block having equal number of small and large targets, the occlusion condition always formed a
separate block of trials. The number of independent variables was study-specific.
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The design of each experiment was balanced with partial or full latin square to reduce biasing
influence of one blocks on another. A number of combinations that formed latin square design
was specific for each experiment and is discussed in details in each technique’s chapter.

3.4.5 Procedure

Participants were first asked to complete a brief demographic questionnaire. Before the experi-
mental trials, each participant was briefed on the technique. Then the participants completed 10
training trials for each technique (in Tiltcasting) or input device (in Smartcasting and Watchcast-
ing). These practice trials allowed participants to familiarize themselves with input devices used
in the experiment. It was experimentally observed that after four to six trials the selection perfor-
mance stabilized. The goal of these practice trials was to eliminate learning effects. In each of
the following three chapters, I perform a block-by-block analysis of performance to ensure that
learning effects were negligible during the experimental blocks.

Participants then completed a number of experimental trials in separate blocks. The number
of trials and blocks varied between experiments depending on the number of experimental con-
ditions. However, each block always consisted of an equal number of large and small targets that
were always rendered at the same distance (in 3D space) from the start object.

After each block, participants completed a brief post-study questionnaire that examined per-
ceived workload during their trials using the NASA Task Load Index survey. Each participant’s
commitment to the study lasted between 30 to 60 minutes, depending on the number of experi-
mental conditions in a given experiment.

3.4.6 Data Recorded

All interactions made with the study software, including successful and erroneous selections,
were logged to .csv computer files. Error rates were calculated automatically by counting the
number of errors registered in each block’s log file.

Selection time was the primary experimental measure. Selection time was defined as the
time between entering the start position and confirming the selection of the target. If the user
accidentally selected a distractor, the distractor’s colour changed to light blue in order to indicate
an erroneous selection, which was recorded by the system. However, the participant would
continue the selection process until the target was successfully selected.
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3.4.7 Outliers

In calculation of average selection time per given combination of independent variables I have
removed those selection trials that had selection time that differed from the mean by three stan-
dard deviations. This decision was justified by the fact that, through qualitative observation of
participants during the experiment I noticed that selections that took a particularly long time re-
sulted from distraction in the middle of the trial, and not from the characteristics inherent to the
trial.

3.4.8 Data Analysis

Selection times were read from the .csv files and, after calculation of means, converted to SPSS
input files. Repeated Measures analysis of variance (RM-ANOVA) tests were conducted to ex-
amine differences in selection times between target sizes, target visibility, and depth rendering
conditions.

NASA Task Load Index (TLX) (Hart and Staveland, 1988) data was transcribed into SPSS
input files. Friedman tests were used to examine differences in perceived workload measures
between conditions based on NASA TLX data. An alpha-value of .05 was used for all statistical
tests.

3.5 Summary

In this Chapter I have identified a number of challenges of 3D pointing:

1. The speed and accuracy trade-off, that points at the limits of the human motor system and
its consequences for 3D pointing performance

2. User perception-related problems, including: the problem of occlusion, which explains the
difficulties of selecting a target that is hidden behind other objects, the depth identification
problem, which has its strongest manifestation when 3D environments are presented on 2D
displays that do not show the depth position of the object, and the target disambiguation
problem, which happens in dense environments where the user must choose the target from
many nearby candidate targets,

3. Perceived workload, which is a reason (Schultz, 1988) why 3D environments are less com-
monly used than 2D environments.
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Addressing these challenges is essential in designing a usable 3D pointing technique. The
degree to which the challenges listed in this section are successfully addressed validate the design
of three novel 3D pointing techniques offered in my dissertation: Smartcasting, Watchcasting,
and Tiltcasting, presented in Chapters 4, 5 and 6, respectively. Each technique is evaluated using
the experimental set-up described in the previous section.

Each of the three techniques address the 3D interaction challenges to a different degree. For
example, Smartcasting (Chapter 4) reduces user’s perceived workload by fixing a ray’s origin
and thus allowing for manipulation of the cursor’s depth position through touch input, in turn
reducing the number of degrees of freedom required to control the technique. Smartcasting also
introduces a novel solution to cope with the Heisenberg effect for target-agnostic environments,
increasing accuracy and reducing the target disambiguation problem. Yet, Smartcasting does
not improve on previous work on depth identification, and it uses an occlusion management
mechanism previously reported in the literature.

Watchcasting, presented in Chapter 5, offers the first step toward using wearable devices,
such as a smartphone, to facilitate pointing in 3D environments. I find that, while Watchcasting
provides a freehand pointing technique that does not require specialized input devices or hard-
ware, further work is needed to improve Watchcasting usability in terms of perceived workload,
and the gorilla-arm effect (Schultz, 1988).

A final technique, Tiltcasting, is reported in Chapter 6. Tiltcasting seeks to address all of
the 3D pointing challenges listed in this chapter. It offers a low perceived workload 3D pointing
technique, eliminating the gorilla-arm effect. It reduces hand tremor through a design that in-
volves both hands in stabilizing the cursor position. Using the same method as Smartcasting, it
also reduces the Heisenberg effect. It introduces a novel occlusion management mechanism that
is integrated into the selection technique, and does not add a new, costly phase to the selection
process. It offers a depth identification mechanism that eliminates depth confusion by providing
depth cues that allow the relative depth position of objects to be identified, even in target-agnostic
environments. It reduces the target disambiguation problem through both an occlusion manage-
ment mechanism and the reduction of the 3D pointing problem to a 2D pointing problem. It
also decreases overall selection time by integrating 3D environment exploration (search for an
occluded target) into the selection mechanism. Moreover, by introducing a reversed 3-state Bux-
ton model, it allows for easy integration of selection tasks with further touch-based rotation and
translation techniques, as recommended by Bowman et al. (2002).
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Chapter 4

Smartcasting

The first technique I designed to support 3D pointing in computing environments is called Smart-
casting. In order to verify whether a smartphone can support 3D pointing, I implemented two
baseline virtual pointing metaphors: Raycasting and Depth Cursor. Implementing Raycasting
(Liang and Green, 1994) on a smartphone demonstrates that smartphone hardware is capable of
supporting basic 3D pointing. The Smartcasting implementation also serves as a baseline refer-
ence for the comparative studies performed in Chapters 5 (Watchcasting) and 6 (Tiltcasting).

However, Raycasting does not support the selection of occluded targets or allow for control
over the depth position of the selection tool. Yet, universal 3D pointing should support selection
of both non-occluded as well as occluded targets, because both types of selection may be required
in interaction with 3D environments in many applications. To address this requirement, I also
implement Depth Cursor, an extension of Raycasting in which the user can control a position of
Depth Cursor that travels along the ray.

The design of Smartcasting was an iterative process, driven by pilot studies, which I describe
in detail in Section 4.1 of this Chapter. Once I arrive at the final design, I compare Smartcasting’s
performance with WiiMote-based Raycasting and depth-ray in a formal experiment. My goal is
to implement an equivalent to specialized input device pointing for 3D environments using a
smartphone.

4.1 Designing Smartcasting

Objects in 3D environments can be positioned and rotated around six degrees-of-freedom. Such
objects can be then translated in space along any of the x-, y-, or z-orthogonal axes to define
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position within a space mapped via a Cartesian 3D coordinate system. Furthermore, even with-
out translation, objects within a 3D space can be rotated around each of the axes, defining three
orthogonal rotations typically referred to as pitch, yaw, and roll. Orthogonal rotations are partic-
ularly easy to address using a smartphone as an input device: accelerometers can provide either
an isometric or elastic technique for controlling the rate of rotation, similar to the way in which
an isometric joystick controls cursor speed on laptop computers so equipped. On the other hand,
less is known about how well a commercially available smartphone can be used to perform 3D
pointing.

A smartphone can be used as an input device by implementing either virtual hand or virtual
pointing techniques. However, as discussed in Chapter 2, virtual pointing techniques have a
number of advantages over virtual hand techniques. In particular, virtual hand techniques require
wide movements of hands, and thus quickly cause high perceived workload and the so called
gorilla-arm effect.

Of the various virtual pointing techniques, the smartphone is most suited to a Raycasting with
Depth Cursor, because smartphone’s form factor and hardware is more similar to a tracker than a
virtual glove. A Depth Cursor is analogous to a 3D Cursor manipulated with a mouse, where an
on-screen indictor (a pointer) serves as a virtual proxy for a user’s on-screen location. I therefore
designed and implemented a Depth Cursor technique, where the angle of the ray intersecting the
display is controlled via the yaw and pitch of a smartphone and “depth” is specified using the
touchscreen of the smartphone. I dub this technique Smartcasting, illustrated in Figure 4.1.

When a user holds a smartphone in his or her hand, it may be moved around even when
3D pointing technique is not being performed. Additionally, users may switch between using a
smartphone to control their Depth Cursor and using it to access information. As a result, I need
an elegant mechanism to move between the three states typical of input devices: an out-of-range
state where the input device is not being tracked; a tracking state where the movement of the
input device maps to on-screen cursor movement; and a dragging state where acquired targets
are repositioned on the display. To address this requirement, Smartcasting’s behaviour can be
characterized using a 3-state model (Buxton, 1990): it begins in an “out of range state” where
its inputs are ignored by the 3D environment. After placing a finger on the smartphone’s touch
screen, the device shifts into a tracking state where orientation information is relayed as input to
the large display. While tracking, a finger up and down (i.e. a “reverse” click) will select an on-
screen target, and move interaction into a “drag” state allowing for further object manipulations.
The full interaction model is depicted in Figure 4.2.

In conventional Raycasting techniques the ray should appear to emanate directly from the
smartphone in a straight line from the the device. To do this, I must map the yaw and pitch of
the smartphone onto the world coordinate system, projecting out from the user. Smartphones
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Figure 4.1: Through Smartcasting, users can interact with 3D content on nearby large displays
using their personal mobile device.

contain a gyroscope and an accelerometer. Using the force of gravity, an accelerometer can
provide accurate pitch data, and using the gyroscope, a smartphone can sense changes in its
yaw angle. However, in order to measure cursor location and angle of the ray on the display
accurately, I must know both the yaw and pitch of the device and the user’s distance from the
display. Furthermore, gyroscope readings for yaw are subject to drift introducing additional
imprecision in the horizontal/x-axis location.

Before embarking on an aggressive design exercise to correct for yaw drift or identify the lo-
cation of a user via computer vision, I first wanted to explore the severity of the problem. Given
the similarity between the Depth Cursor represented by on-screen 3D pointer (i.e. a “cursor”)
and a 2D cursor manipulated by a computer mouse, it might be the case that the relative move-
ment, controlled by yaw and pitch, rather than the absolute mapping of yaw and pitch might be
sufficient to allow control of the Depth Cursor. In other words, the smartphone might function
as a relative, not absolute, input device (Figure 4.3).

To test relative versus absolute input, I informally piloted my technique with four graduate
students. I found that, for pitch, there exists a significant tolerance for variations between device
pitch and y-axis location on the display. Even a coarse-grained location estimated from the
device camera can be sufficient to position the initial ray, and relative mappings caused few
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Figure 4.2: 3-state model for Smartcasting based on that of Buxton (1990). Finger up and down
(reversed tap) triggers the transition from state 1 to state 2.

problems with y-location control. Additionally, initial inaccuracies were insignificant for yaw.
If one assumes that the phone is pointed at the cursor when movement begins, the yaw angle
inaccuracies are easily overlooked during one targeted movement. In case of drift, the yaw angle
can be re-set each time a user transitions into state 0, the out-of-range state.

Beyond the (x, y) location of the ray on the 3D display, I also need to control the depth of the
cursor using movement of the contact finger on the touchscreen. Two options present themselves:
direct mapping of finger position to depth, and relative mapping of finger position to depth. In
direct mapping of finger to depth, I assume that the y-axis of the smartphone display maps to
depth along the ray.

I evaluated each of the two options for finger position to depth mapping. For direct mapping,
I found that touch accuracy on a smartphone is limited due to the “fat finger” problem (Albinsson
and Zhai, 2003; Siek et al., 2005), making it difficult to acquire small targets for my participants.
In contrast, with relative mapping, users needed to clutch (i.e. release and move their finger back
on the touchscreen to increase cursor reach) to control the depth of the target. However, based
on feedback collected from users, the cost of clutching on a touchscreen is relatively small when
compared to the cost of an inability to target. One user noted that my use of the touchscreen
was analogous to using a touchpad, where clutching is a frequent, acceptable action to move the
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Figure 4.3: In Smartcasting, position of the phone is not known; the origin of ray is fixed

cursor longer distances with lower control to display gain.

4.1.1 Coordinates of Fixed Ray Origin

Initially, I fixed the origin of the ray at a distance of 1 m on a line originating from the center
of the display and perpendicular to it. For displays mounted at eye level such placement closely
matched the 3D position of the smartphone in front of the users and pointing at the centre of
the display. Such a ray origin simulates traditional Raycasting with the ray originating from the
input device as long as the user stays in a specific position in front of the display.

In order to support 3D pointing from any position in front of the screen, I embarked on finding
a position for the ray origin that did not impose or encourage any specific proxemic relation
between the user and the screen. In a number of pilot studies, I asked users to manipulate the
ray. For each trial, the ray origin was was placed at a different locations. I chose the ray origin
position at the bottom of the screen, 170 cm in front of the screen. This position of ray did not
require downward movement of the smartphone for selection of targets that were rendered in
the lower half of the display: horizontal position of the smartphone allowed select the targets
displayed at the bottom of the screen.
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4.1.2 Non-isomorphic Mapping of Ray Rotation

I initially attempted to use isomorphic mapping between the ray movement and the movement
of the smartphone. However, isomorphic mapping did not appear isomorphic. When the users
stood at a distance of 170 cm from the screen, the cursor angular gain appeared to match the
smartphone rotation. When the user stood very close to the display, seemingly small movements
of the smartphone appeared as large moments of the cursor on the screen. I realized that this was
because with isomorphic mapping user perceived the ray as originating from the device. This
was confirmed by pilot users commenting that the ray originated from the smartphone only when
standing at a certain distance for the screen.

In the next iteration I ensured that the gain did not mach the cursor movement, thus imme-
diately informing the user that the mapping between the cursor movement and the smartphone’s
rotation is non-isomorphic. Further, a pilot study revealed that users preferred non-isomorphic
gain for the ray movement over the gain that closely matched isomorphic mapping. For example,
users preferred smaller wrist movements that resulted in larger rotations of the fixed origin ray,
as long as the gain allowed enough precision to select small targets. Too much gain increased
the hand tremor, while too little gain required wide wrist movements. After a number of experi-
ments, I set the gain to 1.5× the rotation of the input device, so that a rotation of the input device
by an angle α resulted in a rotation of the ray by 1.5 × α.

4.1.3 Interacting with Occluded Targets

To address the occluded target problem the target intersected by the Depth Cursor is visible,
while all intersected objects that are in front of the target are temporarily made transparent. A
target-occluding object is shown again when it becomes the furthest object intersected by the
Depth Cursor or when the ray no longer intersects it. While a number of occlusion removal
mechanisms exist (Elmqvist and Tsigas, 2006, 2007; Zhai et al., 1996a), hiding objects along the
ray in front of the cursor seems to be most efficient solution (Vanacken et al., 2007). Moreover,
the ability of casual users to easily understand the occlusion removal technique was an important
consideration for my design.

