5,143 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    An Implementation Approach and Performance Analysis of Image Sensor Based Multilateral Indoor Localization and Navigation System

    Full text link
    Optical camera communication (OCC) exhibits considerable importance nowadays in various indoor camera based services such as smart home and robot-based automation. An android smart phone camera that is mounted on a mobile robot (MR) offers a uniform communication distance when the camera remains at the same level that can reduce the communication error rate. Indoor mobile robot navigation (MRN) is considered to be a promising OCC application in which the white light emitting diodes (LEDs) and an MR camera are used as transmitters and receiver respectively. Positioning is a key issue in MRN systems in terms of accuracy, data rate, and distance. We propose an indoor navigation and positioning combined algorithm and further evaluate its performance. An android application is developed to support data acquisition from multiple simultaneous transmitter links. Experimentally, we received data from four links which are required to ensure a higher positioning accuracy

    Monte Carlo algorithm for the evaluation of the distance estimation variance in RSS-based visible light positioning

    Get PDF
    In this work, the Monte Carlo algorithm to determine the variance on the distance estimation in Received Signal Strength-based visible light positioning is considered. The method is build on the maximization of the signal-to-noise-ratio by means of matched filtering, and leads to a number of characteristics that are typically only obtained after intensive analytical elaborations. It is shown that the results match those obtained by calculating the Cramer-Rao lower bound when only the noise is considered as non-deterministic. It is demonstrated that the method is also applicable when multiple physical parameters exhibit a probability distribution, leading to an assessment of the distance estimation accuracy in more realistic settings

    Hybrid 3D Localization for Visible Light Communication Systems

    Full text link
    In this study, we investigate hybrid utilization of angle-of-arrival (AOA) and received signal strength (RSS) information in visible light communication (VLC) systems for 3D localization. We show that AOA-based localization method allows the receiver to locate itself via a least squares estimator by exploiting the directionality of light-emitting diodes (LEDs). We then prove that when the RSS information is taken into account, the positioning accuracy of AOA-based localization can be improved further using a weighted least squares solution. On the other hand, when the radiation patterns of LEDs are explicitly considered in the estimation, RSS-based localization yields highly accurate results. In order to deal with the system of nonlinear equations for RSS-based localization, we develop an analytical learning rule based on the Newton-Raphson method. The non-convex structure is addressed by initializing the learning rule based on 1) location estimates, and 2) a newly developed method, which we refer as random report and cluster algorithm. As a benchmark, we also derive analytical expression of the Cramer-Rao lower bound (CRLB) for RSS-based localization, which captures any deployment scenario positioning in 3D geometry. Finally, we demonstrate the effectiveness of the proposed solutions for a wide range of LED characteristics and orientations through extensive computer simulations.Comment: Submitted to IEEE/OSA Journal of Lightwave Technology (10 pages, 14 figures

    Optical boundaries for LED-based indoor positioning system

    Get PDF
    Overlap of footprints of light emitting diodes (LEDs) increases the positioning accuracy of wearable LED indoor positioning systems (IPS) but such an approach assumes that the footprint boundaries are defined. In this work, we develop a mathematical model for defining the footprint boundaries of an LED in terms of a threshold angle instead of the conventional half or full angle. To show the effect of the threshold angle, we compare how overlaps and receiver tilts affect the performance of an LED-based IPS when the optical boundary is defined at the threshold angle and at the full angle. Using experimental measurements, simulations, and theoretical analysis, the effect of the defined threshold angle is estimated. The results show that the positional time when using the newly defined threshold angle is 12 times shorter than the time when the full angle is used. When the effect of tilt is considered, the threshold angle time is 22 times shorter than the full angle positioning time. Regarding accuracy, it is shown in this work that a positioning error as low as 230 mm can be obtained. Consequently, while the IPS gives a very low positioning error, a defined threshold angle reduces delays in an overlap-based LED IPS

    A New Vehicle Localization Scheme Based on Combined Optical Camera Communication and Photogrammetry

    Full text link
    The demand for autonomous vehicles is increasing gradually owing to their enormous potential benefits. However, several challenges, such as vehicle localization, are involved in the development of autonomous vehicles. A simple and secure algorithm for vehicle positioning is proposed herein without massively modifying the existing transportation infrastructure. For vehicle localization, vehicles on the road are classified into two categories: host vehicles (HVs) are the ones used to estimate other vehicles' positions and forwarding vehicles (FVs) are the ones that move in front of the HVs. The FV transmits modulated data from the tail (or back) light, and the camera of the HV receives that signal using optical camera communication (OCC). In addition, the streetlight (SL) data are considered to ensure the position accuracy of the HV. Determining the HV position minimizes the relative position variation between the HV and FV. Using photogrammetry, the distance between FV or SL and the camera of the HV is calculated by measuring the occupied image area on the image sensor. Comparing the change in distance between HV and SLs with the change in distance between HV and FV, the positions of FVs are determined. The performance of the proposed technique is analyzed, and the results indicate a significant improvement in performance. The experimental distance measurement validated the feasibility of the proposed scheme
    • …
    corecore