2,175 research outputs found

    LeviSense: a platform for the multisensory integration in levitating food and insights into its effect on flavour perception

    Get PDF
    Eating is one of the most multisensory experiences in everyday life. All of our five senses (i.e. taste, smell, vision, hearing and touch) are involved, even if we are not aware of it. However, while multisensory integration has been well studied in psychology, there is not a single platform for testing systematically the effects of different stimuli. This lack of platform results in unresolved design challenges for the design of taste-based immersive experiences. Here, we present LeviSense: the first system designed for multisensory integration in gustatory experiences based on levitated food. Our system enables the systematic exploration of different sensory effects on eating experiences. It also opens up new opportunities for other professionals (e.g., molecular gastronomy chefs) looking for innovative taste-delivery platforms. We describe the design process behind LeviSense and conduct two experiments to test a subset of the crossmodal combinations (i.e., taste and vision, taste and smell). Our results show how different lighting and smell conditions affect the perceived taste intensity, pleasantness, and satisfaction. We discuss how LeviSense creates a new technical, creative, and expressive possibilities in a series of emerging design spaces within Human-Food Interaction

    Levitate: Interaction with Floating Particle Displays

    Get PDF
    This demonstration showcases the current state of the art for the levitating particle display from the Levitate Project. In this demonstration, we show a new type of display consisting of floating voxels, small levitating particles that can be positioned and moved independently in 3D space. Phased ultrasound arrays are used to acoustically levitate the particles. Users can interact directly with each particle using pointing gestures. This allows users to walk-up and interact without any user instrumentation, creating an exciting opportunity to deploy these tangible displays in public spaces in the future. This demonstration explores the design potential of floating voxels and how these may be used to create new types of user interfaces

    Levitating Particle Displays with Interactive Voxels

    Get PDF
    Levitating objects can be used as the primitives in a new type of display. We present levitating particle displays and show how research into object levitation is enabling a new way of presenting and interacting with information. We identify novel properties of levitating particle displays and give examples of the interaction techniques and applications they allow. We then discuss design challenges for these displays, potential solutions, and promising areas for future research

    Neural Network Control of a Laboratory Magnetic Levitator

    Get PDF
    Magnetic levitation (maglev) systems are nowadays employed in applications ranging from non-contact bearings and vibration isolation of sensitive machinery to high-speed passenger trains. In this chapter a mathematical model of a laboratory maglev system was derived using the Lagrangian approach. A linear pole-placement controller was designed on the basis of specifications on peak overshoot and settling time. A 3-layer feed-forward Artificial Neural Network (ANN) controller comprising 3-input nodes, a 5-neuron hidden layer, and 1-neuron output layer was trained using the linear state feedback controller with a random reference signal. Simulations to investigate the robustness of the ANN control scheme with respect to parameter variations, reference step input magnitude variations, and sinusoidal input tracking were carried out using SIMULINK. The obtained simulation results show that the ANN controller is robust with respect to good positioning accuracy

    Floating Widgets: Interaction with Acoustically-Levitated Widgets

    Get PDF
    Acoustic levitation enables new types of human-computer interface, where the content that users interact with is made up from small objects held in mid-air. We show that acoustically-levitated objects can form mid-air widgets that respond to interaction. Users can interact with them using in-air hand gestures. Sound and widget movement are used as feedback about the interaction

    Low cost propulsion systems for the developing world

    Get PDF
    Space has often been referred to as the final frontier. It is the curiosity of what lies beyond our planet that drives us to turn to the skies. This quest for knowledge and the chance of travelling to the heavens has compelled people to devote their lives to space science, innovation and analysis of our ever-expanding universe. Today the most significant impact of rocketry comes in the form of manned spaceflight. Vehicles like the Space Shuttle and Soyuz began the trend of greater commercialization of manned rocketry, enabling widespread access to space. Whilst the curiosity of what lies beyond may have propelled the development of the space tourism industry, its current operational cost is estimated as 2020-28 million per passenger per flight. Although the vision of providing low cost space travel still exists, its application is hindered by the costs associated with current space vehicles and mission operations. Furthermore, if we are to better understand our universe and are keen on commercializing space, we would require the space tourism industry to operate in a similar fashion to the aviation industry. As most current launch vehicles rely on chemical propulsion, the level of uncertainty in the market drives their fuel costs. In order to reduce the cost per flight, we must effectively increase the load factor per flight and operate multiple flights, enabling a greater number of paying passengers. In order to provide widespread access to space there needs to be a greater emphasis on the research and development of low cost Reusable Launch Vehicles (RLV) which predominantly rely on alternative fuel technologies, thereby reducing the overall cost per flight. Although progress would be slow, we would still be able to witness a boom in space tourism. This paper proposes the use of magnetic levitation and propulsion (Maglev) within a vacuum chamber as a viable low-cost propulsion technology. It aims to prove that such a system is capable of providing adequate thrust to future space vehicles. As Maglev systems allow for horizontal take-off and landing, such a launch system could be used in conjunction with current airports worldwide. Although the inception and creation of such a system may seem expensive, the long-term fiscal costs are relatively lower than current day systems. This is primarily because such a system relies on electrical power, whose supply and generation costs are much lower than that of chemical propellants. Also, the maintenance costs associated with the Maglev track are minimal, as during take-off there is no physical contact between the track and the launch vehicle. Similar to the aviation industry, the success of future space exploration programs and space tourism relies on international cooperation and alliances. This not only ensures that no one country dominates access to space, but also nurtures healthy competition by providing a level playing field. By implementing the afore mentioned system in politically stable developing nations, we ensure employment, innovation and motivation, all achieved through an international alliance. This system would not only ensure a faster urban development within these countries, but would also bring the vision of space science and exploration to a larger global audience. This paper discusses the overall cost analysis for a vacuum operated Maglev system, the various options available for the generation of power required by such a system and how the system’s long term costs can be aligned with the aviation industry
    corecore