4.1.4 Ray Visibility

I also considered whether the ray on which the Depth Cursor moves should be displayed. Imple-
mentations of Depth Cursor often do not show the ray (Bowman Doug A. and Hodges, 1997).
Yet, showing the ray could help users to identify their Depth Cursor, particularly if other Depth
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Cursors are present. Additionally, showing the ray might act as a perspective cue that helps
users to identify the relative positions of targets and the Depth Cursor in situations where the 3D
environment is presented on a non-stereoscopic screen. On the other hand, rays can clutter the
display. Given the strengths of both options, I conducted an iterative prototyping exercise. Pilot
testing revealed no differences between a displayed or hidden ray for selection time, or for the
perceived workload of pilot participants as measured using the NASA Task Load Index (Hart and
Staveland, 1988). Ultimately, I decided to display the ray during my experimental evaluation.

4.1.5 The Heisenberg Effect

I initially considered using a tactile volume button, present on most mobile devices, to perform
selection in Smartcasting. However during pilot testing, I found that pressing and releasing a
hardware button could cause the Heisenberg effect. Moreover, because my 3D pointing tech-
niques are designed for casual interaction, I must assume that the technique should support any
kind of 3D environment, including the target-agnostic one. Unfortunately, previously developed
methods of addressing the Heisenberg effect assume that the 3D environment is target-aware,
while I assume that both target-agnostic and target-aware 3D pointing should be supported by
casual mobile-based technique. Thus, to reduce this involuntary motion in target-agnostic 3D
environments, selection in Smartcasting is performed using a “reverse click”, consisting of an
up and down motion, on the touchscreen rather than using a physical button. My pilot test-
ing suggested that this choice reduced the impact of the Heisenberg effect, and produced a less
error-prone selection technique.

4.1.6 Establishing Connection

In the context of walk-up-and-use scenarios, it is important to consider the way that a smartphone
will quickly and temporarily bind with any display, preferably ensuring that the connection is
secure. Smartcasting connects a smartphone to a display through a unique URL that is opened in
the smartphone’s browser. The user can type in the unique URL, read it from a QR code, or use
a multicast DNS service. The URL can be reached through LTE or 3G data connection – there is
no need to connect the smartphone to a local wifi network. For further security, the connection
between the screen and the phone is relayed through a Secure WebSocket with SSL certificates.
Pilot testing revealed that the speed of this setup is sufficient for low-latency interaction. My
implementation provided interaction latency lower than 50ms over a 3G cellphone network.
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Figure 4.4: Smartcasting: Experimental Setup and Apparatus. 55-inch LG HDTV Cinema 3D
and two input devices: WiiMote (shown) and iPhone 5 (not shown)

4.2 Empirical Validation

In order to validate Smartcasting’s design, I compared the performance of Smartcasting using a
smartphone against an implementation of Smartcasting that used a WiiMote to perform selection
tasks in 3D scenes. My experiment investigated the efficacy of both techniques across differ-
ent target sizes, and for occluded and non-occluded targets. By comparing the performance of
Smartcasting with a smartphone against an established hardware device I was able to quantify
the degree to which the use of a smartphone can replace more specialized equipment, and to
identify any strengths and weaknesses inherent to smartphone-based 3D manipulations.

My evaluation followed the experimental setup discussed in Chapter 3. Below I describe the
implementation and experimental design details.

4.2.1 Implementation Details

During the course of the study, participants were seated 3m in front of a 55-inch LG HDTV
Cinema 3D circularly polarized stereoscopic display that was centred vertically and horizontally
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in relation to participant’s eye line. All experimental software, except for the mobile client
webapp, ran on a locally connected PC with an Intel i7 processor, 16GB RAM, and an NVidia
GTX570. Implementation of Raycasting with and without Depth Cursor was identical for both
input devices, thus ensuring that the implementation differences did not confound the comparison
of results.

A baseline Raycasting technique was implemented using a Nintendo WiiMote Plus, which
is equipped with a IMU and connected over Bluetooth. Smartcasting was implemented as a
JavaScript webapp on an iPhone 5 that transmitted rotation and touch events at 10Hz over a local
802.11n wireless network. The resolution of the touch input was less than 0.07 mm.

Figure 4.4 illustrates the experimental setup and apparatus.

4.2.2 Participants

Twelve participants (10 males, 2 females) were recruited from local university to participate in
the study. Participants’ ages ranged from 24 to 30 (average = 26.8). Eleven participants were
right-handed, one was left-handed, and all participants were screened on a stereoscopic display
prior to the study for their ability to order objects by depth. Participants received $10 for their
participation in the study.

4.2.3 Experimental Design

I used a 2 (INPUT DEVICE) × 2 (TARGET SIZE) × 2 (TARGET VISIBILITY) within-subjects
design. The study utilized three independent variables: input device, target size, and occlusion.
Participants completed trials using each of the smartphone and WiiMote implementations. For
the target sizes, targets with either “small” (1.5 cm) or “large” (3.0 cm) sizes provided two
levels of difficulty index based on Fitts’s Law (MacKenzie, 1992). Finally, targets were either
fully visible or fully occluded upon starting the trial. For the fully visible targets, no distractors
occluded or partially occluded the goal target, whereas for the occluded version, the goal targets
were hidden by the presence of distractor targets. The order of conditions was counterbalanced
using a partial Latin square design.

My experimental design can be summarized as:

12 Participants

× 2 Input Device: Smartphone or WiiMote
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× 2 Target Size: Small or Large

× 2 Target Occlusion: Occluded or Non-Occluded

× 14 Repetitions

For a total of 1344 trials.

4.2.4 Experimental Task

Participants performed the selection task described in Chapter 3. For each trial, participants first
selected a start object in the center of the large display. Once the ray (or Depth Cursor) entered
the start object, the start object would disappear and the destination target, another object on the
display, would become selectable. Participants moved the ray to intersect the target. To select the
goal target, participants released their finger from the touchscreen (for Smartcasting) or WiiMote
“A” button (for Raycasting). Once the ray (or Depth Cursor) entered the goal target, the task
ended and the screen was reset. If the user accidentally selected a distractor, the distractor’s
colour changed to light blue in order to indicate an error, which was recorded by the system.
However, the participant could continue until the goal target was successfully reached.

For trials where occluded targets were present, a Raycasting with Depth Cursor (Grossman
and Balakrishnan, 2006) implementation was provided for both the WiiMote and smartphone
conditions, and participants were required to move the Depth Cursor to reach the start and goal
objects. The Depth Cursor was manipulated by moving a finger on the touchscreen for Smart-
casting and by the up-down buttons of the WiiMote’s d-pad. As an occlusion management mech-
anism I used a variation of virtual X-ray: if the goal target was occluded, the distractors in front
of the Depth Cursor that were intersected by the ray disappeared.

4.2.5 Procedure

Participants were first asked to complete a brief demographic questionnaire. Before the exper-
imental trials, each participant was briefed on the Smartcasting, and screened for the ability to
see depth. Then the participants completed 20 training trials: 10 with the WiiMote, and 10 with
the smartphone input device. Participants then completed four blocks (two for each input device)
of 28 experimental tasks, corresponding to 14 trials for each target size per block. Block orders
were balanced with partial latin square design. After each block, participants completed a brief
post-study questionnaire that examined perceived workload during their trials using the NASA
Task Load Index. Each participant’s commitment to the study totalled approximately 30 minutes.
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Figure 4.5: No learning effect was found between blocks

4.2.6 Data Collection and Analysis

All interactions made with the study software were logged to .csv files and transcribed for SPSS
input files, as described in Chapter 3.

Repeated Measures analysis of variance (RM-ANOVA) tests were conducted to examine
differences in selection times between target sizes, target visibility, depth rendering conditions
and block ordering. Friedman tests were used to examine differences in perceived workload
measures between conditions based on NASA TLX data. An alpha-value of .05 was used for all
statistical tests.

4.3 Results

4.3.1 Learning Effect

No significant difference was found between blocks (F1,3 = 0.360, p = .613, η2
p = .035), indicat-

ing no learning effect between blocks (Figure 4.5). Because the data did not satisfy the test of
sphericity, the reported effect size was corrected with Huynh-Feldt.
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Figure 4.6: Mean selection times for smartphone vs. WiiMote for small and large targets

4.3.2 Performance

On average, participants completed each trial in 4.24s (σ = 1.1). I now consider each of my
three independent variables: input device, target size, and occlusion. Average selection times
were normally distributed.

4.3.2.1 Input Device

My analysis revealed no difference between the two input devices for target selection time
(F1,11 = 1.68, p = .221, η2

p = .13). Smartphone selections took an average of 4.04s (σ = .77),
and WiiMote selections took 4.43s (σ = 1.54) on average.

4.3.2.2 Target Size

As expected, my analysis revealed main effects for destination target size (F1,11 = 84.04, p <
.001, η2

p = .884), with small targets (4.75s, σ = 1.19) taking longer to select than large targets
(3.72s, σ = 1.05). An interaction effect was also found between target size and occlusion (F1,11 =

5.61, p = .037, η2
p = .338), where small, occluded targets (6.78s, σ = 1.80) took longer to select

than large, occluded targets (5.39s, η2
p = 1.75, p < .001), however for non-occluded targets my

analyses revealed no difference (small targets:2.77s, σ = .759; large targets: 2.04s, σ = .485; p <
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Figure 4.7: Mean selection times for smartphone vs. WiiMote for occluded and non-occluded
targets

.001 ). No interaction effect was found between input device and target size (F1,11 = .76, p =

.403, η2
p = .064) (Figure 4.6)

4.3.3 Occlusion

As expected, selection times for occluded targets were longer than for non-occluded targets
(F1,11 = 83.14, p < .001, η2

p = .88). Occluded targets were selected in 6.06s on average
(σ = 1.75), whereas non-occluded targets were selected in 2.4s on average (σ = .585). However,
my analysis revealed an interaction effect between input device and occlusion (F1,11 = 7.69, p =

.018, η2
p = .412). Occluded targets were selected in less time (p = .005) using the smartphone

(5.47s, σ = 1.06) than using the WiiMote (6.65s, σ = 2.62), however no difference was found
(p = .234) between smartphone (2.60s, σ = .734) and WiiMote (2.20s, σ = .610) selection times
for non-occluded targets (Figure 4.7)

4.3.4 Error Rates

In Chapter 3, I defined an error as a confirmed selection of a distractor object. In the experiment
no selections resulted in a selection error. This result is consistent with no errors reported for
Depth Cursor in Vanacken et al. study (2007).

56



4.3.5 Perceived Workload

I also analyzed participant questionnaire responses for any identifiable trends in their perceived
workload across all trials. My analyses revealed differences in the frustration (p = .002) and
physical demand (p = .004) for trials in which occlusion was present. However, NASA TLX
data revealed no other differences between the experimental conditions. A complete summary of
the NASA-TLX data is presented in Figure 4.8.

4.4 Discussion

My results indicate that Smartcasting with a smartphone offers similar performance levels to
those of my WiiMote implementation. This result validates my goal of supporting efficient in-
teraction without requiring users to carry specialized input devices, and instead to rely only on
interactions via a mobile device. My results also suggest that selections made with Smartcasting
were faster for occluded targets when using a smartphone. When considered as a whole, the ef-
fect of the input device (smartphone versus WiiMote) accounted for a relatively small portion of
the variance in my model (η2

p = .13), suggesting that smartphones perform similarly to WiiMotes
across different target sizes and degrees of occlusion. Finally, my analysis of perceived workload
revealed no differences between input devices.

4.4.1 Performance

My study validates many choices that I made while designing Smartcasting, and informs the
design of cross-device interaction with ubiquitous displays. I now reflect on these decisions, and
on how my findings affected Smartcasting’s performance. In particular, I discuss my decisions
related to enabling Raycasting interactions without real-time/precise spatial input data, and in
leveraging a phone’s touch screen to enable more powerful interactions.

4.4.1.1 Raycasting without Accurate Spatial Tracking

One of the compromises in limiting my design to existing smartphone technology was forgoing
the ability to accurately track a user’s position in front of the display, and instead capture only
sensor data related to the smartphone’s orientation in 3D space. My validation of Smartcasting
demonstrates that such a choice may not be as significant a compromise as many might expect,

57



0

5

10

15

20

non-occluded

M P T R E F
0

5

10

15

20

occluded

Ta
sk

L
oa

d
R

at
in

g

WiiMote Smartphone

Figure 4.8: NASA TLX results for WiiMote vs. smartphone, with and without Depth Cursor:
Mental Demand (M), Physical Demand (P), Temporal Demand (T), Performance (R), Effort (E)
and Frustration (F) measures.
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and that techniques matching the performance and perceived workload of traditional Raycasting
implementations can be developed without such technology.

Previous research indicates that this design is similar to a form of Raycasting called “fixed-
origin Raycasting” (Jota et al., 2010). Even though fixed-origin Raycasting techniques were
shown to perform slightly slower than free origin techniques Raycasting (Jota et al., 2010), it is
the former that should be recommended from the ergonomic perspective as they allow users to
choose – and change – the position of their hand and they involve only wrist and finger move-
ments. For casual interaction in computing environments, user comfort should take precedence
over small performance differences.

Interestingly, this choice also provides insight into how Raycasting techniques can support
accurate interaction at a distance. By sacrificing a precise measure of the user’s position, and
thus the ability to accurately draw an on-screen “origin” of the cast ray, I am also able to im-
prove angular precision for users interacting at a distance. For example, when a user is in close
proximity to the screen using a conventional Raycasting implementation, they have a stronger
degree of angular control over the ray’s position than when standing far away from the display.
Smartcasting follows a different model, and is agnostic to the user’s position relative to the large
display. This model could be further instrumented to enable more fine-grained control over the
mapping between the phone’s angle and the on-screen ray’s trajectory, thus providing users at a
distance a means of more accurately interacting with on-screen artifacts.

4.4.1.2 Raycasting with a Touchscreen

I initially explored methods of enabling Raycasting using only a smartphone’s gyroscope and
physical volume buttons. However, my prototyping process revealed that this choice led to im-
precision in terms of selection, as the physical act of pressing a button often interfered with a
user’s ability to select small on-screen targets. Consequently, I explored techniques that lever-
aged the smartphone’s touch screen and developed a 3-state model that allowed for users to
disengage from the display, in order to select and drag on-screen objects. My validation then
confirmed that the developed technique could facilitate basic interaction with a nearby display.

On the other hand, because my evaluation was intended to verify my design choices, I
methodologically chose to constrain my Smartcasting design in order to implement a fair com-
parison to the WiiMote by minimizing potential confounds in my experimental design. Thus,
while my technique provides an example of what is possible for smartphone interaction on large
displays, there remains a need to explore the smartphone’s touch screen and additional sensory
inputs more extensively. For example, it may be beneficial to explore the use of on-screen chord-
ing (Davidson and Han, 2006), multi-touch input (Steinicke et al., 2008; Valkov et al., 2011),
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or gestures (Vogel and Balakrishnan, 2005) to enable more powerful 3D interactions. Similarly,
accelerometers may be used to enable motion gestures (Jeon et al., 2010) through the phone.

4.4.2 Occlusion and Depth

Although successful as the first step toward 3D interaction with ubiquitous displays, Smart-
casting addresses some of the challenges listed in Chapter 3, while other challenges were not
addressed any better than in previous studies. The performance of Smartcasting is on a par with,
but not better than the performance of WiiMote-based 3D pointing. The occlusion problem is
addressed in a similar way to that described in the literature, i.e. through transparency. Target
disambiguation is realized in a manner similar to depth ray (Vanacken et al., 2007), while other
techniques known from the literature and listed in Chapter 2 could also be used. In Chapter
6, I present Tiltcasting, a smartphone-based, multi-modal, two-handed technique that addresses
those challenges that were not sufficiently addressed by Smartcasting.

