8,899 research outputs found

    Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge

    Full text link
    This paper presents a state-of-the-art model for visual question answering (VQA), which won the first place in the 2017 VQA Challenge. VQA is a task of significant importance for research in artificial intelligence, given its multimodal nature, clear evaluation protocol, and potential real-world applications. The performance of deep neural networks for VQA is very dependent on choices of architectures and hyperparameters. To help further research in the area, we describe in detail our high-performing, though relatively simple model. Through a massive exploration of architectures and hyperparameters representing more than 3,000 GPU-hours, we identified tips and tricks that lead to its success, namely: sigmoid outputs, soft training targets, image features from bottom-up attention, gated tanh activations, output embeddings initialized using GloVe and Google Images, large mini-batches, and smart shuffling of training data. We provide a detailed analysis of their impact on performance to assist others in making an appropriate selection.Comment: Winner of the 2017 Visual Question Answering (VQA) Challenge at CVP

    Coupled Ensembles of Neural Networks

    Full text link
    We investigate in this paper the architecture of deep convolutional networks. Building on existing state of the art models, we propose a reconfiguration of the model parameters into several parallel branches at the global network level, with each branch being a standalone CNN. We show that this arrangement is an efficient way to significantly reduce the number of parameters without losing performance or to significantly improve the performance with the same level of performance. The use of branches brings an additional form of regularization. In addition to the split into parallel branches, we propose a tighter coupling of these branches by placing the "fuse (averaging) layer" before the Log-Likelihood and SoftMax layers during training. This gives another significant performance improvement, the tighter coupling favouring the learning of better representations, even at the level of the individual branches. We refer to this branched architecture as "coupled ensembles". The approach is very generic and can be applied with almost any DCNN architecture. With coupled ensembles of DenseNet-BC and parameter budget of 25M, we obtain error rates of 2.92%, 15.68% and 1.50% respectively on CIFAR-10, CIFAR-100 and SVHN tasks. For the same budget, DenseNet-BC has error rate of 3.46%, 17.18%, and 1.8% respectively. With ensembles of coupled ensembles, of DenseNet-BC networks, with 50M total parameters, we obtain error rates of 2.72%, 15.13% and 1.42% respectively on these tasks

    Predictive Uncertainty through Quantization

    Get PDF
    High-risk domains require reliable confidence estimates from predictive models. Deep latent variable models provide these, but suffer from the rigid variational distributions used for tractable inference, which err on the side of overconfidence. We propose Stochastic Quantized Activation Distributions (SQUAD), which imposes a flexible yet tractable distribution over discretized latent variables. The proposed method is scalable, self-normalizing and sample efficient. We demonstrate that the model fully utilizes the flexible distribution, learns interesting non-linearities, and provides predictive uncertainty of competitive quality

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure
    • …
    corecore