8,849 research outputs found

    Camera pose estimation in unknown environments using a sequence of wide-baseline monocular images

    Get PDF
    In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4 meters. The system can be used in unknown environments with no additional information available from the outside world except in the first two images that are used for initialization. Pose estimation is performed using only natural feature points extracted and matched in successive images. In wide-baseline images unlike consecutive frames of a video stream, displacement of the feature points in consecutive images is notable and hence cannot be traced easily using patch-based methods. To handle this problem, a hybrid strategy is employed to obtain accurate feature correspondences. In this strategy, first initial feature correspondences are found using similarity of their descriptors and then outlier matchings are removed by applying RANSAC algorithm. Further, to provide a set of required feature matchings a mechanism based on sidelong result of robust estimator was employed. The proposed method is applied on indoor real data with images in VGA quality (640Ă—480 pixels) and on average the translation error of camera pose is less than 2 cm which indicates the effectiveness and accuracy of the proposed approach

    A bayesian approach to simultaneously recover camera pose and non-rigid shape from monocular images

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this paper we bring the tools of the Simultaneous Localization and Map Building (SLAM) problem from a rigid to a deformable domain and use them to simultaneously recover the 3D shape of non-rigid surfaces and the sequence of poses of a moving camera. Under the assumption that the surface shape may be represented as a weighted sum of deformation modes, we show that the problem of estimating the modal weights along with the camera poses, can be probabilistically formulated as a maximum a posteriori estimate and solved using an iterative least squares optimization. In addition, the probabilistic formulation we propose is very general and allows introducing different constraints without requiring any extra complexity. As a proof of concept, we show that local inextensibility constraints that prevent the surface from stretching can be easily integrated. An extensive evaluation on synthetic and real data, demonstrates that our method has several advantages over current non-rigid shape from motion approaches. In particular, we show that our solution is robust to large amounts of noise and outliers and that it does not need to track points over the whole sequence nor to use an initialization close from the ground truth.Peer ReviewedPostprint (author's final draft

    Accurate and linear time pose estimation from points and lines

    Get PDF
    The final publication is available at link.springer.comThe Perspective-n-Point (PnP) problem seeks to estimate the pose of a calibrated camera from n 3Dto-2D point correspondences. There are situations, though, where PnP solutions are prone to fail because feature point correspondences cannot be reliably estimated (e.g. scenes with repetitive patterns or with low texture). In such scenarios, one can still exploit alternative geometric entities, such as lines, yielding the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, existing PnL solutions are not as accurate and efficient as their point-based counterparts. In this paper we propose a novel approach to introduce 3D-to-2D line correspondences into a PnP formulation, allowing to simultaneously process points and lines. For this purpose we introduce an algebraic line error that can be formulated as linear constraints on the line endpoints, even when these are not directly observable. These constraints can then be naturally integrated within the linear formulations of two state-of-the-art point-based algorithms, the OPnP and the EPnP, allowing them to indistinctly handle points, lines, or a combination of them. Exhaustive experiments show that the proposed formulation brings remarkable boost in performance compared to only point or only line based solutions, with a negligible computational overhead compared to the original OPnP and EPnP.Peer ReviewedPostprint (author's final draft

    Large Scale SfM with the Distributed Camera Model

    Full text link
    We introduce the distributed camera model, a novel model for Structure-from-Motion (SfM). This model describes image observations in terms of light rays with ray origins and directions rather than pixels. As such, the proposed model is capable of describing a single camera or multiple cameras simultaneously as the collection of all light rays observed. We show how the distributed camera model is a generalization of the standard camera model and describe a general formulation and solution to the absolute camera pose problem that works for standard or distributed cameras. The proposed method computes a solution that is up to 8 times more efficient and robust to rotation singularities in comparison with gDLS. Finally, this method is used in an novel large-scale incremental SfM pipeline where distributed cameras are accurately and robustly merged together. This pipeline is a direct generalization of traditional incremental SfM; however, instead of incrementally adding one camera at a time to grow the reconstruction the reconstruction is grown by adding a distributed camera. Our pipeline produces highly accurate reconstructions efficiently by avoiding the need for many bundle adjustment iterations and is capable of computing a 3D model of Rome from over 15,000 images in just 22 minutes.Comment: Published at 2016 3DV Conferenc
    • …
    corecore