4.4.3 Perceived workload

Lowering perceived workload was one of the main considerations when designing Smartcasting
as a 3D pointing technique. Two observations are worth noting. First, for the task that take
a longer time – i.e. selection of an occluded targets – users indicated a slight preference for
smartphone over WiiMote in terms of frustration (p = .002) and physical demand (p = .004). I
hypothesize that using a touchscreen for manipulation of depth is preferable over using the tan-
gible buttons of a WiiMote when the task takes a longer time, although further study is required
to confirm that hypothesis.

Second, because in Smartcasting the origin of the ray is fixed, the technique is controlled
with only two (or three, when controlling depth), instead of five (or six, when controlling depth)
degrees of freedom. A lower number of degrees of freedom results in less complex and less
mentally demanding techniques. A minimal number of degrees of freedom required to enable a
given interaction is therefore recommended (Bowman Doug A., 2002).

4.5 Summary

Smartcasting provides a novel 3D interaction technique that leverages the ubiquity of smart-
phones to enable interaction with ubiquitous displays. The design and evaluation of Smartcast-
ing allows me to conclude that a smartphone device is capable of acting as an input device for
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3D environments. Moreover, hardware limitations, such as difficulties in determining the exact
position of the smartphone in space, do not significantly handicap the interaction. I also suggest
that taking advantage of the multimodality of a smartphone, such as combining orientation with
touch input, can benefit the technique’s design. Together, the hardware constraints and the mul-
timodality allow for the design of a technique that is less complex and thus easier to use than the
alternatives.

The use of mobile, touch-enabled devices, combined with removing the position information
constraints of conventional Raycasting techniques provide opportunities to explore new, engag-
ing methods of serendipitously interacting with ubiquitous displays. Most importantly, Smart-
casting eliminates the need for specialized input or display hardware, thus addressing a common
barrier to serendipitous 3D interaction. In doing so, it provides a first step towards low-cost
interaction with 3D environments.

In the next Chapter I introduce Watchcasting, a 3D pointing technique that takes virtual
pointing in another direction: input via a smartwatch. In the design of Watchcasting I discuss
how lessons learned in Smartcasting design can be applied, with modifications, in a design of 3D
pointing with a smartwatch.
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Chapter 5

Watchcasting

Smartcasting provides an efficient smartphone-based 3D interaction for public displays. As the
goal of the previous Chapter was to verify the capabilities of an off-the-shelf smartphone for 3D
pointing, the goal of this Chapter is to verify that an off-the-shelf smartwatch can also provide
such 3D interaction. More specifically, I wish to explore the differences between the design
space of smartphone and smartwatch-based Raycasting and to verify to what extent techniques
such as Smartcasting can be leveraged on a smartwatch. In this Chapter, I extend Smartcasting
to wearable devices. While smartphones may remain the predominant convenience device for
enabling interaction in computing environments, freehand interaction may also be useful, and
sometimes preferable, for 3D pointing in computing environments.

A smartwatch – as opposed to a smartphone – is a device mounted on a wrist that leaves the
user’s hand unoccupied. Thus, smartwatch-based 3D pointing can be categorized as a freehand
technique. My goal is to show that even given these constraints, smartwatch-based interaction
provides a feasible alternative for 3D interaction. Additionally, I wish to provide evidence that
specialized devices such as Myo may not be necessary for interaction in computing environ-
ments. To demonstrate that, I design, develop, and validate a smartwatch-based 3D interaction
technique called Watchcasting.

5.1 Designing Watchcasting

Recall that Smartcasting leverages two modalities of the smartphone: touch input and orientation.
Although the smartwatch is also a multimodal device, it is not a handheld device. Consequently,
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interacting with a smartwatch’s touchscreen requires engagement of the other hand. Yet, engag-
ing a second hand to interact with the touchscreen of a smartwatch would be against my design
goal of creating a freehand technique. For that reason, in my design of Watchcasting I aimed at
avoiding the engagement of both hands in the interaction and decided to use only a fusion of its
gyroscope and accelerometer data into an rotation vector.

5.1.1 Raycasting on a Smartwatch

Similar to Smartcasting, the design of Watchcasting began with implementing fixed-origin Ray-
casting (Jota et al., 2010). I initially mapped rotation around the y axis to cursor movement along
the x-axis, and rotation around the z-axis to cursor movement along the y-axis, thus creating a
simple Raycasting implementation without control over the depth position of the cursor.

I have tested the above mapping in a short pilot study with four participants. Participants
were asked to move the cursor from its initial position at the center of the control space into a red
sphere that was placed at a random position. Observation of user interaction revealed that this
simple mapping does not perform as well as it did in the case of Smartcasting. In Smartcasting
the centre of rotation of the wrist is very close to the centre of rotation of the phone, thus the ray
controlled by the smartphone covers 180°angular distance by travelling a relatively short distance
in space. This is not the case for Watchcasting, that relies on arm movements. For a smartwatch
mounted just behind the wrist, the centre of rotation is either the elbow or in the shoulder (when
the user’s hand is straightened) – both positioned relatively far from the centre of the smartwatch.
Thus, to rotate the smartwatch by 180°, the user’s entire arm (or shoulder) needs to rotate 180°.
Such a wide movement of the arm in space results in a much slower rotation of the ray and,
consequently, the cursor on the screen, than was the case in smartphone-based Raycasting.

5.1.1.1 Increasing the Speed of Ray Movement

To improve the performance of Watchcasting, I piloted increasing the gain of the ray’s angular
movement relative to the arm’s movement. I tried multiplying the input angles by a constant
factor, so that smartphone rotation by angle α would result in cursor movement of k ∗ α. While
this simple solution solves the problem of reach, it reduces ray movement precision by a factor
of k.

Another possibility I tested was to place the smartwatch closer to the hand, before the wrist,
so that wrist movements would rotate it. However, in this position the smartwatch is not well at-
tached to the hand and tends to shift around its x axis during the interaction. It is also impractical,
since it is unrealistic to expect that users will change the way they wear their smartwatches.
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5.1.1.2 Pilot Study

Despite the above concerns, the pilot study suggested that smartwatch hardware is capable of
facilitating simple 3D pointing. For many ubiquitous interactions high ray speed may not be
necessary. Moreover, pilot users found the ability to interact in a freehand manner both enjoyable
and potentially useful. The fact that interaction did not require them to take out their smartphone
was also found to be valuable in the context of interaction in a ubiquitous environment.

Given the positive results of proof-of-concept Watchcasting implementation, I embarked on
extending Watchcasting to include the manipulation of depth, while preserving the freehand
nature of the interaction.

5.1.2 Depth Cursor on a Smartwatch

Recall that in Chapter 4, I described implementation of a Depth Cursor in Smartcasting that
allows for pointing and selection in fully addressable 3D space. Such an implementation requires
an additional degree of freedom to control the depth position of the selection tool. In the case of
Smartcasting, depth is controlled by a finger movement on a touchscreen.

In the initial design of the Depth Cursor for Watchcasting, I piloted a two-handed technique
with the same four participants, where movement along the z-axis was realized on the smart-
watch’s touchscreen and controlled by the other hand. I tried to provide touch input via both
dominant and non-dominant hands, however pilot participants preferred to use non-dominant
hands for the touch input. The pilot also revealed that a smartwatch touchscreen is too small for
absolute mapping, resulting in low precision cursor movement along the z-axis of the control
space. This issue arises because the smartwatch touchscreen is three to four times smaller than
the smartphone touchscreen, resulting in a three to four times lower precision of touch input for
any given user, regardless of each individual user’s precise touch ability.

5.1.2.1 Clutching on a Smartwatch’s Touchscreen

The low resolution of touch input in Watchasting can be addressed by clutching. As opposed to
my initial, absolute mapping of the z-axis onto the smartwatch’s touchscreen, with clutching each
swipe across the smartwatch’s display moves the cursor further in the direction of touch move-
ment on the z-axis, instead of returning the cursor to its initial position on the z-axis. Clutching
can dramatically increase the precision of movement along the z-axis, while significantly slowing
down the cursor movement time along the ray due to the additional in-air clutching movements
required, most importantly, due to the three to four times smaller size of the smartwatch’s screen
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vs. the smartphone’s screen, clutching needs to be repeated two to three times in order to move
the cursor by the distance of a single swipe across the smartphone’s screen (given the same
mapping gain).

5.1.2.2 Using Hand Twist to Control Depth

In search of faster depth interaction I tried to map cursor movement to rotation around the smart-
watch’s x-axis, corresponding to the clockwise and counterclockwise twist of the user’s arm,
where twisting the arm clockwise moves the cursor away from the user, deeper into the display,
and twisting the arm counterclockwise moves it toward the user. The advantage of this approach
is that it results in a freehand technique that only used one hand – a desirable form of interaction
in some computing environments, such as a public space (Peltonen et al., 2007).

In a pilot study I have experimentally discovered that users can comfortably twist their hand
by a maximum of 100°. When the elbow is not bent users can also twist their arm counterclock-
wise by about 80°, but when the elbow is bent, the counterclockwise movement is very restricted.
Thus, in practice, arm rotations are restricted to a 100°twist. In my implementation, I have uni-
formly mapped twist angles to depth position, 0°mapped to z = 0, and 100°(clockwise twist)
mapped to the maximum depth.

The pilot study also revealed that such absolute mapping of hand twist to depth position
provides precision of movement along the z-axis similar to that of Smartcasting using a touch-
screen, while being performed faster than finger movement on the touchscreen. If higher preci-
sion is required, relative mapping can be used. In this case, a clutching movement needs to be
implemented. One way to achieve that is to interpret slow arm rotation as a movement of the
cursor along the z-axis, while fast rotation in the opposite direction is interpreted as a clutching
movement. The exact thresholds for speed of clutching vs. movement on the z-axis could be
determined experimentally.

A side effect of twisting the arm to control depth is that it affects the inertial system of the
smartwatch (the position of its coordinate system versus the coordinate system of the control
space) with the z and y axes no longer aligned with the x-axis and the y-axis of the fixed-origin
ray. This fact has to be taken into account when mapping cursor movement to smartwatch rota-
tion.

5.1.3 Triggering Selection

In Smartcasting, selection was confirmed by releasing the finger from the smartphone’s touch-
screen (“reversed click”). Similarly, in Watchcasting, selection could be confirmed with a touch
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of the smartwatch’s touchscreen. Such a solution introduces the second hand to the interaction.
I have piloted a touch-based selection confirmation, where selection is performed by tapping the
smartwatch’s touchscreen, with the same four users that participated in the other parts of the iter-
ative design study. The pilot revealed that such a technique was found to be fatiguing for users.
Selection confirmation was physically difficult for targets placed at the edge of the display, when
the dominant arm was bent away from the user’s body. In this position, reaching for the smart-
watch touchscreen with the non-dominant hand is inconvenient at best, and becomes impossible
at angles close to 90°.

This issue, similar to the problem of the wide arm movements required to control the ray
angle, could be addressed by increasing the gain on the mapping of the smartwatch rotation
to the rotation of the fixed-origin ray, such that smartphone rotation by ∆ would result in a
cursor movement of k ∗ ∆. With sufficiently large k the arm would not need to be rotated by an
inconveniently large angle. However, as discussed above, this solution could negatively affect
the angle movement precision by a factor of k.

Commercial SDKs for smartwatch application development, such as Android Wear, suggest
using voice commands for smartwatches equipped with a built-in microphone. Watchcasting
with selection confirmation realized through voice commands could be implemented in a man-
ner proposed by Bolt (1980), in a classic study “Put-that-there”. However, in computing environ-
ments, high levels of auditory noise can be expected, to which voice commands are susceptible.

Another possibility I piloted is to use a hand gesture to trigger selection. I piloted various
gestures, among which users most preferred the poking and grabbing. I initially chose the grab-
bing gesture because it had been used successfully by Haque et al.(2015) in their 2D pointing
study of the Myo armband (www.myo.com). Myo uses a myoscope to recognize finger move-
ments and thus allows for recognition of a grabbing gesture, even when the gesture is performed
slowly. Smartwatches are not equipped with a myoscope, and thus must rely on other sensors for
gesture recognition, such as gyroscopes, magnetometers, and accelerometers. For a high recog-
nition rate I found that the grabbing gesture had to be well pronounced, so as not to be confused
with fast, non-grabbing hand movements. Yet, such a pronounced grabbing gesture results in
a strong Heisenberg effect, because of rapid movement generated through the fist shaking the
smartwatch.

Better results were achieved with the poking gesture; while it could be equally well recog-
nized from the analysis of the sensor data, it had a less pronounced Heisenberg effect. Moreover,
the direction of the cursor displacement at the moment of poking was uniformly upwards, thus
allowing for easier correction of the effect. Thus, among the gestures tested, the poking gesture
seems best suited for the Watchcasting, therefore I decided to use the poking gesture as a trigger
of selection.
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5.2 Empirical Validation

In developing my experimental design, I hypothesized that Watchcasting would demonstrate per-
formance comparable to Smartcasting. To verify that, I empirically compared Watchcasting to
both versions of Smartcasting (smartwatch-based Raycasting and Depth Cursor). Additionally,
given that commercial smartwatch technology is relatively novel, it can be expected that smart-
watch sensor capacities will improve in the next generations of smartwatches. For that reason,
I also compared Watchcasting with the Raycasting and Depth Cursor functions implemented on
the Myo armband (www.myo.com) that is a specialized arm-mounted input device. I expect that
the quality of sensors in the Myo armband today may find its way into off-the-shelf smartwatches
in the near future.

I identified these two input devices, the smartphone and the Myo armband, as the most appro-
priate devices for the comparative study I wanted to perform, given that the goal of my research
is to provide 3D pointing techniques with mobile and wearable devices.

To simplify the comparison of performance between three different devices, of which one
provides a touch-based selection confirmation, and the other recognizes gestures from a EMG
read of muscles, I decided to use a dwell time of .5s. In practical applications, a dwell time may
not be the best solution for confirmation of selection due to the Midas effect (Velichkovsky et al.,
1997), that is an unintentional selection of object resulting from leaving the cursor pointed at an
object for the period of a dwell time without the intention of selecting it. But in an experimental
setting this decision allowed for separation of the time of the selection phase from the time
required to confirm the selection, and it ensured that for each technique the selection confirmation
time was constant.

5.2.1 Implementation Details

I used a 50-inch projection screen on which a 3D environment was rendered using a Macbook
Pro at 60fps over HDMI 1.4a at a refresh rate of 60Hz using an NVidia GeForce GT750M and
an Intel i7 processor with 16GB RAM. The same workstation also run a node.js server written in
JavaScript responsible for relaying messages from the smartwatch and the smartphone to the 3D
environment.

For Watchcasting input, an LG G Watch R smartwatch was used, first transmitting sensor and
touch events at 10Hz over a bluetooth connection to an Android Nexus 5 smartphone and then
over the local 802.11n wireless network to a PC workstation. The relay of messages via Android
phone is necessary due to the architecture of the smartwatch and the Android Wear SDK, as it
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does not provide direct network connectivity. The client application was written in Android Wear
SDK 20 and the Android application was written in Android SDK 20.

For Smartcasting input an iPhone 5 transmitted sensor and touch events at 10Hz over a local
802.11n wireless network. The client web application was identical to the one used in Smart-
casting experiment, presented in the previous chapter. It was written in html and JavaScript.

