6 research outputs found

    Visual Tactile Fusion Object Clustering

    Full text link
    Object clustering, aiming at grouping similar objects into one cluster with an unsupervised strategy, has been extensivelystudied among various data-driven applications. However, most existing state-of-the-art object clustering methods (e.g., single-view or multi-view clustering methods) only explore visual information, while ignoring one of most important sensing modalities, i.e., tactile information which can help capture different object properties and further boost the performance of object clustering task. To effectively benefit both visual and tactile modalities for object clustering, in this paper, we propose a deep Auto-Encoder-like Non-negative Matrix Factorization framework for visual-tactile fusion clustering. Specifically, deep matrix factorization constrained by an under-complete Auto-Encoder-like architecture is employed to jointly learn hierarchical expression of visual-tactile fusion data, and preserve the local structure of data generating distribution of visual and tactile modalities. Meanwhile, a graph regularizer is introduced to capture the intrinsic relations of data samples within each modality. Furthermore, we propose a modality-level consensus regularizer to effectively align thevisual and tactile data in a common subspace in which the gap between visual and tactile data is mitigated. For the model optimization, we present an efficient alternating minimization strategy to solve our proposed model. Finally, we conduct extensive experiments on public datasets to verify the effectiveness of our framework.Comment: 8 pages, 5 figure

    Automatic Curriculum Learning With Over-repetition Penalty for Dialogue Policy Learning

    Full text link
    Dialogue policy learning based on reinforcement learning is difficult to be applied to real users to train dialogue agents from scratch because of the high cost. User simulators, which choose random user goals for the dialogue agent to train on, have been considered as an affordable substitute for real users. However, this random sampling method ignores the law of human learning, making the learned dialogue policy inefficient and unstable. We propose a novel framework, Automatic Curriculum Learning-based Deep Q-Network (ACL-DQN), which replaces the traditional random sampling method with a teacher policy model to realize the dialogue policy for automatic curriculum learning. The teacher model arranges a meaningful ordered curriculum and automatically adjusts it by monitoring the learning progress of the dialogue agent and the over-repetition penalty without any requirement of prior knowledge. The learning progress of the dialogue agent reflects the relationship between the dialogue agent's ability and the sampled goals' difficulty for sample efficiency. The over-repetition penalty guarantees the sampled diversity. Experiments show that the ACL-DQN significantly improves the effectiveness and stability of dialogue tasks with a statistically significant margin. Furthermore, the framework can be further improved by equipping with different curriculum schedules, which demonstrates that the framework has strong generalizability

    I3DOL: Incremental 3D Object Learning without Catastrophic Forgetting

    Full text link
    3D object classification has attracted appealing attentions in academic researches and industrial applications. However, most existing methods need to access the training data of past 3D object classes when facing the common real-world scenario: new classes of 3D objects arrive in a sequence. Moreover, the performance of advanced approaches degrades dramatically for past learned classes (i.e., catastrophic forgetting), due to the irregular and redundant geometric structures of 3D point cloud data. To address these challenges, we propose a new Incremental 3D Object Learning (i.e., I3DOL) model, which is the first exploration to learn new classes of 3D object continually. Specifically, an adaptive-geometric centroid module is designed to construct discriminative local geometric structures, which can better characterize the irregular point cloud representation for 3D object. Afterwards, to prevent the catastrophic forgetting brought by redundant geometric information, a geometric-aware attention mechanism is developed to quantify the contributions of local geometric structures, and explore unique 3D geometric characteristics with high contributions for classes incremental learning. Meanwhile, a score fairness compensation strategy is proposed to further alleviate the catastrophic forgetting caused by unbalanced data between past and new classes of 3D object, by compensating biased prediction for new classes in the validation phase. Experiments on 3D representative datasets validate the superiority of our I3DOL framework.Comment: Accepted by Association for the Advancement of Artificial Intelligence 2021 (AAAI 2021

    Adaptive visual–tactile fusion recognition for robotic operation of multi-material system

    Get PDF
    The use of robots in various industries is evolving from mechanization to intelligence and precision. These systems often comprise parts made of different materials and thus require accurate and comprehensive target identification. While humans perceive the world through a highly diverse perceptual system and can rapidly identify deformable objects through vision and touch to prevent slipping or excessive deformation during grasping, robot recognition technology mainly relies on visual sensors, which lack critical information such as object material, leading to incomplete cognition. Therefore, multimodal information fusion is believed to be key to the development of robot recognition. Firstly, a method of converting tactile sequences to images is proposed to deal with the obstacles of information exchange between different modalities for vision and touch, which overcomes the problems of the noise and instability of tactile data. Subsequently, a visual-tactile fusion network framework based on an adaptive dropout algorithm is constructed, together with an optimal joint mechanism between visual information and tactile information established, to solve the problem of mutual exclusion or unbalanced fusion in traditional fusion methods. Finally, experiments show that the proposed method effectively improves robot recognition ability, and the classification accuracy is as high as 99.3%

    Visual Tactile Fusion Object Clustering

    No full text
    corecore