16,985 research outputs found

    Theatre Noise Conference

    Get PDF
    Three days of Performances, Installations, Residencies, Round Table Discussions, Presentations and Workshops More than an academic conference, Theatre Noise is a diverse collection of events exploring the sound of theatre from performance to the spaces inbetween. Featuring keynote presentations, artists in residence, electroacoustic, percussive and digital performances, industry workshops and installations, Theatre Noise is an immersive journey into sound

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD

    A Path to Understanding Dreams: Observations on Ancient Chinese Dream Culture and Western Dream Theories

    Get PDF
    Throughout history, dreams have been researchers’ major focus where their keen interest lies in. Analyzing the three historical development phrases of dream theories, namely Pre-Freudian, Freudian and Post-Freudian phrases, this paper aims to demonstrate the impacts of ancient Chinese dream culture on languages, characters, medicine, psychology, literature, politics, and economy. Classical modern dream theories proposed by Sigmund Freud, Ivan Pavlov, and other researchers are collected and analyzed to help people have a better understanding of dreams and their meanings. Furthermore, the paper fully and systematically interprets the dream-related culture and scientifically classifies dream theories and technologies to reinvigorate the dream research field in China and advocates to boost global cultural prosperity and development through cultural exchanges, mutual learning and peaceful coexistence among countries

    Fashion Style Generation: Evolutionary Search with Gaussian Mixture Models in the Latent Space

    Get PDF
    This paper presents a novel approach for guiding a Generative Adversarial Network trained on the FashionGen dataset to generate designs corresponding to target fashion styles. Finding the latent vectors in the generator's latent space that correspond to a style is approached as an evolutionary search problem. A Gaussian mixture model is applied to identify fashion styles based on the higher-layer representations of outfits in a clothing-specific attribute prediction model. Over generations, a genetic algorithm optimizes a population of designs to increase their probability of belonging to one of the Gaussian mixture components or styles. Showing that the developed system can generate images of maximum fitness visually resembling certain styles, our approach provides a promising direction to guide the search for style-coherent designs.Comment: - to be published at: International Conference on Computational Intelligence in Music, Sound, Art and Design : EvoMUSART 2022 - typo corrected in abstrac
    corecore