The Myo armband transmitted accelerometer and gyroscope data over a bluetooth connection
at a sampling rate of 50Hz, without relaying the messages through the node.js server. During the
course of the experiment, participants were standing 3m in front of the projection screen, which
was centred vertically and horizontally in relation to the participant’s eye line.

5.2.2 Participants

11 participants (six males, three females) participated in the study, whose ages ranged from 19
to 27 (x̄ = 23.2). All 11 participants were right-handed and worn the watch on the dominant
hand. Two participants were unable to complete all blocks of the experimental trials (one par-
ticipant gave up participating in the experiment in the middle, the other was excluded due to a
technical issue with the Myo armband) and their data was excluded from my final analysis. Each
participant received $10 remuneration. Participants were recruited from a local university.

5.2.3 Experimental Design

I used a 3 (INPUT DEVICE) × 2 (TARGET VISIBILITY) × 2 (TARGET SIZE) within-subjects
design. The study utilized two independent variables: target visibility and target size. Targets
with either ‘small’ (0.5°) or ‘large’ (1.0°) sizes provided two levels of index of difficulty based
on Fitts’s Law (MacKenzie, 1992). My experimental design can be summarized thus:

9 Participants

× 3 Input Devices: Smartwatch, Smartphone, Myo armband

× 2 Target Visibility: Occluded, Non-Occluded

× 2 Target Size: Small or Large

× 8 Repetitions

For a total of 864 trials.
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5.2.4 Experimental Task

Participants performed the 3D selection task discussed in Chapter 3. For each trial, participants
first selected a start object in the center of the projection screen. Once the ray (or Depth Cursor)
entered the start object, the start object would disappear and the destination target, another object
on the projection screen would become selectable. Participants moved the ray to intersect the
target. To select the goal target, participants released their finger from the touchscreen (for
Smartcasting) or performed a dwell with a smartwatch or a Myo armband. Once the ray (or Depth
Cursor) entered the goal target, the task ended and the screen was reset. If the user accidentally
selected a distractor, the distractor’s colour changed to light blue to indicate an error which
was recorded by the system. However, the participant could continue until the goal target was
successfully reached or a timeout of 45 seconds elapsed.

For trials where occluded targets were present, a Depth Cursor implementation was provided
for all three input devices: a smartphone, a smartwatch and Myo armband, and participants were
required to reduce or extend the length of the ray to reach the start and goal objects. The Depth
Cursor was manipulated by moving a finger on the touchscreen for a smartwatch and by twisting
an arm clockwise and counterclockwise for a smartwatch and Myo armband. Similarly to Smart-
casting’s occlusion management mechanism, if the goal target was occluded, the distractors in
front of the Depth Cursor that were intersected by the ray disappeared.

5.2.5 Procedure

As in the Smartcasting study, participants were asked to complete a brief demographic ques-
tionnaire. Before the experimental trials, each participant was briefed on the use of smartphone,
smartwatch and Myo armband. Then the participants completed 20 training trials: 10 with the
smartwatch, and 10 with the smartphone input device.Participants then completed six blocks
(two for each input device) of 16 experimental tasks, corresponding to eight trials for each target
size per block. The order of blocks was balanced with partial latin square design. After each
block, participants completed a brief post-study questionnaire that examined perceived workload
during their trials using the NASA Task Load Index. In total, each participant’s commitment to
the study was approximately 30 minutes.

5.2.6 Data Collection and Analysis

As in the Smartcasting study, all interactions made with the study software were logged to com-
puter files. Selection time was the primary experimental measure, defined as the time taken
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Figure 5.1: No learning effect was found between blocks

between entering the start position and reaching the destination target. NASA Task Load Index
(TLX) (Hart and Staveland, 1988) data was transcribed into statistical analysis software.

Repeated Measures Analysis of Variance (RM-ANOVA) tests were conducted to examine
differences in selection times between techniques and target sizes. Friedman tests were used to
examine differences in perceived workload measures. An alpha- value of .05 was used for all
statistical tests.

5.3 Results

5.3.1 Learning Effect

No significant difference was found between blocks (F1,5 = 0.441, p = .745, η2
p = .052 ), indi-

cating no learning effect between blocks (Figure 5.1). Data did not satisfy the test of sphericity,
thus the reported effect size used Huynh-Feldt corrected.

5.3.2 Error rates

For error rate defined as a confirmed selection of a distractor object, no selection resulted in a
selection error.
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Figure 5.2: Mean selection times for Smartphone vs. Smartwatch vs. Myo armband for small
and large targets

5.3.3 Performance

On average, participants completed each trial in 3.65s (σ = .99). The trial completion time
excludes 0.5s dwell time for all input techniques. My analysis included all results, including
those trials, in which selection tool entered (but not selected) a distractor. Experimental data was
normally distributed (sk = 1.78).

5.3.3.1 Input Device

My analysis revealed no difference between the three input devices for target selection time
(F1,8 = .250, p = .782, η2

p = .030). Smartwatch selections took on average 3.79s (σ = 1.36),
smartphone selections took an average of 3.44s (σ = 1.60), and Myo selections took 3.72s
(σ = 1.01) on average.

5.3.3.2 Target Size

As expected, my analysis revealed main effects (Figure 5.2) for destination target size (F1,8 =

19.977, p = .002, η2
p = .714), with small targets (4.17s, σ = 1.167) taking longer to select than

large targets (3.12s, σ = .936). No interaction effect was found between target size and occlusion
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Figure 5.3: Mean selection times for Smartphone vs. Smartwatch vs. Myo armband for occluded
and non-occluded targets

(F1,8 = 5.062, p = .055, η2
p = .388). No interaction effect was found between technique and

target size (F1,8 = .191, p = .828, η2
p = .023).

5.3.4 Occlusion

As expected, selection times for occluded targets were longer than for non-occluded targets
(F1,8 = 44.97, p ≈ .000, η2

p = .849). Occluded targets were selected in 5.60s on average (σ =

1.85), whereas non-occluded targets were selected in 1.70s on average (σ = .282). No interac-
tion effect was found between the input device and occlusion (F1,8 = .197, p = .823, η2

p = .024).
Results are summarized in Figure 5.3.

5.3.5 Perceived Workload

My analyses also revealed differences between input devices for perceived workload (F2,7 =

5.499, p = .037, η2
p = .611), where participants making selections with Smartcasting (x =

7.39, σ = 1.48) perceived less work than those making selections with Watchcasting (x =

11.04, σ = .668). However no other differences were found. As expected, I also found a main
effect for occlusion on perceived workload (F1,8 = 15.750, p = .004, η2

p = .663), where occluded
objects (x = 11.84, σ = .814) were reported as requiring more effort to select (x = 7.583, σ =

1.193) than non-occluded objects.
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Figure 5.4: NASA TLX results for Smartphone vs. Smartwatch vs. Myo, with and without
Depth Cursor: Mental Demand (M), Physical Demand (P), Temporal Demand (T), Performance
(R), Effort (E) and Frustration (F) measures.
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A complete summary of the NASA-TLX data is presented in Figure 5.4.

5.4 Discussion

5.4.1 Performance

The experiment results verified that Watchcasting performs on a par with both Smartcasting
and the Myo armband. More specifically, my results demonstrate that Watchcasting effectively
supports 3D pointing.

5.4.1.1 Selection Time and Accuracy

Even though Watchcasting performance, as expected, decreases with decreasing target size, for
interaction in computing environments high precision selection may not be required, or even
feasible, due to the distance of users from the screen. Small targets, even if they could be selected
with high precision, such as those presented by Nancel et al. (2013) (4mm targets on 5.5m wide
screen), may not be visible from this distance. Moreover, many applications such as gaming
or modelling are target-aware environments. In such settings, using techniques such as Bubble
Cursor may increase the effective width of the target, because the index of difficulty for selection
depends on the size of the Voronoi regions (or the size of the cursor’s bubble) that is a function
of the (local) environment density, not the target size.

5.4.1.2 The Heisenberg Effect

Recall that in Smartcasting experiments the Heisenberg effect was not measured directly, but
was indirectly inferred by comparing between techniques the rate of increase on selection time
for smaller targets vs. larger targets. In the Watchcasting experiment the Heisenberg effect
was expected to be much more pronounced, given that the same set of sensors (accelerometer,
gyroscope) control the position of the cursor and the recognition of the selection gesture. Thus,
to reduce the Heisenberg effect resulting from a pronounced hand gesture I have used a dwell
time of 0.5s as the selection confirmation mechanism. To properly calculate the selection time, I
have separated the selection task into two subtasks: the selection time, that is the time up to the
moment of the cursor entering the target for the last time, before being selected, and the dwell
time, that is the time from the moment the target was entered for the last time to the moment it
was selected.
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If I had used a gesture for selection triggering, given that Watchcasting uses the same sensors
for the cursor movement and the selection triggering, the Heisenberg effect would have occurred.
One way to address this issue is to use a different sensor. As described above, triggering selection
by touch is one option, but it requires a two-hand technique. Another option is provided by the
Myo armband. In addition to an accelerometer and gyroscope the Myo armband is equipped with
a myoscope – a set of sensors that measure the electric resistance of muscles. The Myo SDK
allows for recognition of hand gestures from this sensor, even if the gesture is performed slowly,
thus it does not negatively affect the gyroscope and the accelerometer readings. To enable that,
smartwatches could have a myoscope sensors built into the watch strap.

5.4.2 Occlusion and Depth

5.4.2.1 Occlusion Management

As discussed in Chapter 3 one of the main challenges of 3D interaction is selecting targets that are
occluded by other objects. Watchcasting uses the same occlusion removal mechanism that was
introduced in Smartcasting, with the difference that controlling depth by rotation was introduced
in Watchcasting to replace controlling depth through touch input. The main problem lies in the
fact that, as discussed earlier, a smartwatch’s touchscreen is much smaller than a smartphone’s
touchscreen, thus reducing the precision of mapping touch events to cursor movements (without
clutching).

5.4.2.2 Depth Identification

Watchcasting does not provide visual perspective cues that would facilitate depth identification.
However, depth identification is indirectly suggested to user through the occlusion removal mech-
anism. When the user moves the Depth Cursor, any objects that the ray cuts through, that is any
objects between the user and the Depth Cursor, disappear. By swiping the control space with a
different length of Depth Cursor the user can build a mental model of the position of the objects
in 3D space. This method provides depth identification cues precise enough to avoid user confu-
sion. In dense environments the partial occlusion itself provides a depth cue: partially occluded
objects are obviously further from the user than the occluding ones.

5.4.2.3 Target Disambiguation

Similar to Smartcasting, Watchcasting does not address the target disambiguation problem through
design. However, it is important to note that, as shown by the experiment results, the selection
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of targets in a dense environment (the density was always constant across all experiments thanks
to Voronoi alignment of occluders) was not slower for Watchcasting than for Smartcasting.

5.4.3 Perceived Workload

NASA TLX results confirms that Watchcasting produces higher perceived workload. Combined,
these results provide some evidence that given the same number of degrees of freedom, a tech-
nique may benefit from using more than one modality (as is the case for Smartcasting) as com-
pared to using single modality (as is the case for Watchcasting).

For 3D pointing with occlusion users reported differentrence in perceived workload between
the smartphone, and smartphone and Myo. Given that selection times for occluded targets took
on average over 5s, these results indicate the severity of gorilla-arm effect for a smartwatch and
Myo armband, that are both input device requiring users to keep their hands raised. Participants
preferred to make small wrist movements with a smartphone instead of raising their hand in a
pointing gesture.

Although in the experiment the participants were standing, my pilot study revealed that the
gorilla-arm effect may be less severe when the user interacts in a seated position, so that the
elbow can be rested on a table or armchair and all rotation input happens within the forearm
instead of the upper arm. As mentioned earlier, in this position rotation is limited to about 100°as
opposed to 180°rotation when the arm is stretched, yet this precision may be sufficient for many
interactions in computing environments, such as using a smartwatch as a remote controller.

5.5 Summary

Watchcasting demonstrates of how an off-the-shelf smartwatch can effectively facilitate casual
3D pointing, thus showing that techniques designed for mobile devices can be realized, with
modifications, on wearable devices. The technique performed on a par with both specialized
devices, the Myo armband, as well as the baseline Smartcasting.

However, use of arm-mounted wearables come at a cost of a strong Heisenberg effect and
gorilla-arm effect. Thus, Watchcasting is a technique appropriate for short, casual interaction,
or when users can rest their elbow on a support, such as an armchair; the technique cannot be
recommended for prolonged use, such as a workspace. Yet, the advantage of Watchcasting, and
wearable devices in general, is that users do not need to think of pulling out a mobile device
– they are already augmented with a computing device that facilitates effective interaction with
other computing devices nearby.
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Although successful as the first step toward casual 3D pointing, neither Watchcasting, nor
Smartcasting address all of the challenges listed in Chapter 3. Thus, in the next chapter, I present
Tiltcasting, a smartphone-based multi-modal two-handed technique that addresses those chal-
lenges of 3D pointing that were not sufficiently explored by Watchcasting, Smartcasting, or any
previous techniques that I am aware of.
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Chapter 6

Tiltcasting

Smartcasting and Watchcasting verify that 3D pointing tasks can be realized with a smartphone
or a smartwatch, achieving performance that is comparable to 3D pointing with a specialized in-
put device. Yet, a universal 3D interaction technique for computing environments must perform
well in any type of 3D environment, and thus has to address all 3D challenges. Thus, in design-
ing the Tiltcasting metaphor, I address each of the challenges to 3D pointing listed in Chapter
3: selection of targets in target-agnostic environments, hand tremor, the Heisenberg effect, target
disambiguation, selecting occluded targets, depth identification on non-stereoscopic screens, and
high perceived workload. I iterated through a number of prototypes and conducted two empiri-
cal pilot studies. In particular, early prototypes of Tiltcasting explored three aspects of design:
smartphones as a generic input device, degrees of freedom required for 3D pointing, and spatial
correspondence (with cursor feedback, as opposed to original spatial correspondence) between a
smartphone’s touchscreen and the displays.

6.1 Designing Tiltcasting

The idea for the design of Tiltcasting came from an observation of users during the Smartcasting
studies: after using Smartcasting for a few minutes, participants held the phone closer to their
body and started tilting it as if manipulating a plane (Figure 6.2). I hypothesized that manipu-
lating the smartphone as a plane reduces perceived workload because participants could hold the
phone with both hands, close to the body, and rotate their wrists while accessing the touchscreen
with their finger. This position is also typical when playing mobile games. This observation led
me to contrast planar manipulations (i.e. Tiltcasting) with ray-based manipulation (i.e. Smart-
casting). Thus before discussing in detail the design of Tiltcasting, I first report on my work on
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2D planar interaction which, together with the lessons learned in designing the Smartcasting, led
directly to the development of Tiltcasting.

6.1.1 Spatial Correspondence

Spatial correspondence (Pietroszek and Lank, 2012) targeting relies on a user’s ability to map
coordinates between two distinct surfaces (Figure 6.1). For example, artists, architects, interior
designers, and engineers all engage in spatial correspondence targeting when beginning to create
a painting, floor plan, or technical drawing where one surface (i.e. a subject, building, or room)
is mapped to a corresponding replicate (i.e. a painter’s canvas, blueprint, or sketch). Spatial
correspondence is a component of spatial reasoning, and has been thoroughly examined in the
literature, specifically with reference to enabling multi-device interaction (e.g. Gustafson et al.,
2011). Tablets, the mouse, trackpad, and touchpad all make use of spatial correspondence. Based
on the ubiquity of spatial correspondence, an initial “walk-up-and-use” interaction design was
based on the premise that users could easily map coordinates on an attendant smartphone to those
of a nearby large, public display; thereby enabling touch interaction on the public display.

