7,561 research outputs found

    Large Language Models for Robotics: A Survey

    Full text link
    The human ability to learn, generalize, and control complex manipulation tasks through multi-modality feedback suggests a unique capability, which we refer to as dexterity intelligence. Understanding and assessing this intelligence is a complex task. Amidst the swift progress and extensive proliferation of large language models (LLMs), their applications in the field of robotics have garnered increasing attention. LLMs possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots. Researchers and engineers in the field of robotics have recognized the immense potential of LLMs in enhancing robot intelligence, human-robot interaction, and autonomy. Therefore, this comprehensive review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning. We first provide an overview of the background and development of LLMs for robotics, followed by a description of the benefits of LLMs for robotics and recent advancements in robotics models based on LLMs. We then delve into the various techniques used in the model, including those employed in perception, decision-making, control, and interaction. Finally, we explore the applications of LLMs in robotics and some potential challenges they may face in the near future. Embodied intelligence is the future of intelligent science, and LLMs-based robotics is one of the promising but challenging paths to achieve this.Comment: Preprint. 4 figures, 3 table

    On Realization of Intelligent Decision-Making in the Real World: A Foundation Decision Model Perspective

    Full text link
    Our situated environment is full of uncertainty and highly dynamic, thus hindering the widespread adoption of machine-led Intelligent Decision-Making (IDM) in real world scenarios. This means IDM should have the capability of continuously learning new skills and efficiently generalizing across wider applications. IDM benefits from any new approaches and theoretical breakthroughs that exhibit Artificial General Intelligence (AGI) breaking the barriers between tasks and applications. Recent research has well-examined neural architecture, Transformer, as a backbone foundation model and its generalization to various tasks, including computer vision, natural language processing, and reinforcement learning. We therefore argue that a foundation decision model (FDM) can be established by formulating various decision-making tasks as a sequence decoding task using the Transformer architecture; this would be a promising solution to advance the applications of IDM in more complex real world tasks. In this paper, we elaborate on how a foundation decision model improves the efficiency and generalization of IDM. We also discuss potential applications of a FDM in multi-agent game AI, production scheduling, and robotics tasks. Finally, through a case study, we demonstrate our realization of the FDM, DigitalBrain (DB1) with 1.2 billion parameters, which achieves human-level performance over 453 tasks, including text generation, images caption, video games playing, robotic control, and traveling salesman problems. As a foundation decision model, DB1 would be a baby step towards more autonomous and efficient real world IDM applications.Comment: 26 pages, 4 figure

    Look, Listen, and Act: Towards Audio-Visual Embodied Navigation

    Full text link
    A crucial ability of mobile intelligent agents is to integrate the evidence from multiple sensory inputs in an environment and to make a sequence of actions to reach their goals. In this paper, we attempt to approach the problem of Audio-Visual Embodied Navigation, the task of planning the shortest path from a random starting location in a scene to the sound source in an indoor environment, given only raw egocentric visual and audio sensory data. To accomplish this task, the agent is required to learn from various modalities, i.e. relating the audio signal to the visual environment. Here we describe an approach to audio-visual embodied navigation that takes advantage of both visual and audio pieces of evidence. Our solution is based on three key ideas: a visual perception mapper module that constructs its spatial memory of the environment, a sound perception module that infers the relative location of the sound source from the agent, and a dynamic path planner that plans a sequence of actions based on the audio-visual observations and the spatial memory of the environment to navigate toward the goal. Experimental results on a newly collected Visual-Audio-Room dataset using the simulated multi-modal environment demonstrate the effectiveness of our approach over several competitive baselines.Comment: Accepted by ICRA 2020. Project page: http://avn.csail.mit.ed
    • …
    corecore