2,055 research outputs found

    Learning models for semantic classification of insufficient plantar pressure images

    Get PDF
    Establishing a reliable and stable model to predict a target by using insufficient labeled samples is feasible and effective, particularly, for a sensor-generated data-set. This paper has been inspired with insufficient data-set learning algorithms, such as metric-based, prototype networks and meta-learning, and therefore we propose an insufficient data-set transfer model learning method. Firstly, two basic models for transfer learning are introduced. A classification system and calculation criteria are then subsequently introduced. Secondly, a dataset of plantar pressure for comfort shoe design is acquired and preprocessed through foot scan system; and by using a pre-trained convolution neural network employing AlexNet and convolution neural network (CNN)- based transfer modeling, the classification accuracy of the plantar pressure images is over 93.5%. Finally, the proposed method has been compared to the current classifiers VGG, ResNet, AlexNet and pre-trained CNN. Also, our work is compared with known-scaling and shifting (SS) and unknown-plain slot (PS) partition methods on the public test databases: SUN, CUB, AWA1, AWA2, and aPY with indices of precision (tr, ts, H) and time (training and evaluation). The proposed method for the plantar pressure classification task shows high performance in most indices when comparing with other methods. The transfer learning-based method can be applied to other insufficient data-sets of sensor imaging fields

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Aesthetic preference for art emerges from a weighted integration over hierarchically structured visual features in the brain

    Get PDF
    It is an open question whether preferences for visual art can be lawfully predicted from the basic constituent elements of a visual image. Moreover, little is known about how such preferences are actually constructed in the brain. Here we developed and tested a computational framework to gain an understanding of how the human brain constructs aesthetic value. We show that it is possible to explain human preferences for a piece of art based on an analysis of features present in the image. This was achieved by analyzing the visual properties of drawings and photographs by multiple means, ranging from image statistics extracted by computer vision tools, subjective human ratings about attributes, to a deep convolutional neural network. Crucially, it is possible to predict subjective value ratings not only within but also across individuals, speaking to the possibility that much of the variance in human visual preference is shared across individuals. Neuroimaging data revealed that preference computations occur in the brain by means of a graded hierarchical representation of lower and higher level features in the visual system. These features are in turn integrated to compute an overall subjective preference in the parietal and prefrontal cortex. Our findings suggest that rather than being idiosyncratic, human preferences for art can be explained at least in part as a product of a systematic neural integration over underlying visual features of an image. This work not only advances our understanding of the brain-wide computations underlying value construction but also brings new mechanistic insights to the study of visual aesthetics and art appreciation

    Affect recognition & generation in-the-wild

    Get PDF
    Affect recognition based on a subject’s facial expressions has been a topic of major research in the attempt to generate machines that can understand the way subjects feel, act and react. In the past, due to the unavailability of large amounts of data captured in real-life situations, research has mainly focused on controlled environments. However, recently, social media and platforms have been widely used. Moreover, deep learning has emerged as a means to solve visual analysis and recognition problems. This Ph.D. Thesis exploits these advances and makes significant contributions for affect analysis and recognition in-the-wild. We tackle affect analysis and recognition as a dual knowledge generation problem: i) we create new, large and rich in-the-wild databases and ii) we design and train novel deep neural architectures that are able to analyse affect over these databases and to successfully generalise their performance on other datasets. At first, we present the creation of Aff-Wild database annotated according to valence-arousal and an end-to-end CNN-RNN architecture, AffWildNet. Then we use AffWildNet as a robust prior for dimensional and categorical affect recognition and extend it by extracting low-/mid-/high-level latent information and analysing this via multiple RNNs. Additionally, we propose a novel loss function for DNN-based categorical affect recognition. Next, we generate Aff-Wild2, the first database containing annotations for all main behavior tasks: estimate Valence-Arousal; classify into Basic Expressions; detect Action Units. We develop multi-task and multi-modal extensions of AffWildNet by fusing these tasks and propose a novel holistic approach that utilises all existing databases with non-overlapping annotations and couples them through co-annotation and distribution matching. Finally, we present an approach for valence-arousal, or basic expressions’ facial affect synthesis. We generate an image with a given affect, or a sequence of images with evolving affect, by annotating a 4-D database and utilising a 3-D morphable model.Open Acces
    • …
    corecore