In my previous work (Pietroszek and Lank, 2012), I conducted an empirical study to validate
the use of spatial correspondence in the context of large display interaction in public spaces. I
compared settings where participants selected targets both using a smartphone with the screen
enabled (traditional targeting), and with the screen disabled but with touch events forwarded to
the nearby large display (spatial correspondence). These conditions provided a contrast between
use of the smartphone as a large display input device (spatial correspondence) to an ideal case
where the user’s attention is focused on the phone’s display alone.

I found that spatial correspondence users were able to localize their targeting task to within
4% of the display area. The high level of spatial correspondence accuracy was quite surprising
given the lack of visual feedback on the input device. For a generic smartphone plus large screen
configuration, I reported that participants could target 25 distinct targets without any visual feed-
back on their smartphone device. Further, more complex interaction models that take advantage
of relative finger position have been shown to enable more accurate selections (Holz and Baud-
isch, 2010). However, while spatial correspondence enables interaction with a small number of
on-screen targets, many large display applications require 3D pointing in dense environments.

6.1.2 Final Design

Given spatial correspondence targeting results which show that absolute mapping of a smart-
phone touchscreen onto a large display can be performed with high accuracy and with small
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Figure 6.1: Many real-world tasks leverage spatial correspondence targeting. For example, land-
scape painting requires that an artist map the position of real-world features to their position on
a canvas.
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Figure 6.2: Tiltcasting defines a 2D interaction plane inside the 3D control space. The cursor
moves on the plane. Only objects intersected by the plane can be selected.

bandwidth requirements (a condition important in ubiquitous deployments), I considered how
the 2D plane interactions, such as spatial correspondence targeting, could be generalized for 3D
interaction. Previous work (Valkov et al., 2011) tried extending a touchscreen interaction into
depth dimension by mapping multitouch gestures to 3D space. I have instead considered using
other modalities of the smartphone to control depth. In particular, I have considered whether the
additional degree of freedom required to manipulate objects on the z-axis can be controlled via
the smartphone’s orientation.

6.1.2.1 Tiltcasting Metaphor

Tiltcasting metaphor defines a 2D interaction plane inside the 3D control space, dividing the
control space into three distinct areas: 1) space behind the interaction plane, where objects are
displayed to the user but are not selectable, 2) space intersected by the interaction plane, where
objects are both visible and selectable by the user, and 3) space in front of the interaction plane,
where objects are invisible and are not selectable by the user (Figure 6.3).

Users control the interaction plane within the 3D space via their phone’s gyroscope, with
rotations about the x-axis corresponding to a change in slope for the interaction plane. As the
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Figure 6.3: Tiltcasting’s occlusion removal mechanism. a) Yellow sphere occluded by blue
sphere, interaction plane is in vertical position. b) Tilting the interaction plane hides three blue
objects, revealing the target.
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phone rotates, the three defined regions encompass different areas of the 3D space, allowing
users to view different parts of the space and to reveal occluded targets. When interacting with
a target, users rotate their phone until the interaction plane intersects the target. Users select the
target by touching the area on the touchscreen, which corresponds to the area of contact between
the 3D object and the plane on the large screen.

Tiltcasting introduces a novel occlusion management mechanism: as a user tilts his/her smart-
phone, the interaction plane scans through 3D space, removes occluding objects (or object frag-
ments), and reveals potential targets (Figure 6.3). For example, when a user lowers the angle of
the phone, objects toward the lower portion of the interaction space may shift from being behind
the plane, to intersecting the plane, to above the plane; in turn shifting from being visible, to
visible and selectable, to not visible and not selectable. Since these interaction plane movements
are an integral part of target selection, they do not add overhead to conventional interaction and
provide a fast and accessible discovery mechanism. When the phone is held upright in a vertical
position, users view the space in a similar way to the conventional viewport projection metaphor.
A particularly useful feature is the ability to quickly scan the entire space by swiping the phone
down and back up from the vertical position, revealing any occluded targets in the space.

It is important to note that in my design of Tiltcasting the aspect ratio of the interaction plane
is the same as the aspect ratio of the smartphone’s touchscreen. This constraint is not necessary,
e.g. in case a of control space having different aspect ration (e.g. square).

6.1.2.2 Tiltcasting Limitations

By integrating occlusion management mechanism into selection process, tiltcasting provides a
novel way of pointing in 3D environments. This feature comes at a cost of limiting the size of
control space that can be addressed. While in Raycasting targets at any distance can be selected,
Tiltcasting limits the control space to targets that can be intercut by the interaction plane. One
way to address this limitation is to increase the size of the interaction plane, thus increasing the
size of the control space. However, this method results in reducing the target size.

Another limitation of Tiltcasting is the existence of certain 3D environment configurations
for which Tiltcasting may perform no better than ray-based techniques. For example, when
selecting objects close to the bottom of the screen, the plane must be placed in a horizontal
position. In such position, top part of the intersected target is hidden, while the lower part is
shown. Moreover, objects closer to the user may occlude objects further from the user. This
limitation can be addressed easily by moving the camera so that the plane is not in a horizontal
position. However, a moving camera is not always beneficial as it disrupts the user’s mental
model of the 3D environment. Thus, alternatively, the occlusion removal mechanism used in
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Smartcasting and Tiltcasting can be used for angles that are close to the horizontal position. In
this case, objects that are below the cursor on a plane (or between the user and the cursor) would
be made transparent, while objects above the cursor on the plane (or behind the cursor from the
user’s perspective) would stay visible.

Another limitation of the Tiltcasting is that the plane has a specific finite size, as opposed to
an infinitely long ray in Raycasting technique. This limitation is typical for many 3D pointing
techniques, such as Go-Go (Poupyrev et al., 1996) and Homer (Bowman Doug A. et al., 2004).
In Tiltcasting, the size of the plane determines the size of the control space. Any object that
cannot be reached by the tilting plane cannot be selected. One consequence of this limitation is
that Tiltcasting should only be used when 3D environment’s control space is finite. The amount
of control space that is covered by the rotating plane can be manipulated by zooming in or out
the 3D environment. On the other hand control space area can be moved by moving the camera
together with the plane to a new position, thus redefining the control space.

6.2 Empirical Validation

Tiltcasting was motivated by creating a universal 3D technique that is capable of interacting
with target-aware 3D environments as well as fully addressing 3D space. In developing my
experimental design, I hypothesized that Tiltcasting would demonstrate performance gains for
target-agnostic, occluded environments. However, to verify Tiltcasting’s performance for more
common use cases, I also chose to compare its performance against a target-aware technique,
where selection can be performed without specifying target depth. In these cases, Tiltcasting’s
ability to fully address 3D space is disadvantageous, as it slows selection times. Thus, my vali-
dation provides both lower and upper bounds for target selection performance.

I empirically compared Tiltcasting to Smartcasting. For non-occluded target condition, I
used target-aware Smartcasting with no depth manipulation, while for occluded target condition,
I used target-agnostic Smartcasting with Depth Cursor (Pietroszek et al., 2014). I identified these
Smartcasting implementations as the most appropriate baselines since their use of smartphones
reduced potential hardware confounds and had already established performance levels compara-
ble to common Raycasting implementations such as those on the WiiMote.

6.2.1 Apparatus

I used a 55-inch LG HDTV Cinema 3D circularly polarized stereoscopic display with a pair of
passive circularly polarized LG glasses. Left and right eye images were provided at 60fps using a
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Figure 6.4: Experimental setup. 55-inch LG HDTV Cinema 3D circularly polarized stereoscopic
display with an iPhone 5 used as an input device.

side-by-side HDMI 1.4a signal at a refresh rate of 60Hz using an NVidia GeForce GT760M and
an Intel i7 processor with 16GB RAM. For input, an iPhone 5 transmitted gyroscope and touch
events at 10Hz over a local 802.11n wireless network. The total latency of the input device over
the network was 3ms on average, and never more than 10ms. The resolution of the touch input
was less than 0.07 mm, and was used to directly control the 3D cursor with an absolute one to
one mapping, resulting in 1mm cursor resolution on the 55-inch display. During the course of the
experiment, participants were seated 3m in front of the display, which was centered vertically and
horizontally in relation to the participant’s eye line in order to provide the optimal stereoscopic
effect (Figure 6.4).

6.2.2 Participants

Seventeen participants (11 males, 6 females) participated in the study, whose ages ranged from
19 to 38 (x̄ = 25.2). Sixteen participants were right-handed, 1 was left-handed. One participant
was unable to complete all experimental trials; his data was excluded from my final analysis.
Each participant received $10 remuneration. Participants were recruited from a local university,
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and were screened for their ability to order objects by depth on the stereoscopic display prior to
participation.

6.2.3 Experimental Design

I used a 2 (INTERACTION TECHNIQUE) × 2 (TARGET SIZE) × 2 (OCCLUSION) 2 ×
(STEREO RENDERING) within-subjects design. The study utilized four independent variables:
technique, target size, occlusion and stereo. Targets with either ‘small’ (0.5°) or ‘large’ (1.0°)
sizes provided two levels of index of difficulty based on Fitts’s Law (MacKenzie, 1992). The ex-
periment environment was rendered in stereo (with participants wearing passive 3D glasses) or
without stereo. Finally, targets were either fully visible or fully occluded upon starting the trial.
For fully visible targets, no distractors occluded or partially occluded the goal target, whereas
for the occluded version, the goal targets were hidden by the presence of distractor targets. My
experimental design is summarized as:

16 Participants

× 2 Technique: Tiltcasting, Smartcasting

× 2 Target Size: Small or Large

× 2 Target Occlusion: Occluded or Non-Occluded

× 2 Stereo Rendering: Stereo or Non-Stereo

× 16 Repetitions

For a total of 4096 trials.

6.2.4 Experimental Task

Execution of selection task for Smartcasting was identical to the one presented in Chapter 4.
For Tiltcasting participants first tilted the plane to the vertical position, then placed the cursor
at a start object. The starting position, with the interaction plane vertical put the Tiltcasting at a
disadvantage compared to Smartcasting, because the optimal initial position for the plane would
be a 45°angle (the length of the worst case scenario path would be 45°). The vertical position
of the plane ensured that the target was always fully hidden behind occluders in the case of
occluded-targets study condition.
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The start object would disappear once the cursor entered it, and the destination target – an-
other object on the display – would appear. Participants tilted the plane to move the cursor,
keeping the finger in contact with the touch screen, until it reached the target destination. If the
destination target was occluded, tilting the interaction plane supported the discovery. Once the
cursor entered the destination target the user could release the finger, thus confirming the selec-
tion. In such case, the task ended and the screen was reset. If during the pointing process the
cursor collided with any distractor and the finger was released, the distractor’s colour changed to
magenta to indicate an error which was recorded by the system. However, the participant could
continue the trial until the destination target was successfully selected.

Start point, target and distractors sizes were preserved from previous experiments. The size
of the control space, that is the size of the interaction plane, was 140 cm by 80cm in 3D space.
Using camera perspective settings, the projection of the 3D environment was scaled by a factor
of 0.85 to its projection onto the TV screen resulting in physical plane size of 122 cm by 69 cm.

6.2.5 Procedure

Participants were first asked to complete a brief demographic questionnaire. Before the experi-
mental trials, each participant was briefed on each technique, and screened for the ability to see
depth. Then the participants completed five training trials. Participants then completed 8 blocks
of 32 experimental tasks, corresponding to 16 tasks for each target size per Block. After the
experimental trials, participants completed a post-study questionnaire that examined perceived
workload. In total, each session lasted approximately 60 minutes.

6.2.6 Data Collection and Analysis

All gyroscope and touch interactions were logged to computer files. Selection time was the
primary experimental measure, defined as the time taken between entering the start position and
reaching the destination target. Selection time thus also includes the time taken for participants
to visually search the display. NASA Task Load Index (TLX) (Hart and Staveland, 1988) data
was collected post-trial.

Repeated Measures Analysis of Variance (RM-ANOVA) tests were conducted to examine
differences in selection times between target sizes, target visibility, and depth rendering condi-
tions. Friedman tests were used to examine differences in perceived workload measures. An
alpha-value of .05 was used for all statistical tests.
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Figure 6.5: No learning effect was found between blocks

6.3 Results

6.3.1 Learning Effect

No significant difference was found between blocks (F1,7 = 0.175, p = .936, η2
p = .012), indicat-

ing no learning effect between blocks (Figure 6.5). Because the data did not satisfy the test of
sphericity, the reported effect size was corrected with Huynh-Feldt.

6.3.2 Performance

Both previous experiments, discussed in Chapter 4 and 5, showed that the selection time in 3D
pointing is strongly affected by the presence or absence of occlusion. This observation is con-
firmed by a significant difference between the selection time of non-occluded and occluded tar-
gets. For non-occluded targets participants completed each trial in 2.67s (σ = 1.023) on average,
while for occluded targets, participants took 5.40s (σ = 2.179) on average to make selections.
For that reason I separate my results between non-occluded and occluded techniques. That is, I
compare Smartcasting and Tiltcasting, and Smartcasting with Depth Cursor and Tiltcasting sep-
arately. For each comparison, I evaluated three independent variables: technique, target size, and
stereo rendering. Results are summarized in Figure 6.6 and Table 6.1.
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Figure 6.6: Mean selection times for Tiltcasting and Smartcasting

6.3.3 Occlusion and Depth

6.3.3.1 Visible Targets

Participants completed each trial in 2.67s (σ = 1.023) on average, and my analysis revealed a
main effect for target selection time (F1,15 = 94.499, p ≈ .000, η2

p = .863), where Tiltcasting se-
lections took an average of 3.24s (σ = .712) and Smartcasting selections took 2.10s (σ = 0.42)
on average. As expected, my analysis revealed main effects for target size (F1,15 = 73.312, p ≈
.000, η2

p = .830), with small targets taking longer (3.02s, σ = .668) to select than large tar-
gets (2.33s, σ = .416). My analysis also revealed a main effect of stereoscopy on selection
time (F1,15 = 46.77, p ≈ .000, η2

p = .757), where selections made with stereoscopic rendering
(3.03s, σ = .660) were slower than those with non-stereoscopic rendering (2.33s, σ = .468).
An interaction effect was found between stereoscopic rendering and size (F1,15 = 6.69, p =

.021, η2
p = .031), where selection for small targets was faster for non-stereoscopic rendering

(2.57, σ = .528) than with stereoscopic rendering enabled (3.47s, σ = .872). For large tar-
gets the selection time difference was significant for stereoscopic (2.58s, σ = .532) vs. non-
stereoscopic (2.08s, σ = .424) rendering. No interaction effect was found between stereoscopic
rendering and technique (F1,15 = .063, p = .805, η2

p = .004).
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6.3.3.2 Occluded Targets

For occluded targets, participants took 5.40s (σ = 2.179) on average to make selections. My
analysis revealed a main effect for target selection time (F1,15 = 51.781, p ≈ .000, η2

p = .775),
where Smartcasting with Depth Cursor selections took an average of 6.8s (σ = 1.7), whereas
Tiltcasting selections took an average of 4.0s (σ = .922). My analysis revealed a main effect
of stereoscopy on selection time (F1,15 = 68.62, p ≈ .000, η2

p = .821), where selections made
with stereoscopic rendering (5.95s, σ = 1.18) were slower than those with non-stereoscopic ren-
dering (4.85s, σ = 1.012). An interaction effect was found between stereoscopic rendering and
size (F1,15 = 7.37, p = .016, η2

p = .033), where selection for small targets was faster for non-
stereoscopic rendering (5.2s, σ = 1.216) than with stereoscopic rendering enabled (6.6s, σ =

1.38). For large targets the selection time difference was significant (4.5s, σ = .952) for stereo-
scopic rendering. No interaction effect was found for stereoscopic rendering and technique
(F1,15 = 1.284, p = .275, η2

p = .079).

