112 research outputs found

    Semisupervised Autoencoder for Sentiment Analysis

    Full text link
    In this paper, we investigate the usage of autoencoders in modeling textual data. Traditional autoencoders suffer from at least two aspects: scalability with the high dimensionality of vocabulary size and dealing with task-irrelevant words. We address this problem by introducing supervision via the loss function of autoencoders. In particular, we first train a linear classifier on the labeled data, then define a loss for the autoencoder with the weights learned from the linear classifier. To reduce the bias brought by one single classifier, we define a posterior probability distribution on the weights of the classifier, and derive the marginalized loss of the autoencoder with Laplace approximation. We show that our choice of loss function can be rationalized from the perspective of Bregman Divergence, which justifies the soundness of our model. We evaluate the effectiveness of our model on six sentiment analysis datasets, and show that our model significantly outperforms all the competing methods with respect to classification accuracy. We also show that our model is able to take advantage of unlabeled dataset and get improved performance. We further show that our model successfully learns highly discriminative feature maps, which explains its superior performance.Comment: To appear in AAAI 201

    Affective Image Content Analysis: Two Decades Review and New Perspectives

    Get PDF
    Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.Comment: Accepted by IEEE TPAM

    Affective image content analysis: two decades review and new perspectives

    Get PDF

    Two-Stage Fine-Tuning: A Novel Strategy for Learning Class-Imbalanced Data

    Full text link
    Classification on long-tailed distributed data is a challenging problem, which suffers from serious class-imbalance and hence poor performance on tail classes with only a few samples. Owing to this paucity of samples, learning on the tail classes is especially challenging for the fine-tuning when transferring a pretrained model to a downstream task. In this work, we present a simple modification of standard fine-tuning to cope with these challenges. Specifically, we propose a two-stage fine-tuning: we first fine-tune the final layer of the pretrained model with class-balanced reweighting loss, and then we perform the standard fine-tuning. Our modification has several benefits: (1) it leverages pretrained representations by only fine-tuning a small portion of the model parameters while keeping the rest untouched; (2) it allows the model to learn an initial representation of the specific task; and importantly (3) it protects the learning of tail classes from being at a disadvantage during the model updating. We conduct extensive experiments on synthetic datasets of both two-class and multi-class tasks of text classification as well as a real-world application to ADME (i.e., absorption, distribution, metabolism, and excretion) semantic labeling. The experimental results show that the proposed two-stage fine-tuning outperforms both fine-tuning with conventional loss and fine-tuning with a reweighting loss on the above datasets.Comment: 20 pages, 6 figure

    Data Collection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective

    Full text link
    Data-centric AI is at the center of a fundamental shift in software engineering where machine learning becomes the new software, powered by big data and computing infrastructure. Here software engineering needs to be re-thought where data becomes a first-class citizen on par with code. One striking observation is that a significant portion of the machine learning process is spent on data preparation. Without good data, even the best machine learning algorithms cannot perform well. As a result, data-centric AI practices are now becoming mainstream. Unfortunately, many datasets in the real world are small, dirty, biased, and even poisoned. In this survey, we study the research landscape for data collection and data quality primarily for deep learning applications. Data collection is important because there is lesser need for feature engineering for recent deep learning approaches, but instead more need for large amounts of data. For data quality, we study data validation, cleaning, and integration techniques. Even if the data cannot be fully cleaned, we can still cope with imperfect data during model training using robust model training techniques. In addition, while bias and fairness have been less studied in traditional data management research, these issues become essential topics in modern machine learning applications. We thus study fairness measures and unfairness mitigation techniques that can be applied before, during, or after model training. We believe that the data management community is well poised to solve these problems

    Hierarchical Interaction Networks with Rethinking Mechanism for Document-level Sentiment Analysis

    Full text link
    Document-level Sentiment Analysis (DSA) is more challenging due to vague semantic links and complicate sentiment information. Recent works have been devoted to leveraging text summarization and have achieved promising results. However, these summarization-based methods did not take full advantage of the summary including ignoring the inherent interactions between the summary and document. As a result, they limited the representation to express major points in the document, which is highly indicative of the key sentiment. In this paper, we study how to effectively generate a discriminative representation with explicit subject patterns and sentiment contexts for DSA. A Hierarchical Interaction Networks (HIN) is proposed to explore bidirectional interactions between the summary and document at multiple granularities and learn subject-oriented document representations for sentiment classification. Furthermore, we design a Sentiment-based Rethinking mechanism (SR) by refining the HIN with sentiment label information to learn a more sentiment-aware document representation. We extensively evaluate our proposed models on three public datasets. The experimental results consistently demonstrate the effectiveness of our proposed models and show that HIN-SR outperforms various state-of-the-art methods.Comment: 17 pages, accepted by ECML-PKDD 202
    corecore