2,769 research outputs found

    Vision-based Detection of Mobile Device Use While Driving

    Get PDF
    The aim of this study was to explore the feasibility of an automatic vision-based solution to detect drivers using mobile devices while operating their vehicles. The proposed system comprises of modules for vehicle license plate localisation, driver’s face detection and mobile phone interaction. The system were then implemented and systematically evaluated using suitable image datasets. The strengths and weaknesses of individual modules were analysed and further recommendations made to improve the overall system’s performance

    Licence Plate Detection Using Machine Learning

    Get PDF
    License Plate Recognition (LPR) is one of the tough tasks in the field of computer vision. Although it has been around for quite a while, there still lies the challenges when we have to deal with; the harsh environmental conditions like snowy, rainfall, windy, low light conditions etc. as well as the condition of the plates which includes the bent, rotated, broken plates. The performance of the recognition and detection frameworks take a significant hit when it is concerned with these conditional effects on the license plate. In this paper, we introduced a model to improve our accuracy based on the Chinese Car Parking Dataset (CCPD) using 2 separate convolutional neural networks. The first CNN will be able to detect the bounding boxes for the license plate detection using Non-Maximus Suppression (NMS) to find the most probable bounding area whereas the second one will take these bounding boxes and use the spatial attenuation network and character recognition model to successfully recognize the license plate. First, we train the CNN to detect the license plates, then use the second CNN to recognize the characters. The overall recognition accuracy was found to be 89% in the CCPD dataset

    Automated License Plate Recognition using Existing University Infrastructure and Different Camera Angles

    Get PDF
    Number or license plate recognition has become an essential technology for traffic and security applications. Providing access control at any organization or academic institution improves the level of security. However, providing security personnel to manually control the access of vehicles at an academic institution is costly, time-consuming, and to a limited extent, error prone. This study investigated the use of an automated vehicle tracking system, incorporating experimental computer vision techniques for license plate recognition that runs in real-time to provide access control for vehicles and provide increased security for an academic institution. A vehicle monitoring framework was designed by using various technologies and experimenting with different camera angles. In addition, the effect of environmental changes on the accuracy of the optical character recognition application was assessed. The Design Science Research methodology was followed to develop the vehicle monitoring framework artifact. Image enhancement algorithms were tested, and the most viable options were evaluated and implemented. Optimal operating criteria that were established for the vehicle monitoring framework achieved a 96% success rate. The results indicate that a cost-effective solution could be provided by using an existing camera infrastructure at an academic institution and suitable license plate recognition software technologies, algorithms, and different camera angles
    • …
    corecore