Condition Occluded Non-Occluded

Non-Stereoscopic Stereoscopic Non-Stereoscopic Stereoscopic

Small Large Small Large Small Large Small Large

Tiltcasting 3.55s 3.18s 4.80s 4.49s 3.15s 2.62s 4.05s 3.15s
(0.676) (0.672) (1.18) (1.32) (.748) (.642) (1.10) (.648)

Smartcasting — — — — 1.99s 1.54s 2.88s 2.01s
(.361) (.280) (.924) (.545)

Smartcasting 6.48s 5.84s 8.41s 6.10s — — — —
with Depth Cursor (2.07) (1.48) (2.18) (1.44)

Table 6.1: Average selection times for Tiltcasting and Smartcasting (standard deviations in paren-
theses).
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6.3.4 Error Rates

As discussed in chapter 3, error rate was defined as a confirmed selection of a distractor object.
With such defined error, Tiltcasting and Smartcasting have similar accuracy in target selections:
errors accounted for less than 0.5% of Tiltcasting trials, compared to 0.4% of Smartcasting trials.

6.3.5 Perceived Workload

My analysis did not reveal differences between Tiltcasting and target-aware Smartcasting for
mental demand, physical demand, performance, effort or frustration. However, my analysis
did reveal differences between techniques for occluded target condition (in both stereo and
non-stereo), where participants expressed a preference for Tiltcasting in mental demand (p ≈
.000, χ2 = 15), physical demand (p = .001, χ2 = 11.267), effort (p = .001, χ2 = 11.267) and
fatigue(p = .001, χ2 = 10.267). A complete summary of the NASA-TLX data is presented in
Figure 6.7.

6.4 Discussion

6.4.1 Performance

My results demonstrate that Tiltcasting effectively supports 3D pointing. For occluded targets,
selection times for Tiltcasting were on average 70% faster than those completed using Smartcast-
ing with Depth Cursor. For non-occluded targets Tiltcasting performed only marginally worse
than Smartcasting – a technique that benefitted from target-aware, non-occluded pointing, equiv-
alent to 2D pointing (Bowman Doug A., 2002). Further, for occluded target selection, Tiltcasting
was overwhelmingly preferred by participants, and was perceived as requiring less effort to use
than Smartcasting with Depth Cursor. These results validate its design with respect to selection
of targets in target-agnostic environments, reduction in hand tremor, elimination of the Heisen-
berg effect, disambiguation of targets, interaction with occluded targets, depth identification on
non-stereoscopic screens, and perceived workload and the gorilla-arm effect. Below, I discuss
each of these results in detail.

6.4.1.1 Target-aware vs. Target-agnostic 3D environments

The basic Tiltcasting design is target-agnostic and that implementation of Tiltcasting was used
in the experiment. It is possible to improve the performance of Tiltcasting for target-aware 3D
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Figure 6.7: NASA TLX results for Mental Demand (M), Physical Demand (P), Temporal De-
mand (T), Performance (R), Effort (E) and Frustration (F) measures. For target-aware techniques,
mental demand, physical demand, effort and frustration are significantly lower for Tiltcasting as
compared to Smartcasting.
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environments by implementing techniques such as 2D Bubble Cursor (Grossman and Balakrish-
nan, 2005) that would divide all targets intersected with the interaction plane into 2D Voronoi
regions. Alternatively, Tiltcasting could be extended with a 3D Bubble Cursor implementation,
by allowing for selections of targets effective width (Vanacken et al., 2007), that is the volume
of its Voronoi regions. Yet, while these improvements may increase the performance, they com-
plicate the technique and potentially increase the learning curve required. Given that Tiltcasting
performs almost on a par with target-aware Smartcasting, I decided not to include such enhance-
ments.

6.4.1.2 Hand Tremor and the Heisenberg Effect

Analyses of the interaction effect between technique and target size provides evidence that Tilt-
casting was less susceptible to both than Smartcasting. Selections made using Smartcasting
increased by 1.6s for small targets, while selections made with Tiltcasting increased by only
0.34s. Also, I have observed participants struggling to keep their hands stable when selecting
small targets using Smartcasting, while no such behaviour was observed with the use of Tiltcast-
ing. I attribute the reduced impact of the Heisenberg effect to a number of my design decisions,
including: restriction of plane movement to 1 DoF and low-pass filtering of gyroscope read-
ings. Finally, Tiltcasting primarily addresses the Heisenberg effect through the adoption of a
two-handed technique instead of the more conventional one-handed pointing paradigm. The use
of two hands adds stability to the user’s pointing device, and reduces the occurrence of jitter
upon target selection, while any jitter that does occur is reduced through low pass filtering of the
smartphone’s gyroscope input.

Evidence of the reduction of hand tremor in case of Tiltcasting vs. Smartcasting can be
deducted from the accuracy-to-performance ratio. On one hand, my error rate results suggest
that Tiltcasting and Smartcasting have similar accuracy in target selections: errors accounted for
less than 0.5% of Tiltcasting trials, compared to 0.4% of Smartcasting trials. However, keeping
in mind that the participants in my study were instructed to perform the task as quickly as they
can, but accurately and given that the Tiltcasting selection time for smaller and occluded targets
is much higher when the error rate is the same, it is possible to conclude that Tiltcasting reduced
the number of times users aimed more than once at the target due to hand tremor. Evidence of
that is provided by examining the number of times the cursor enters and re-enters the target in
Tiltcasting vs. Smartcasting. In my experiment, for small occluded targets the Tiltcasting cursor
re-entered the target 3.54 times less often than with Smartcasting.
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Figure 6.8: Meta-analysis of mean selection times for Tiltcasting, Smartcasting and Vanacken’s
Point Cursor

6.4.2 Meta-analysis

As discussed in Chapter 3, experimental evaluation of Tiltcasting vs. Smartcasting closely repli-
cated the evaluation of magnetic-tracker-based techniques presented by Vanacken et al. (2007).
Although the target size and the distance from the start point were in my experiment larger than
the size and the distance in Vanacken et al.’s, their proportions were identical, resulting in the
same Fitts’s Index of Difficulty. However, two of three techniques presented by Vanacken et al,
Depth Ray and 3D Bubble Cursor, are target-aware techniques and their “effective” width was
larger than their actual width. Consequently, Fitts’s Index of Difficulty for these target should
have been calculated based on the “effective” width of the targets. Therefore, comparing perfor-
mance of my technique with these two techniques is not possible. In the evaluation of the third
technique, Point Cursor, the width of the target is the same as the “effective” width of the target
and thus the comparison can be performed.

The average selection time for Point Cursor was 4.59s as compared to 3.62s for Tiltcasting.
Vanacken et al. does not report exact selection times per target size and occlusion conditions;
they can only be read from the bar chart. Selection of occluded targets took approximately
5.1s in average for Point Cursor, while it took 4.0s for Tiltcasting. Selection of non-occluded
targets took in average approximately 4.0s for Point Cursor and 3.24s for Tiltcasting (Figure
6.8). Although the differences significance cannot be verified without access to Vanacken’s et al.
input data, Tiltcasting seems qualitatively faster than Point Cursor for the same Fitts’s Index of
Difficulty. However, Vanacken et al. reported no trial with selection error for Point Cursor, while
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Tiltcasting selection had error rate of 0.4%.

6.4.3 Occlusion and Depth

6.4.3.1 Occlusion Management

Tiltcasting provides effective support for both occluded and non-occluded targets. I compared
a single Tiltcasting against both Smartcasting implementations, with and without Depth Cursor.
Tiltcasting also provided consistent selection times, averaging 3.6s regardless of whether the tar-
get was occluded. Further, two elements of my experimental design emphasize the importance
of these differences. First, my experimental design target selection times include only the time
taken to visually identify and the time taken to select targets. Often the visual search for oc-
cluded targets, called ‘discovery’ or ‘exploration’, is the most time-consuming part of a selection
task (Carpendale et al., 1997). Thus, by shortening the exploration phase I expected to achieve
improvements in overall selection time.

Indeed, the performance loss between occluded and non-occluded conditions was relatively
small, and in practice a 15% increase in selection time may be a worthwhile tradeoff when
compared to a threefold increase for Smartcasting. Second, I chose to compare a single Tiltcast-
ing implementation against two Smartcasting implementations: one optimized for selection of
non-occluded targets, and one for occluded targets. This choice was made to ensure that I held
Tiltcasting to a high standard when assessing its performance, but this does not reflect compro-
mises that would be made in practice when selecting a single virtual pointing implementation for
deployment in a ubiquitous environment.

6.4.3.2 Target Disambiguation

By limiting interaction to a 2D plane within the interaction space, Tiltcasting limits the need to
disambiguate nearby targets to those targets that are intersected by the plane. Thus, my planar
interaction space seems to potentially increase the likelihood of the target disambiguation prob-
lem occurring compared to Raycasting, where only targets intersected by a line would require
disambiguation.

Yet, for smaller targets that are most prone to the target disambiguation problem due to hand
tremor, Raycasting must also disambiguate among targets in a nearby 3D space. While uncon-
trolled angular movement of the ray resulting from hand tremor increases the selectable space
around the ray on both the x-axis and the y-axis, similar uncontrolled hand tremor increases the
selectable space only along the vector perpendicular to the interaction plane angle. Given the
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same amount of hand tremor, the volume of such added space is smaller for Tiltcasting than it is
for Raycasting. In addition, as discussed above, the hand tremor for Tiltcasting is smaller than
for Smartcasting, because the former is a two handed technique, thus indirectly reducing the
potential for the occurrence of th target disambiguation problem.

6.4.3.3 Depth Identification

Tiltcasting assists with depth identification since the interaction plane provides a depth cue
through the linear perspective. Since this linear perspective is a feature of the interaction tech-
nique, it is always present. Further, as Tiltcasting relies on spatial correspondence (Pietroszek
and Lank, 2012) between the smartphone’s surface and the onscreen interaction plane, users can
efficiently select targets via their projection onto the interaction plane.

Participants in my study struggled with stereoscopic rendering, and on average it imposed
a near 1s penalty on selection times regardless of interaction technique. Selections made with
Tiltcasting for non-stereoscopic targets were faster than those performed with stereoscopy (p =

.003), despite additional depth information being available to participants when using the stereo-
scopic display. These findings suggest that stereoscopic rendering does not provide an advantage,
regardless of the technique being used. However, my analysis suggests that Tiltcasting may pro-
vide benefits for more difficult cases of the depth identification problem. ‘Large’ targets rendered
without stereoscopy represented a worst-case scenario in my study, where the depth identification
problem was always present. That is, the target was always visibly larger than the start position
sphere, while being further away from the user in 3D space, thus inducing the depth confusion
effect. Nevertheless, I observed no interaction effect between the target size and stereoscopic
rendering for Tiltcasting (η2

p = .101), indicating that the depth confusion effect may be dimin-
ished by Tiltcasting’s perspective cue. The effect accounted for less than 10% of the variance in
my model. Further, these results were supported by a user preference for Tiltcasting in non-stereo
trials.

6.4.4 Perceived Workload

As indicated by the NASA TLX results, selecting occluded targets with Tiltcasting significantly
reduces mental demand (p ≈ .000, χ2 = 15), physical demand (p = .001, χ2 = 11.267), effort
(p = .001, χ2 = 11.267) and perceived workload (p = .001, χ2 = 10.267) as compared with
Smartcasting – all four factors together indicating better user comfort in Tiltcasting over Smart-
casting. Also, users’ informal comments indicate their preference for Tiltcasting. For example,
P4 commented that Tiltcasting is “the easiest because it was easy to move the plane and you did
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not have to (search for) the ball”. When commenting on Smartcasting with Depth Cursor, P5
stated that it was “Frustrating because it was difficult to judge distance”.

6.5 Summary

In this Chapter I have presented the design and evaluation of a novel 3D interaction metaphor
called Tiltcasting that supports smartphone-based 3D pointing for ubiquitous displays. I vali-
dated Tiltcasting for use with both stereoscopic and non-stereoscopic displays, and found that it
provides effective support for interaction with both occluded and non-occluded targets. Further,
my validation suggests that Tiltcasting provides support for depth identification and effective
selections. This chapter contributes a deeper understanding of 3D pointing, particularly in the
context of the occluded target and depth identification problems. Tiltcasting leverages the ubiq-
uity of mobile, personal devices to enable 3D interaction with ubiquitous displays, and reduces
barriers to data use on affordable, accessible, and commercially available displays.
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Chapter 7

Reflections on Designing 3D Pointing with
Mobile and Wearable Devices

The three pointing techniques presented in my dissertation, Smartcasting, Watchcasting and Tilt-
casting, show that mobile and wearable devices can facilitate seamless and efficient 3D pointing
in computing environments. Experimental evaluations of these techniques allow me to conclude
that mobile and wearable devices perform on a par with devices that were designed for dis-
tant pointing, such as WiiMote and Myo armband. Moreover, the design, implementation and
evaluation of Tiltcasting shows how the many modalities of mobile and wearable devices can
be leveraged to address the challenges for 3D pointing listed in Chapter 3: the speed-accuracy
trade-off, occlusion and depth, and perceived workload.

However, in human-computer interaction design there are always two factors: the human and
the machine. While I have presented evidence that the hardware of mobile and wearable devices
(i.e. the machines) is sufficient for 3D pointing tasks, I have not discussed the impact of the
human factor. Thus, the following section I discuss the individual abilities of users and the ways
in which the variability of the human factor was taken into account in my design.

7.1 Human Abilities vs. Device Constraints

Not all users are equally able to control 3 DoFs (Hegarty and Waller, 2005). In some professional
3D environments (e.g. military flight simulators), an individual’s abilities can be assessed, and
users’ skills can be improved by training (Waller, 2000), or input devices can be adapted to serve
the individual needs of each user (Charness et al., 2004). This is not the case for computing
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environments, where no assumptions about users’ abilities or skills can be made by the designer
of the interaction technique. In computing environments the interaction must be universal and
cannot exclude groups of users based on their abilities.

Do participants in my experiments differ in their abilities to simultaneously control 3 DoFs?
Such a claim is implied by the results of my experiments: Smartcasting, Tiltcasting and Watch-
casting, as reported in Chapter 4, 5 and 6. In all experiments the standard deviation for selection
times is large, when controlling for visibility and target size for each input device, indicating
differences between users. Previous research shows that human spatial abilities vary between
individuals (Hegarty and Waller, 2005; Charness et al., 2004). I hypothesize that individual dif-
ferences in selection times may be related to differences in human spatial abilities.

The question is how and to what extent the individual differences in 3D pointing performance
using mobile and wearable devices should impact the design of a technique for 3D pointing.
Given that individual differences between users exist, it is important to design universal tech-
niques that work well for a wide range of users’ abilities. In the design of my pointing techniques
I used two approaches to increase users’ comfort with the technique regardless of individual abil-
ities. The first avenue was to remap common interaction metaphors that the mobile and wearable
devices were designed for. The second avenue was to take advantage of the computing power of
mobile and wearable devices to improve interaction by performing in real-time, and also within
the device, optimizations that would improve the quality of interaction. Both approaches were
used together in the design of the Tiltcasting.

