16,212 research outputs found

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 314)

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August, 1988

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 141)

    Get PDF
    This special bibliography lists 267 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1975

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 224

    Get PDF
    This bibliography lists 127 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1981

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 349)

    Get PDF
    This bibliography lists 149 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Systems identification and application systems development for monitoring the physiological and health status of crewmen in space

    Get PDF
    The use of automated, analytical techniques to aid medical support teams is suggested. Recommendations are presented for characterizing crew health in terms of: (1) wholebody function including physiological, psychological and performance factors; (2) a combination of critical performance indexes which consist of multiple factors of measurable parameters; (3) specific responses to low noise level stress tests; and (4) probabilities of future performance based on present and periodic examination of past performance. A concept is proposed for a computerized real time biomedical monitoring and health care system that would have the capability to integrate monitored data, detect off-nominal conditions based on current knowledge of spaceflight responses, predict future health status, and assist in diagnosis and alternative therapies. Mathematical models could play an important role in this approach, especially when operating in a real time mode. Recommendations are presented to update the present health monitoring systems in terms of recent advances in computer technology and biomedical monitoring systems

    THE RELATIONSHIP BETWEEN MUSCULOSKELETAL STRENGTH, PHYSIOLOGICAL CHARACTERISTICS, AND KNEE KINESTHESIA FOLLOWING FATIGUING EXERCISE

    Get PDF
    Fatiguing exercise may result in impaired functional joint stability and increased risk of unintentional injury. While there are several musculoskeletal and physiological characteristics related to fatigue onset, their relationship with proprioceptive changes following fatigue has not been examined. The purpose of this study was to establish the relationship between musculoskeletal and physiological characteristics and changes in proprioception, measured by threshold to detect passive motion (TTDPM), following fatiguing exercise. Twenty, physically active females participated (age: 28.65 ± 5.6 years, height: 165.6 ± 4.3 cm, weight: 61.8 ± 8.0 kg, BMI: 22.5± 2.3 kg/m2, BF: 23.3 ± 5.4%). During Visit 1, subjects completed an exercise history and 24-hour dietary questionnaire, and body composition, TTDPM familiarization, isokinetic knee strength, and maximal oxygen uptake/lactate threshold assessments. During Visit 2, subjects completed TTDPM and isometric knee strength testing prior to and following a fatiguing exercise protocol. Wilcoxon signed rank tests determined TTDPM and isometric knee strength changes from pre- to post- fatigue. Spearman’s rho correlation coefficients determined the relationship between strength and physiological variables with pre- to post-fatigue changes in TTDPM and with pre-fatigue and post-fatigue TTDPM in extension and flexion (α=0.05). No significant differences were demonstrated from pre-fatigue to post-fatigue TTDPM despite a significant decrease in isometric knee flexion strength (P<0.01) and flexion/extension ratio (P<0.05) following fatigue. No significant correlations were observed between strength or physiological variables and changes in TTDPM from pre- to post-fatigue in extension or flexion. Flexion/extension ratio was significantly correlated with pre-fatigue TTDPM in extension (r=-0.231, P<0.05). Peak oxygen uptake was significantly correlated with pre-fatigue (r=-0.500, P<0.01) and post-fatigue (r=-0.520, P<0.05) TTDPM in extension. No significant relationships were demonstrated between musculoskeletal and physiological characteristics and changes in TTDPM following fatigue. The results suggest that highly trained individuals may have better proprioception, and that the high fitness level of subjects in this investigation may have contributed to absence of TTDPM deficits following fatigue despite reaching a high level of perceptual and physiological fatigue. Future studies should consider various subject populations, other musculoskeletal strength characteristics, and different modalities of proprioception to determine the most important contributions to proprioceptive changes following fatigue

    Technical feasibility of constant-load and high-intensity interval training for cardiopulmonary conditioning using a re-engineered dynamic leg press

    Get PDF
    Background: Leg-press devices are one of the most widely used training tools for musculoskeletal strengthening of the lower-limbs, and have demonstrated important cardiopulmonary benefits for healthy and patient populations. Further engineering development was done on a dynamic leg-press for work-rate estimation by integrating force and motion sensors, power calculation and a visual feedback system for volitional work-rate control. This study aimed to assess the feasibility of the enhanced dynamic leg press for cardiopulmonary exercise training in constant-load training and high-intensity interval training. Five healthy participants aged 31.0 ± 3.9 years (mean ± standard deviation) performed two cardiopulmonary training sessions: constant-load training and high-intensity interval training. Participants carried out the training sessions at a work rate that corresponds to their first ventilatory threshold for constant-load training, and their second ventilatory threshold for high-intensity interval training. Results: All participants tolerated both training protocols, and could complete the training sessions with no complications. Substantial cardiopulmonary responses were observed. The difference between mean oxygen uptake and target oxygen uptake was 0.07 ± 0.34 L/min (103 ±17%) during constant-load training, and 0.35 ± 0.66 L/min (113 ±27%) during high-intensity interval training. The difference between mean heart rate and target heart rate was −7 ± 19 bpm (94 ±15%) during constant-load training, and 4.2 ± 16 bpm (103 ±12%) during high-intensity interval training. Conclusions: The enhanced dynamic leg press was found to be feasible for cardiopulmonary exercise training, and for exercise prescription for different training programmes based on the ventilatory thresholds

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 145

    Get PDF
    This bibliography lists 301 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1975

    Stress: Putting the Brain Back Into Medicine

    Get PDF
    Throughout the life course stress plays a major role in health and disease. Although it has long been known that the brain orchestrates the many ways that the body responds to these experiences, a gap exists between health care providers who focus from the head up and those who focus on the head down

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978
    corecore