38 research outputs found

    A Comparative Study of Quality and Content-Based Spatial Pooling Strategies in Image Quality Assessment

    Full text link
    The process of quantifying image quality consists of engineering the quality features and pooling these features to obtain a value or a map. There has been a significant research interest in designing the quality features but pooling is usually overlooked compared to feature design. In this work, we compare the state of the art quality and content-based spatial pooling strategies and show that although features are the key in any image quality assessment, pooling also matters. We also propose a quality-based spatial pooling strategy that is based on linearly weighted percentile pooling (WPP). Pooling strategies are analyzed for squared error, SSIM and PerSIM in LIVE, multiply distorted LIVE and TID2013 image databases.Comment: Paper: 5 pages, 8 figures, Presentation: 21 slides [Ancillary files

    No-Reference Light Field Image Quality Assessment Based on Micro-Lens Image

    Full text link
    Light field image quality assessment (LF-IQA) plays a significant role due to its guidance to Light Field (LF) contents acquisition, processing and application. The LF can be represented as 4-D signal, and its quality depends on both angular consistency and spatial quality. However, few existing LF-IQA methods concentrate on effects caused by angular inconsistency. Especially, no-reference methods lack effective utilization of 2-D angular information. In this paper, we focus on measuring the 2-D angular consistency for LF-IQA. The Micro-Lens Image (MLI) refers to the angular domain of the LF image, which can simultaneously record the angular information in both horizontal and vertical directions. Since the MLI contains 2-D angular information, we propose a No-Reference Light Field image Quality assessment model based on MLI (LF-QMLI). Specifically, we first utilize Global Entropy Distribution (GED) and Uniform Local Binary Pattern descriptor (ULBP) to extract features from the MLI, and then pool them together to measure angular consistency. In addition, the information entropy of Sub-Aperture Image (SAI) is adopted to measure spatial quality. Extensive experimental results show that LF-QMLI achieves the state-of-the-art performance
    corecore