1,437 research outputs found

    Physiological Self Regulation with Biofeedback Games

    Get PDF
    Mental stress is a global epidemic that can have serious health consequences including cardiovascular diseases and diabetes. Several techniques are available to teach stress self-regulation skills including therapy, meditation, deep breathing, and biofeedback. While effective, these methods suffer from high drop-outs due to the monotonic nature of the exercises and are generally practiced in quiet relaxed environment, which may not transfer to real-world scenarios. To address these issues, this dissertation presents a novel intervention for stress training using games and wearable sensors. The approach consists of monitoring the user’s physiological signals during gameplay, mapping them into estimates of stress levels, and adapting the game in a way that promotes states of low arousal. This approach offers two key advantages. First, it allows users to focus on the gameplay rather than on monitoring their physiological signals, which makes the training far more engaging. More importantly, it teaches users to self-regulate their stress response, while performing a task designed to increase arousal. Within this broad framework, this dissertation studies three specific problems. First, the dissertation evaluates three physiological signals (breathing rate, heart rate variability, and electrodermal activity) that span across the dimensions of degrees of selectivity in measuring arousal and voluntary control in their effectiveness in lowering arousal. This will identify the signal appropriate for game based stress training and the associated bio-signal processing techniques for real-time arousal estimation. Second, this dissertation investigates different methods of biofeedback presentation e.g. visual feedback and game adaptation during gameplay. Selection of appropriate biofeedback mechanism is critical since it provides the necessary information to improve the perception of visceral states (e.g. stress) to the user. Furthermore, these modalities facilitate skill acquisition in distinct ways (i.e., top-down and bottom-up learning) and influence retention of skills. Third, this dissertation studies reinforcement scheduling in a game and its effect on skill learning and retention. A reinforcement schedule determines which occurrences of the target response are reinforced. This study focuses on continuous and partial reinforcement schedules in GBF and their effect on resistance to extinction (i.e. ability to retain learned skills) after the biofeedback is removed. The main contribution of this dissertation is in demonstrating that stress self-regulation training can be embedded in videogames and help individuals develop more adaptive responses to reduce physiological stress encountered both at home and work

    EnviroScape: Coping With Stress Using Implicit Biofeedback Application

    Get PDF
    Stress has been identified by the Word Health Organization as an epidemic that has negative impacts on work productivity. It costs the American industry approximately $300 billion/year and is also the leading contributor to obesity and cardiovascular diseases. Current stress remediation tools incorporate techniques such as deep breathing, meditation and biofeedback responses. These type of exercises require a substantial amount of time and resources along with adhering to their strict system in order to see results. Most biofeedback mechanisms are repetitive and mundane and also require complex equipment to participate, in order to receive proper evaluation on stress levels. The purpose of this study is to develop an engaging relaxation technique and analyze the effects of the biofeedback mechanism on the stress levels of a user. An interactive application is developed such that the user receives subtle cues when they are in a “stressed” state, which is determined through the physiological indicator of the user’s breathing rate (BR) signal. Unlike previous research, this biofeedback game focuses on providing a soothing natural environment with no specific objectives in order to distract them from their current stressful state. This will help analyze and discuss the effects of a non-competitive video game on a user’s stress levels, their awareness to recognize signs of stress and their ability to reduce them

    Physiological Self Regulation with Biofeedback Games

    Get PDF
    Mental stress is a global epidemic that can have serious health consequences including cardiovascular diseases and diabetes. Several techniques are available to teach stress self-regulation skills including therapy, meditation, deep breathing, and biofeedback. While effective, these methods suffer from high drop-outs due to the monotonic nature of the exercises and are generally practiced in quiet relaxed environment, which may not transfer to real-world scenarios. To address these issues, this dissertation presents a novel intervention for stress training using games and wearable sensors. The approach consists of monitoring the user’s physiological signals during gameplay, mapping them into estimates of stress levels, and adapting the game in a way that promotes states of low arousal. This approach offers two key advantages. First, it allows users to focus on the gameplay rather than on monitoring their physiological signals, which makes the training far more engaging. More importantly, it teaches users to self-regulate their stress response, while performing a task designed to increase arousal. Within this broad framework, this dissertation studies three specific problems. First, the dissertation evaluates three physiological signals (breathing rate, heart rate variability, and electrodermal activity) that span across the dimensions of degrees of selectivity in measuring arousal and voluntary control in their effectiveness in lowering arousal. This will identify the signal appropriate for game based stress training and the associated bio-signal processing techniques for real-time arousal estimation. Second, this dissertation investigates different methods of biofeedback presentation e.g. visual feedback and game adaptation during gameplay. Selection of appropriate biofeedback mechanism is critical since it provides the necessary information to improve the perception of visceral states (e.g. stress) to the user. Furthermore, these modalities facilitate skill acquisition in distinct ways (i.e., top-down and bottom-up learning) and influence retention of skills. Third, this dissertation studies reinforcement scheduling in a game and its effect on skill learning and retention. A reinforcement schedule determines which occurrences of the target response are reinforced. This study focuses on continuous and partial reinforcement schedules in GBF and their effect on resistance to extinction (i.e. ability to retain learned skills) after the biofeedback is removed. The main contribution of this dissertation is in demonstrating that stress self-regulation training can be embedded in videogames and help individuals develop more adaptive responses to reduce physiological stress encountered both at home and work

