5,740 research outputs found

    Analysing imperfect temporal information in GIS using the Triangular Model

    Get PDF
    Rough set and fuzzy set are two frequently used approaches for modelling and reasoning about imperfect time intervals. In this paper, we focus on imperfect time intervals that can be modelled by rough sets and use an innovative graphic model [i.e. the triangular model (TM)] to represent this kind of imperfect time intervals. This work shows that TM is potentially advantageous in visualizing and querying imperfect time intervals, and its analytical power can be better exploited when it is implemented in a computer application with graphical user interfaces and interactive functions. Moreover, a probabilistic framework is proposed to handle the uncertainty issues in temporal queries. We use a case study to illustrate how the unique insights gained by TM can assist a geographical information system for exploratory spatio-temporal analysis

    Knowledge Rich Natural Language Queries over Structured Biological Databases

    Full text link
    Increasingly, keyword, natural language and NoSQL queries are being used for information retrieval from traditional as well as non-traditional databases such as web, document, image, GIS, legal, and health databases. While their popularity are undeniable for obvious reasons, their engineering is far from simple. In most part, semantics and intent preserving mapping of a well understood natural language query expressed over a structured database schema to a structured query language is still a difficult task, and research to tame the complexity is intense. In this paper, we propose a multi-level knowledge-based middleware to facilitate such mappings that separate the conceptual level from the physical level. We augment these multi-level abstractions with a concept reasoner and a query strategy engine to dynamically link arbitrary natural language querying to well defined structured queries. We demonstrate the feasibility of our approach by presenting a Datalog based prototype system, called BioSmart, that can compute responses to arbitrary natural language queries over arbitrary databases once a syntactic classification of the natural language query is made

    An Exploratory Data Analysis Approach for Land Use-Transportation Interaction: The Design and Implementation of Transland Spatio-Temporal Data Model

    Get PDF
    Land use and transportation interaction is a complex and dynamic process. Many models have been used to study this interaction during the last several decades. Empirical studies suggest that land use and transportation patterns can be highly variable between geographic areas and at different spatial and temporal scales. Identifying these changes presents a major challenge. When we recognize that long-term changes could be affected by other factors such as population growth, economic development, and policy decisions, the challenge becomes even more overwhelming. Most existing land use and transportation interaction models are based on some prior theories and use mathematical or simulation approaches to study the problem. However, the literature also suggests that little consensus regarding the conclusions can be drawn from empirical studies that apply these models. There is a clear research need to develop alternative methods that will allow us to examine the land use and transportation patterns in more flexible ways and to help us identify potential improvements to the existing models. This dissertation presents a spatio-temporal data model that offers exploratory data analysis capabilities to interactively examine the land use and transportation interaction at use-specified spatial and temporal scales. The spatio-temporal patterns and the summary statistics derived from this interactive exploratory analysis process can be used to help us evaluate the hypotheses and modify the structures used in the existing models. The results also can suggest additional analyses for a better understanding of land use and transportation interaction. This dissertation first introduces a conceptual framework for the spatio-temporal data model. Then, based on a systematic method for explorations of various data sets relevant to land use and transportation interaction, this dissertation details procedures of designing and implementing the spatio-temporal data model. Finally, the dissertation describes procedures of creating tools for generating the proposed spatio-temporal data model from existing snapshot GIS data sets and illustrate its use by means of exploratory data analysis. Use of the spatio-temporal data model in this dissertation study makes it feasible to analyze spatio-temporal interaction patterns in a more effective and efficient way than the conventional snapshot GIS approach. Extending Sinton’s measurement framework into a spatio-temporal conceptual interaction framework, on the other hand, provides a systematic means of exploring land use and transportation interaction. Preliminary experiments of data collected for Dade County (Miami), Florida suggest that the spatio-temporal exploratory data analysis implemented for this dissertation can help transportation planners identify and visualize interaction patterns of land use and transportation by controlling the spatial, attribute, and temporal components. Although the identified interaction patterns do not necessarily lead to rules that can be applied to different areas, they do provide useful information for transportation modelers to re-evaluate the current model structure to validate the existing model parameter

    The representation and management of evolving features in geospatial databases

    Get PDF
    Geographic features change over time, this change being the result of some kind of event or occurrence. It has been a research challenge to represent this data in a manner that reflects human perception. Most database systems used in geographic information systems (GIS) are relational, and change is either captured by exhaustively storing all versions of data, or updates replace previous versions. This stems from the inherent diffculty of modelling geographic objects in relational tables. This diffculty is compounded when the necessary time dimension is introduced to model how those objects evolve. There is little doubt that the object-oriented (OO) paradigm holds signi cant advantages over the relational model when it comes to modelling real-world entities and spatial data, and it is argued that this contention is particularly true when it comes to spatio-temporal data. This thesis describes an object-oriented approach to the design of a conceptual model for representing spatio-temporal geographic data, called the Feature Evolution Model (FEM), based on states and events. The model was used to implement a spatio-temporal database management system in Oracle Spatial, and an interface prototype is described that was used to evaluate the system by enabling querying and visualisation
    • …
    corecore