7.1.1 Remapping Common Interactions

In Chapters 4 and 5 I show that engaging the multimodality of mobile and wearable devices
seems to be effective in improving interaction with 3D environments. Yet, while Tiltcasting and
Smartcasting both use the device orientation data and the touchscreen, Tiltcasting was shown to
be significantly faster and it was perceived as being less demanding to use (Figure 6.7). More-
over, in certain situations using multimodality may hurt the interaction, because, for example, it
engages a second hand in a way that is not comfortable for a user, as discussed in Chapter 5,

The approach I found effective, as evidenced by users’ preferences for Tiltcasting, was to
use the multimodality of mobile and wearable devices in a way that mimics the way that users
interact with a smartphone when performing tasks unrelated to 3D pointing. I call this approach
“remapping common interactions”. For example, in Tiltcasting the control of the interaction
plane and the cursor moving on the plane closely resembles the way that users play some mo-
bile games on smartphones. Games such as car racing games or other tilt-controlled games are
controlled by holding the smartphone with two hands, close to the body, in a landscape position
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and interacting with the game through touch input and tilt. By using the smartphone in the same
way it is used for mobile gaming, I implicitly take advantage of the users’ familiarity with the
interaction.

7.1.2 Using Computing Power

As noted by Zhai (1998), many factors related to the input device matter for the quality of in-
teraction, including its form factor and input sampling rate. For that reason, specialized input
devices are designed for a specific, often single purpose, such as a mouse for pointing or a key-
board for text input. Interaction design for 3D environments can and often does directly influence
the design of the input device. For example a Rocking Mouse (Balakrishnan et al., 1997) was
designed specifically for 3D pointing as a result of the observation that the regular mouse lacks
the third degree of freedom required for a control of 3D cursor’s depth position.

The case is different for mobile and wearable devices such as a smartphone and smartwatch
which are designed as a universal portal for communication and for access to information. The
functionalities that the smartphone and smartwatches are designed for include: making phone
calls, showing the time, running apps, playing mobile games, notifications, browsing the Inter-
net, reading emails and ebooks, listening to music and audiobooks or watching video streaming
content. Mobile and wearable devices are not currently designed with distant pointing in mind,
although this could change in the future. Moreover, the sensors in the mobile and wearable de-
vices are not optimized for distant interaction in a way that specialized input devices are. For
example, gyroscope and accelerometer sensors do not provide data at constant time intervals (De-
rawi et al., 2010), complicating the mapping of such input to cursor (or ray) movement. Thus, an
interaction design that utilizes mobile and wearable devices must be approached differently than
the design of interaction utilizing a specialized device. While the latter can and should influence
the form factor and the hardware used in the input device, the designer of mobile and wearable
devices needs to work within the constraints imposed by the device. These are constraints that
interaction design using mobile and wearable devices must be aware of and actively consider.

One way of addressing this constraint is to remap the purpose of the interaction. In addition to
this approach, one may take advantage of the mobile and wearable device’s built-in computing
power. Off-the-shelf mobile and wearable devices are powerful enough to execute – in real-
time – a software that performs sensor fusion and noise removal, or simple machine learning
algorithms such as Dynamic Time Warping (Derawi et al., 2010). In fact, some advanced filtering
is built into the mobile and wearable devices’ operating systems or SDKs. While previous studies
reported low precision and high error-rates for mobile-based pointing experiments (Boring et al.,
2010), my dissertation shows that this is no longer an issue: modern sensor data is reliable and
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sufficient enough for fast and accurate 3D pointing, when sufficient software-based filtering and
optimization is applied.

I used many such optimizations, without which my techniques would not be usable. For
example, in the implementation of Watchcasting, given that I could only achieve a 50 Hertz aver-
age sampling rate for orientation data, and that data did not arrive at equal time intervals, I used
bezier curve smoothing for the cursor movement so that, while it introduced additional latency,
the cursor appeared to move smoothly and thus provided a user experience closer to the experi-
ence provided by a WiiMote or a Myo armband. Other optimizations I used included buffering
the sensor sampling on the device, performing low-pass filtering, artificially introducing equal
time intervals for sensor data, thus smoothing the orientation data before sending such optimized
input data out from the device over the network, to the ubiquitous environment. In my experience
such implementation details make a difference to the performance of the interaction technique
and should be described in detail to enable reproducibility of experimental results.

The discussion about hardware limitations that affect individual users’ ability to use 3D point-
ing techniques leads to the question about the value of research into design interaction techniques
for state-of-the-art hardware that I discuss next.

7.2 State-of-the-Art and Future Enhancements

All techniques presented in my dissertation use off-the-shelf mobile and wearable devices, which
may mean that research may need to be replicated and the results modified when the devices
evolve. Nevertheless, careful assessment of “where we are today” is useful for two reasons.
First, it allows us to disseminate the knowledge to a broader community of researchers that can
then use it to facilitate in-depth, domain-specific studies for various branches of human-computer
interaction. For example, my dissertation, shows that off-the-shelf mobile and wearable devices
can serve as efficient input devices for 3D interaction, and this could result in more research and
deployments of specific 3D environments for ubiquitous displays. Second, the assessment often
points at deficiencies, and therefore, the improvements in design, hardware and software that will
be needed in the future.

An example of deficiency that affected my studies but is already being addressed by the
industry is that most smartwatches are not standalone devices but peripheral devices for smart-
phones. For interaction with computing environments this limitation means another layer or
information-relaying that introduces additional latency, complicates the design, and limits con-
nectivity in computing environments, e.g. by requiring the user to first connect his phone to a
local wi-fi network before his smartwatch can engage in interaction. While the wearables de-
velopment community has already pointed at this limitation and the industry has responded with

101



the first standalone watches (Samsung Gear W, or LG Watch Urbane running WebOS and having
LTE connectivity), my dissertation provides additional arguments why standalone connectivity
of a smartwatch should be a standard rather than exception.

An example of a deficiency of the current mobile and wearable devices is a lack of built-in
fine-grained positioning data in 3D space. Currently, it is not possible to continuously track the
smartphone or smartwatch movement in 3D space reliably without augmentation of the envi-
ronment (Sachs, 2010). While fine-grain position of the device is possible through Virtual User
Concept (VICON) or Wi-Fi-based Positioning System (WPS), and even the quality of GPS lo-
cation is improving, a built-in fine-grained position of the device, for example, through built-in
magnetic trackers would be beneficial. Fine-grained 3D positioning of the device would allow
for multi-device interaction that is proxemics-based, allowing for use of an mobile and wearable
device as a remote controller for the Internet of Things. For example, a seated user could point
at the light switch, then at the TV and then at the coffee-machine in the kitchen.

The most important deficiency of current computing environments is that it is difficult to con-
nect securely yet serendipitously and to configure device ecologies. While technologies such as
iBeacon and multicast DNS provide opportunities for such configurations, support for interac-
tion in computing environments where all devices communicate and interact with each other in a
seamless and “calm” (not requiring user’s attention) way will require more research, especially
with in-the-wild deployments. If Weiser’s vision of “calm technology” (Weiser, 1991) is to be
brought to reality, research is needed to provide a similar contribution to those of my thesis, not
in interaction design, but rather in the design of communication protocols, software frameworks
and hardware sensors that will together create a symphony of interconnected and inter-operating
devices.
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Chapter 8

Summary

8.1 Contributions

My dissertation work bridges a gap in the research literature: a lack 3D pointing techniques that
leverage mobile and wearable devices for input. I have presented design and evaluation of three
3D pointing techniques: Smartcasting, Watchcasting, and Tiltcasting. I now discuss each of these
three contributions.

8.1.1 Leveraging Mobile and Wearable Devices for 3D Pointing

In Chapter 4, I introduced Smartcasting, a novel 3D interaction technique that uses a smart-
phone as an input device. Smartcasting is a ray-based distant pointing technique that utilizes two
modalities of a modern smartphone: the orientation sensors and the touch input for manipulation
of a 3D cursor, including its depth position. Smartcasting implements basic Raycasting that is
appropriate for non-occluded 3D environments and is equivalent to 2D distant pointing. It also
implements a Depth Cursor that allows for fully addressable 3D pointing (accessing any point in
a 3D control space) and provides an occlusion removal mechanism. I formally evaluate Smart-
casting and verify that it performs on a par with Raycasting for specialized input devices, such
as a WiiMote. I conclude that a smartphone can replace specialized input hardware for casual,
everyday 3D interaction.

In Chapter 5 I introduce Watchcasting, that is a pointing technique implemented on a smart-
watch. My goal in this Chapter was to assess to what degree a smartwatch can replace a Myo

103



armband for use in 3D pointing. I have also assessed how smartwatch compares to a smart-
phone in terms of 3D pointing. The constraints imposed by using a smartwatch as input device,
specifically the fact that it is a device mounted on an arm, lead to an interesting discovery that
controlling depth by arm rotation does not slow down or lower the accuracy of selection com-
pared to Smartcasting’s depth control through a touchscreen.

In Chapter 6 I presented another novel 3D interaction technique, called Tiltcasting, that uses
a smartphone as an input device. However, unlike Smartcasting, Tiltcasting leverages the smart-
phone as a two handed device. The added stability contributes to a performance gain of Tilt-
casting in comparison with Smartcasting, as does the introduction of a spatial correspondence
targeting paradigm into the design.

8.1.2 Enabling Interaction at a Distance

All three techniques presented in my dissertation enable 3D pointing at a distance. Smartcasting’s
design and empirical validation provides a baseline mobile-based 3D pointing technique and
demonstrates that mobile devices can be used for casual “at a distance” pointing. Smartcasting
also shows that specialized hardware is not necessary for casual 3D pointing, while Watchcasting
provides a similar finding for a smartwatch.

This findings have important consequences for design of future techniques for casual interac-
tion with 3D environments. First, the results of performance comparison with specialized input
devices show that interaction at a distance can be efficiently realized with Bring Your Own De-
vice (BYOD) paradigm. Second, the findings show that interaction at a distance can be realized
with current mobile and wearable technology allowing for deployment of 3D content for out-
of-arm’s-reach displays. One example where such deployment could be beneficial is a movie
theatre, where interaction could be realized by audience from a seated position. My dissertation
provides the evidence that the first step of such interactions, that is target acquisition, can be
realized on current mobile and wearable devices.

8.1.3 Identifying and Addressing Challenges for 3D Pointing

In Chapter 3 I described challenges for 3D pointing. Starting with the issue of tradeoff between
accuracy and speed, I analyze how this issue differs depending on whether the 3D environment
is target-aware of target-agnostic. I also show how hand tremor (Myers et al., 2002) and the
related Heisenberg effect (Bowman Doug A. et al., 2001) both affect selection time. I have listed
previous work that addressed the issue.
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I have paid special attention to the problems of occlusion and depth that are related to users’
perception of 3D environments. I identified the problem of occlusion – when the target cannot be
reached, because it is hidden behind (or within) another object – as one of the main problems of
3D pointing. Related is the target disambiguation problem, when the target can be reached, but
cannot be selected without a disambiguation mechanism. I also explained the problem of depth
identification that is specific to non-stereoscopic presentations of 3D environments and which
refers to a user’s inability to determine the z-position of a 3D target.

I have also elaborated on the perceived workload (and the related gorilla-arm effect). I
showed how 3D pointing techniques often result in high perceived workload and gorilla-arm
effect (Schultz, 1988), and discussed how perceived workload can be quantitatively measured.
Additionally, I have discussed a design of formal experiment that evaluated perceived workload
and performance of 3D pointing in occluded and non-occluded conditions.

8.1.4 Impact of Contributions

Together, three contributions of my dissertation support the thesis that mobile and wearable de-
vices are ready to be used for 3D pointing. More specifically, this finding opens new possibil-
ities for casual pointing and interaction with 3D environments. For example, smartphone- and
smartwatch-based 3D pointing can find its applications in public and semi-public settings, such
as airports, museums, shopping malls or conference venues, where displays are mounted out of
reach of the user. In these settings it is not possible to deploy interactive 3D environments and
enable interaction with them using mobile and wearable devices. Interaction scenarios that can
be supported include 3D gaming, exploring and navigating scientific visualizations in museums
or participating in collaborative modelling sessions. Each scenario requires a design of inter-
actions specific for a given domain, but my work provides the first step toward such design by
showing that mobile and wearable hardware is sufficient. Also, because many interactions start
with target acquisitions, 3D pointing techniques introduced in my thesis can serve as the entry
techniques to be modified and extended for domain-specific purposes.

Another impact of my dissertation is to show that it is possible to address, to a certain degree,
in a single technique all 3D pointing challenges listed in Chapter 3. In Chapter 4, I have shown
how Smartcasting addresses some of the 3D interaction challenges – such as the Heisenberg ef-
fect and perceived workload – listed in Chapter 3 in a novel way: while still allowing for target
occlusion and disambiguation to be addressed using methods previously developed in the litera-
ture. In Chapter 5, I have shown how the same level of performance can be achieved on a smart-
watch. In Chapter 6, I have shown that Tiltcasting achieves better performance than Smartcasting
in dense environments. Tiltcasting is also equipped with an occlusion removal mechanism that
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integrates the exploration and navigation phase into selection time, significantly increasing the
overall performance of the technique, thus addressing the problem of occlusion. Additionally,
Tiltcasting provides perspective cues when a 3D environment is presented on a non-stereoscopic
screen, thus addressing the depth identification problem. Finally, unlike Smartcasting or Watch-
casting, Tiltcasting does not cause the gorilla-arm effect. As a two-handed technique that uses
the “remapping principle” introduced in Chapter 7, Tiltcasting eliminates the need for users to
lift their hand for a prolonged time, thus causing less perceived workload.

8.2 Future Work

My dissertation opens a number of future work opportunities, which I am already addressing in
my current research, or plan to address in the near future. One possible direction of future work
is to revisit the design of the 3D pointing techniques, expand the interaction beyond pointing and
selection and evaluate the techniques in the wild. Another direction is to optimize the techniques
for target-aware 3D environments. Finally, research can be done in validating the techniques for
mass interaction. I briefly describe some early results and research ideas below.

8.2.1 Revisiting Design of Smartphone- and Smartwatch-based 3D Point-
ing

8.2.1.1 Improving Smartcasting

The three pointing techniques presented in my dissertation were designed to the best of my
abilities at the time of their design. Yet, they do not cover the entire design space, leaving many
potentially fruitful paths unexplored. For example, as noted above, the Watchcasting experiment
showed that controlling depth though rotation is surprisingly precise on smartwatches. Would
such control be better than touchscreen depth manipulation for Smartcasting too? To verify that,
I plan to perform a study that compares accuracy of depth manipulation when using touchscreen
vs. hand rotation.

8.2.1.2 Improving Watchcasting

Watchcasting itself could also be expanded using the knowledge I gained through the Tiltcast-
ing design, i.e. the “remapping principle” discussed in Chapter 7. The essential observation
here is that the smartwatch’s touchscreen is usually interacted with using the dominant hand,
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with the smartwatch mounted on the non-dominant hand. Thus, I could implement Tiltcasting
on a smartwatch by engaging the non-dominant hand in controlling the rotation of the interac-
tion plane, and the dominant hand in moving the cursor on the interaction plane mapped to the
smartwatch’s touchscreen. I hypothesize that such interaction, even if it does not achieve faster
selection times than Watchcasting, may result in lower perceived workload.