    A mobile VR-based respiratory biofeedback game to foster diaphragmatic breathing

    Get PDF

    Affective gaming using adaptive speed controlled by biofeedback

    Get PDF
    This work is part of a larger project exploring how affective computing can support the design of player-adaptive video games. We investigate how controlling some of the game mechanics using biofeedback affects physiological reactions, performance, and the experience of the player. More specifically, we assess how different game speeds affect player physiological responses and game performance. We developed a game prototype with Unity1 which includes a biofeedback loop system based on the level of physiological activation through skin resistance (SKR) measured with a smart wristband. In two conditions, the player moving speed was driven by SKR, to increase (respectively decrease) speed when the player is less activated (SKR decreases). A control condition was also used where player speed is not affected by SKR. We collected and synchronized biosignals (heart rate [HR], skin temperature [SKT] and SKR), and game information, such as the total time to complete a level, the number of ennemy collisions, and their timestamps. Additionally, emotional profiling (TIPI, I-Panas-SF), measured using a Likert scale in a post-task questionnaire, and semi-open questions about the game experience were used. The results show that SKR was significantly higher in the speed down condition, and game performance improved in the speed up condition. Study collected data involved 13 participants (10 males, 3 females) aged from 18 to 50 (M = 24.30, SD = 9.00). Most of the participants felt engaged with the game (M = 6.46, SD = 0.96) and their level of immersion was not affected by wearing the prototype smartband. Thematic analysis (TA) revealed that the game speed impacted the participants stress levels such as high speed was more stressful than hypothesized; many participants described game level-specific effects in which they felt that their speed of movement reflected their level of stress or relaxation. Slowing down the participants indeed increased the participant stress levels, but counter intuitively, more stress was detected in high speed situations

    Eye quietness and quiet eye in expert and novice golf performance: an electrooculographic analysis

    Get PDF
    Quiet eye (QE) is the final ocular fixation on the target of an action (e.g., the ball in golf putting). Camerabased eye-tracking studies have consistently found longer QE durations in experts than novices; however, mechanisms underlying QE are not known. To offer a new perspective we examined the feasibility of measuring the QE using electrooculography (EOG) and developed an index to assess ocular activity across time: eye quietness (EQ). Ten expert and ten novice golfers putted 60 balls to a 2.4 m distant hole. Horizontal EOG (2ms resolution) was recorded from two electrodes placed on the outer sides of the eyes. QE duration was measured using a EOG voltage threshold and comprised the sum of the pre-movement and post-movement initiation components. EQ was computed as the standard deviation of the EOG in 0.5 s bins from –4 to +2 s, relative to backswing initiation: lower values indicate less movement of the eyes, hence greater quietness. Finally, we measured club-ball address and swing durations. T-tests showed that total QE did not differ between groups (p = .31); however, experts had marginally shorter pre-movement QE (p = .08) and longer post-movement QE (p < .001) than novices. A group × time ANOVA revealed that experts had less EQ before backswing initiation and greater EQ after backswing initiation (p = .002). QE durations were inversely correlated with EQ from –1.5 to 1 s (rs = –.48 - –.90, ps = .03 - .001). Experts had longer swing durations than novices (p = .01) and, importantly, swing durations correlated positively with post-movement QE (r = .52, p = .02) and negatively with EQ from 0.5 to 1s (r = –.63, p = .003). This study demonstrates the feasibility of measuring ocular activity using EOG and validates EQ as an index of ocular activity. Its findings challenge the dominant perspective on QE and provide new evidence that expert-novice differences in ocular activity may reflect differences in the kinematics of how experts and novices execute skills

    The effectiveness and user experience of a biofeedback intervention program for stress management supported by virtual reality and mobile technology: a randomized controlled study

    Get PDF
    Background: Heart rate variability biofeedback (HRV-BF) can be used for stress management. Recent feasibility studies suggest that delivering HRV-BF in virtual reality (VR) is associated with better user experience (UX) and might yield more beneficial changes in HRV than two-dimensional screens. The effectiveness of a VR-supported HRV-BF intervention program has, however, not been investigated yet. Methods: In this study, 87 healthy women and men were assigned to a VR-supported HRV-BF intervention (INT; n=44n=44) or a wait-list control (WLC; n=43n=43) group. The INT came to the lab for four weekly HRV-BF sessions in VR using a head-mounted display. Between lab sessions, participants were asked to perform breathing exercises without biofeedback supported by a mobile application. Stress-related psychological and psychophysiological outcomes were assessed pre- and post-intervention and at a follow-up four weeks after the intervention in both groups. A psychosocial stress test was conducted post-intervention to investigate changes in stress reactivity. UX was assessed after each HRV-BF session in the INT. Results: Analysis revealed that LF increased significantly from pre- to post-, whereas pNN50 increased and chronic stress decreased significantly from pre-intervention to follow-up in the INT compared to the WLC. Anxiety and mental fatigue decreased significantly, while mindfulness and health-related quality of life increased significantly from pre- to post- and from pre-intervention to follow-up in the INT compared to the WLC (all small effects). The two groups did not differ in their stress reactivity post-intervention. As for UX in the INT, the degree of feeling autonomous concerning technology adoption significantly decreased over time. Competence, involvement, and immersion, however, increased significantly from the first to the last HRV-BF session, while hedonic motivation significantly peaked in the second session and then gradually returned to first-session levels. Conclusions: This HRV-BF intervention program, supported by VR and mobile technology, was able to significantly improve stress indicators and stress-related symptoms and achieved good to very good UX. Future studies should control for potential placebo effects and emphasize higher degrees of personalization and adaptability to increase autonomy and, thereby, long-term health and well-being. These findings may serve as a first step towards future HRV-BF applications of cutting-edge, increasingly accessible technologies, such as wearables, VR, and smartphones, in the service of mental health and healthcare

    Optometric extension program: 1991 bibliography of near lenses and vision training research

    Get PDF
    Optometric extension program: 1991 bibliography of near lenses and vision training researc
    • …
    corecore