5,425 research outputs found

    DISC: Deep Image Saliency Computing via Progressive Representation Learning

    Full text link
    Salient object detection increasingly receives attention as an important component or step in several pattern recognition and image processing tasks. Although a variety of powerful saliency models have been intensively proposed, they usually involve heavy feature (or model) engineering based on priors (or assumptions) about the properties of objects and backgrounds. Inspired by the effectiveness of recently developed feature learning, we provide a novel Deep Image Saliency Computing (DISC) framework for fine-grained image saliency computing. In particular, we model the image saliency from both the coarse- and fine-level observations, and utilize the deep convolutional neural network (CNN) to learn the saliency representation in a progressive manner. Specifically, our saliency model is built upon two stacked CNNs. The first CNN generates a coarse-level saliency map by taking the overall image as the input, roughly identifying saliency regions in the global context. Furthermore, we integrate superpixel-based local context information in the first CNN to refine the coarse-level saliency map. Guided by the coarse saliency map, the second CNN focuses on the local context to produce fine-grained and accurate saliency map while preserving object details. For a testing image, the two CNNs collaboratively conduct the saliency computing in one shot. Our DISC framework is capable of uniformly highlighting the objects-of-interest from complex background while preserving well object details. Extensive experiments on several standard benchmarks suggest that DISC outperforms other state-of-the-art methods and it also generalizes well across datasets without additional training. The executable version of DISC is available online: http://vision.sysu.edu.cn/projects/DISC.Comment: This manuscript is the accepted version for IEEE Transactions on Neural Networks and Learning Systems (T-NNLS), 201

    A Dilated Inception Network for Visual Saliency Prediction

    Full text link
    Recently, with the advent of deep convolutional neural networks (DCNN), the improvements in visual saliency prediction research are impressive. One possible direction to approach the next improvement is to fully characterize the multi-scale saliency-influential factors with a computationally-friendly module in DCNN architectures. In this work, we proposed an end-to-end dilated inception network (DINet) for visual saliency prediction. It captures multi-scale contextual features effectively with very limited extra parameters. Instead of utilizing parallel standard convolutions with different kernel sizes as the existing inception module, our proposed dilated inception module (DIM) uses parallel dilated convolutions with different dilation rates which can significantly reduce the computation load while enriching the diversity of receptive fields in feature maps. Moreover, the performance of our saliency model is further improved by using a set of linear normalization-based probability distribution distance metrics as loss functions. As such, we can formulate saliency prediction as a probability distribution prediction task for global saliency inference instead of a typical pixel-wise regression problem. Experimental results on several challenging saliency benchmark datasets demonstrate that our DINet with proposed loss functions can achieve state-of-the-art performance with shorter inference time.Comment: Accepted by IEEE Transactions on Multimedia. The source codes are available at https://github.com/ysyscool/DINe

    Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment

    Full text link
    We present a deep neural network-based approach to image quality assessment (IQA). The network is trained end-to-end and comprises ten convolutional layers and five pooling layers for feature extraction, and two fully connected layers for regression, which makes it significantly deeper than related IQA models. Unique features of the proposed architecture are that: 1) with slight adaptations it can be used in a no-reference (NR) as well as in a full-reference (FR) IQA setting and 2) it allows for joint learning of local quality and local weights, i.e., relative importance of local quality to the global quality estimate, in an unified framework. Our approach is purely data-driven and does not rely on hand-crafted features or other types of prior domain knowledge about the human visual system or image statistics. We evaluate the proposed approach on the LIVE, CISQ, and TID2013 databases as well as the LIVE In the wild image quality challenge database and show superior performance to state-of-the-art NR and FR IQA methods. Finally, cross-database evaluation shows a high ability to generalize between different databases, indicating a high robustness of the learned features

    Recurrent Attentional Networks for Saliency Detection

    Full text link
    Convolutional-deconvolution networks can be adopted to perform end-to-end saliency detection. But, they do not work well with objects of multiple scales. To overcome such a limitation, in this work, we propose a recurrent attentional convolutional-deconvolution network (RACDNN). Using spatial transformer and recurrent network units, RACDNN is able to iteratively attend to selected image sub-regions to perform saliency refinement progressively. Besides tackling the scale problem, RACDNN can also learn context-aware features from past iterations to enhance saliency refinement in future iterations. Experiments on several challenging saliency detection datasets validate the effectiveness of RACDNN, and show that RACDNN outperforms state-of-the-art saliency detection methods.Comment: CVPR 201
    • …
    corecore