8.2.1.3 Improving Tiltcasting

It is possible to imagine improvements of the Tiltcasting specifically for target-aware environ-
ments. One idea is to implement a Bubble Cursor (Grossman and Balakrishnan, 2005) on the
interaction plane. Because Tiltcasting has already significantly reduced the number of targets that
can be interacted with at any time, introduction of a Bubble Cursor would, by definition, increase
the selection time by creating regions of selection larger than the crosscut area between the tar-
get and the cursor. Yet another improvement of Tiltcasting that is, in my opinion, worth further
exploration in the context of target-aware environments is to automatically rotate the plane into a
position that is optimal for a given subset of 3D control space. Optimization could be a function
of precision and selection time, or other factors such as a maximum number of targets that can
be interacted with.

8.2.2 Toward Mass Interaction

My dissertation work contributes a deeper understanding of 3D interaction using mobile and
wearable devices, particularly in the context of the occluded target and depth identification prob-
lems. All my techniques leverage the ubiquity of mobile or wearable devices to enable new forms
of interaction, and they reduce barriers to data usage on affordable, accessible, and commercially
available displays. One direction I am particularly interested in studying next is mass 2D and 3D
interactions that go beyond single-user or multi-user applications (Figure 8.1). A situation when
masses of users interact with a single screen introduces new challenges, both technological as
well as design-related.

For example, the basic paradigm of the users’ ability to identify the cursor they are controlling
fails when multiple users connect to a single screen. The question is how such interactions could
be facilitated. I performed some initial work in this area in a context of mass gaming in a cinema.
In a startup company created for just that purpose, my team and I implemented a game that can
be played before the main feature is shown, using a mobile device as a game controller. The
game, “Little Red Riding Hood” consisted of 2 interactive scenes, each using interaction designs
that addressed the problem of a potentially unlimited number of users.
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Figure 8.1: Mass interaction with a single large screen is a relatively unexplored area of large
display interaction research
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In the first scene, we used the spatial correspondence targeting discussed in Chapter 6 to
allow the audience to collect fruits visible on the cinema screen, but not shown on their mobile
devices. The screen could present only a limited number of randomly distributed fruits (around
50, in our case). Thus, to avoid having all fruits collected within seconds, given that movie
theatre may have hundreds of concurrent players, we allowed one fruit to be collected by any
number of users, as long as the collection event happened within a given time span. This simple
solution can be scaled to any number of users.

In the second scene, Little Red Riding Hood was attacked by a wolf. Users could scare the
wolf away by shooting the fruits toward the wolf using their mobile device as a slingshot (a
technique similar to Smartcasting). Here, the problem was that allowing hundreds of users to
shoot the fruits toward the wolf would inevitably clutter the screen. To avoid that, I grouped the
vectors of shooting into 5 zones: regardless of the direction in which the user shot at, the fruit
trajectory was corrected to one of the five directions. Moreover, we ensured that if more than
one user shot the same type of fruit toward the wolf within a given time interval (in our case, 1s),
only one fruit would be shown flying onto the screen. This solution will also scale to any number
of concurrent users.

The “Little Red Riding Hood” game was deployed “in-the-wild” in the local cinema to very
positive user response (Figure 8.2). Although the game was not designed as a research project, I
plan to perform formal experiments that involve mass gaming in cinemas using mobile devices,
and to investigate how mass interaction can be facilitated by mobile and wearable devices.

8.2.3 Gesture-controlled Omnipresent Displays

Mobile and wearable devices provide a rich set of sensors combined with powerful computing.
In my dissertation I used the characteristics of the mobile and wearable devices to facilitate 3D
pointing. However, it is also possible to use them for other types of interactions in computing
environments. One idea I am currently working on with colleagues in the Human Computer
Interaction lab is to design a rich set of gestures that would be recognized with machine learning
in real-time. The approach we have already tried is to implement Dynamic Time Warping (DTW)
for a set of characters and graffiti gestures, achieving good recognition rates. The set of gestures
could facilitate interaction with ubiquitous displays, such as browsing, text entry or controlling
presentations.

The second step in the research is to apply gestural language to the control of displays whose
position, size, shape and even texture could be user-controlled in a custom-built studio that allows
for turning any surface into a display. I hypothesize that the universal presence of displays may
be the way in which the problem of “fat finger” that affects mobile devices – and, to even greater
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Figure 8.2: Mass interaction game, “Little Red Riding Hood”, deployed in a movie theatre.
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degree, wearables – may be addressed. It is possible that the touchscreen of wearable devices
will evolve to become an input (e.g. a touchpad) for any screen in a ubiquitous environment,
transforming that screen to an extended (although temporary) private display of the wearable.

The potential of mobile and wearable devices is limited only by the imagination of the de-
signers. In my dissertation I show that the current hardware is ready to facilitate Weiser’s vision
of “calm technology” and even go beyond that vision to a fully interconnected ubiquitous Internet
of Things.

8.2.4 Limitations

My dissertation work shows that mobile and wearable devices can act as convenience devices
in computing environments. The techniques designed and evaluated to support this claim were
shown to work on par with specialized devices. Yet, neither the design of the techniques nor the
experiments are free of limitations.

8.2.4.1 Measuring Perceived Workload vs. Fatigue

Another limitation of my dissertation is the measurement of perceived workload instead of fa-
tigue. While perceived workload measurement provides useful information about the overall
comfort of a 3D pointing technique, it is a subjective, self-reported measure. New measures
where recently developed that may provide more objective quantitative data on pointing er-
gonomics. For example, a consumed endurance model (Hincapié-Ramos and Guo, 2014) pro-
vides a way of measuring fatigue. Because this method of measuring fatigue appeared after most
of my experiments were already performed, for consistency and meta-comparison between the
perceived workload results, I have kept using NASA TLX as the perceived workload measure.

8.2.4.2 Limitations of Evaluation

Certain limitations of my dissertation also result from using the same experimental setup through
all studies. In order to allow for meta-analysis of my data, I have kept the same or similar ex-
perimental parameters throughout all experiments. Alternative solution would be to design more
specific experiments for each technique and directly measuring other aspects of 3D pointing,
such as Heisenberg effect or hand tremor. Yet, because the main goal of my experiment was to
evaluate efficiency of casual 3D pointing, I did not specifically focus on Heisenberg effect or
hand tremor effect. I plan to address Heisenberg effect in the future.
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Also, given that all experiments were performed in a controlled environment, it is unclear
how the techniques would perform in the wild. Given the goals of my studies, experimentation
in a controlled environment was necessary to avoid many confounds present when deploying
a technique in the wild. Yet, once the feasibility of the techniques has been established, I am
interested in performing an in-the-wild study that would consider other aspects of mobile and
wearable interaction with ubiquitous displays, such as the discoverability of the interaction and
the ease of use when no training is provided.

One of the main limitations is that the performance results of my dissertation cannot be gen-
eralized and applied to the population of all users. For the purpose of experimental evaluation
I chose participants who are familiar with mobile devices and who come from a specific envi-
ronment: the university campus and who are thus represented a specific age range. Although
the goal of my experiments was not to measure that facet, future research in this area would be
useful.

Finally, the meta-analysis of Tiltcasting performance vs. Vanacken et al. (2007) techniques
is limited for two reasons. First, while in Tiltcasting both wrist and finger movements are small,
that is they don’t cause large movements of hand in the 3D input space, that is not the case for
Vanacken et al. Depending on the position of the target on the half-sphere, magnetic tracker
has to be moved far (when value of randomly selected position on the z-axis approaches 20cm)
or not at al. (when value of randomly selected position on the z-axis approaches 0). Thus, the
distribution of selection times in Vanacken et al. may be biased toward the target positions that
happen to have large z values, because that are the positions requiring large movement of hand.

8.2.4.3 Sensors Variability

Another limitation of my work comes from the fact that both mobile and wearable devices come
in various forms and include sensors of varying quality. I did not measure the differences in
quality between various models of smartphones and smartwatches; it is possible that some would
perform better than others. Unfortunately, given the number of models available in the market
such a study would not be feasible.

8.3 Concluding Note

Pervasive computing devices like smartphones and wearables are a reality, creating an oppor-
tunity for casual 3D interaction. While exploring the entirety of this ecology of devices is be-
yond the scope of any one dissertation or researcher, one important aspect of building device
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ecologies is understanding how computation can work together to support 3D pointing. The
specific focus of this dissertation is leveraging personal and wearable computation as a platform-
of-convenience for pointing with external displays, serendipitously encountered in the world.
My work illustrates is the first step toward rich manipulation environments that can be realized
today using current technology. It provides guidance on present-day 3D pointing design and on
the sensor and infrastructure work needed to enhance casual 3D pointing.
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Appendix A

System Architecture

I present an overview of system architecture used in my experiments, thus allowing for easier
reproducibility of my experimental results.

All three experiments presented in my dissertation were realized as a client-server architec-
ture. For server, I used server script written in JavaScript that run on a node.js server. The server
ran on a local PC workstation, the same one that was responsible for rendering the client 3D envi-
ronment and recording the experimental data. This design choice eliminated the network latency
of communication between the client 3D environment application and the node.js server, that
could otherwise negatively affect the selection times. Because the PC workstation was equipped
with a multicore CPU, I run the server process and 3D application on a separate core. This design
choice ensured that there is no competition for processor resources between the node.js server
and the client 3D application.

The client mobile device was realized as a web application that ran in a mobile browser. It
consisted of three threads. The first thread read orientation data, that is an < pitch, yaw, roll >
orientation vector that results from a built-in sensor fusion of accelerometer, magnetometer and
gyroscope data. It is important to note that by the time of implementation the orientation vector
was imperfect and shown a horizontal drift. Newer versions of Android OS offer better orienta-
tion data in a form of rotation vector that virtually eliminates the drift. The orientation data was
stored in a shared vector variable that could be accessed by other threads. The second thread was
the built-in UI thread that read touchscreen events. The events were stored in the same shared
vector variable, as the orientation data. For Smartcasting, I stored only the y coordinate of the
touch, while Tiltcasting used the xy coordinates of the touch.

The communication protocol used was the standard WebSocket protocol. WebSocket simu-
lates permanent connection over http using heartbeats messaging.
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Stephan Reichelt, Ralf Haussler, Gerald Fütterer, and Norbert Leister. Depth cues in human
visual perception and their realization in 3D displays. In Three Dimensional Imaging, Visu-
alization, and Display 2010, pages 76900B–76900B–12, 2010. ISBN 9780819481542. doi:
10.1117/12.850094.

Jun Rekimoto. The Magnifying Glass Approach to Augmented Reality Systems. International
Conference on Artificial Reality and Telexistence icat, 95:123–132, 1995. ISSN 10547460.

133

http://portal.acm.org/citation.cfm?id=237091.237102&type=series
http://portal.acm.org/citation.cfm?id=237091.237102&type=series
http://dl.acm.org/citation.cfm?id=261135.261141
http://doi.wiley.com/10.1111/1467-8659.00252
http://doi.wiley.com/10.1111/1467-8659.00252
http://portal.acm.org/citation.cfm?id=1518701.1518997
http://portal.acm.org/citation.cfm?id=1518701.1518997
http://dl.acm.org/citation.cfm?id=1133265.1133351


doi: 10.1.1.50.5835. URL http://www.vrsj.org/ic-at/ICAT2003/papers/
95123.pdf.

B Rogers and M Graham. Motion parallax as an independent cue for depth perception. Percep-
tion, 8:125–134, 1979. ISSN 0301-0066. doi: 10.1068/p080125.

Daniel M Russell, Clemens Drews, and Alison E. Sue. Social Aspects of Using Large Pub-
lic Interactive Displays for Collaboration. UbiComp 2002 Ubiquitous Computing, 2498:
229–236, 2002. ISSN 03029743. doi: 10.1007/3-540-45809-3\ 18. URL http://www.
springerlink.com/content/fpupwgk001dhqk04/.

David Sachs. Sensor fusion on android devices: A revolution in motion processing. Google Tech
Talks, 2010.

T. A. Sandstrom, C. Henze, and C. Levit. The hyperwall. Proceedings of The Coordinated &
Multiple Views in Exploratory Visualization, 2003. URL http://people.nas.nasa.
gov/˜creon/papers/hyperwall.01215010.pdf.

Steven Schirra and Frank R Bentley. ”It’s Kind of Like an Extra Screen for My Phone”: Under-
standing Everyday Uses of Consumer Smart Watches. In Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’15, pages
2151–2156, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3146-3. doi: 10.1145/
2702613.2732931. URL http://doi.acm.org/10.1145/2702613.2732931.

Dominik Schmidt, Fadi Chehimi, Enrico Rukzio, and Hans Gellersen. PhoneTouch: A technique
for direct phone interaction on surfaces. In Proceedings of the 23nd annual ACM symposium
on User interface software and technology (UIST’10), 2010. ISBN 9781605587455. doi:
10.1145/1866029.1866034. URL http://eprints.lancs.ac.uk/42612/.

G. Schmidt, Y. Baillot, D. G. Brown, E. B. Tomlin, and J. E. Swan. Toward Disambiguating
Multiple Selections for Frustum-Based Pointing. In 3D User Interfaces, 2006. 3DUI 2006.
IEEE Symposium on, pages 87–94, March 2006. doi: 10.1109/VR.2006.133.

Jan Schultz. A history of the PROMIS technology: an effective human interface. In A history of
personal workstations, pages 439–488. ACM, 1988.

Garth B. D. Shoemaker, Anthony Tang, and Kellogg S Booth. Shadow Reaching: A New Per-
spective on Interaction for Large Wall Displays. Proc. UIST, pages 53–56, 2007. doi: 10.1145/
1294211.1294221. URL http://portal.acm.org/citation.cfm?id=1294221.

134

http://www.vrsj.org/ic-at/ICAT2003/papers/95123.pdf
http://www.vrsj.org/ic-at/ICAT2003/papers/95123.pdf
http://www.springerlink.com/content/fpupwgk001dhqk04/
http://www.springerlink.com/content/fpupwgk001dhqk04/
http://people.nas.nasa.gov/~creon/papers/hyperwall.01215010.pdf
http://people.nas.nasa.gov/~creon/papers/hyperwall.01215010.pdf
http://doi.acm.org/10.1145/2702613.2732931
http://eprints.lancs.ac.uk/42612/
http://portal.acm.org/citation.cfm?id=1294221


Katie A. Siek, Yvonne Rogers, and Kay H. Connelly. Fat finger worries: How older and younger
users physically interact with PDAs. In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
3585 LNCS, pages 267–280, 2005. ISBN 3540289437. doi: 10.1007/11555261\ 24.

Gisela Sjogaard, Gabrielle Savard, and Carsten Juel. Muscle blood flow during isometric activity
and its relation to muscle fatigue. European Journal of Applied Physiology and Occupational
Physiology, 57(3):327–335, 1988. ISSN 0301-5548. doi: 10.1007/BF00635992. URL http:
//dx.doi.org/10.1007/BF00635992.

Anthony Steed. Towards a General Model for Selection in Virtual Environments. Pro-
ceedings of 3D User Interfaces 2006, pages 103–110, 2006. doi: 10.1109/VR.2006.
134. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1647515.

Anthony Steed and Chris Parker. 3D Selection Strategies for Head Tracked and Non-Head
Tracked Operation of Spatially Immersive Displays. In Proceedings of 8th International Im-
mersive Projection Technology Workshop, pages 13–14, 2004.

Frank Steinicke, Klaus Hinrichs, Johannes Schöning, and Antonio Krüger. Multi-Touching 3D
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