9,924 research outputs found

    Visual correspondence using energy minimization and mutual information

    Full text link

    Online Mutual Foreground Segmentation for Multispectral Stereo Videos

    Full text link
    The segmentation of video sequences into foreground and background regions is a low-level process commonly used in video content analysis and smart surveillance applications. Using a multispectral camera setup can improve this process by providing more diverse data to help identify objects despite adverse imaging conditions. The registration of several data sources is however not trivial if the appearance of objects produced by each sensor differs substantially. This problem is further complicated when parallax effects cannot be ignored when using close-range stereo pairs. In this work, we present a new method to simultaneously tackle multispectral segmentation and stereo registration. Using an iterative procedure, we estimate the labeling result for one problem using the provisional result of the other. Our approach is based on the alternating minimization of two energy functions that are linked through the use of dynamic priors. We rely on the integration of shape and appearance cues to find proper multispectral correspondences, and to properly segment objects in low contrast regions. We also formulate our model as a frame processing pipeline using higher order terms to improve the temporal coherence of our results. Our method is evaluated under different configurations on multiple multispectral datasets, and our implementation is available online.Comment: Preprint accepted for publication in IJCV (December 2018

    Binary Adaptive Semi-Global Matching Based on Image Edges

    Get PDF
    Image-based modeling and rendering is currently one of the most challenging topics in Computer Vision and Photogrammetry. The key issue here is building a set of dense correspondence points between two images, namely dense matching or stereo matching. Among all dense matching algorithms, Semi-Global Matching (SGM) is arguably one of the most promising algorithms for real-time stereo vision. Compared with global matching algorithms, SGM aggregates matching cost from several (eight or sixteen) directions rather than only the epipolar line using Dynamic Programming (DP). Thus, SGM eliminates the classical “streaking problem” and greatly improves its accuracy and efficiency. In this paper, we aim at further improvement of SGM accuracy without increasing the computational cost. We propose setting the penalty parameters adaptively according to image edges extracted by edge detectors. We have carried out experiments on the standard Middlebury stereo dataset and evaluated the performance of our modified method with the ground truth. The results have shown a noticeable accuracy improvement compared with the results using fixed penalty parameters while the runtime computational cost was not increased

    Entanglement Wedge Cross Sections Require Tripartite Entanglement

    Full text link
    We argue that holographic CFT states require a large amount of tripartite entanglement, in contrast to the conjecture that their entanglement is mostly bipartite. Our evidence is that this mostly-bipartite conjecture is in sharp conflict with two well-supported conjectures about the entanglement wedge cross section surface EWE_W. If EWE_W is related to either the CFT's reflected entropy or its entanglement of purification, then those quantities can differ from the mutual information at O(1GN)\mathcal{O}(\frac{1}{G_N}). We prove that this implies holographic CFT states must have O(1GN)\mathcal{O}(\frac{1}{G_N}) amounts of tripartite entanglement. This proof involves a new Fannes-type inequality for the reflected entropy, which itself has many interesting applications.Comment: 20 pages, 5 figures, comments added in v
    corecore