345 research outputs found

    Visibility maintenance via controlled invariance for leader-follower Dubins-like vehicles

    Full text link
    The paper studies the visibility maintenance problem (VMP) for a leader-follower pair of Dubins-like vehicles with input constraints, and proposes an original solution based on the notion of controlled invariance. The nonlinear model describing the relative dynamics of the vehicles is interpreted as linear uncertain system, with the leader robot acting as an external disturbance. The VMP is then reformulated as a linear constrained regulation problem with additive disturbances (DLCRP). Positive D-invariance conditions for linear uncertain systems with parametric disturbance matrix are introduced and used to solve the VMP when box bounds on the state, control input and disturbance are considered. The proposed design procedure is shown to be easily adaptable to more general working scenarios. Extensive simulation results are provided to illustrate the theory and show the effectiveness of our approachComment: 17 pages, 24 figures, extended version of the journal paper of the authors submitted to Automatic

    Environment Characterization for Non-Recontaminating Frontier-Based Robotic Exploration

    Get PDF
    This paper addresses the problem of obtaining a concise description of a physical environment for robotic exploration. We aim to determine the number of robots required to clear an environment using non-recontaminating exploration. We introduce the medial axis as a configuration space and derive a mathematical representation of a continuous environment that captures its underlying topology and geometry. We show that this representation provides a concise description of arbitrary environments, and that reasoning about points in this representation is equivalent to reasoning about robots in physical space. We leverage this to derive a lower bound on the number of required pursuers. We provide a transformation from this continuous representation into a symbolic representation. Finally, we present a generalized pursuit-evasion algorithm. Given an environment we can compute how many pursuers we need, and generate an optimal pursuit strategy that will guarantee the evaders are detected with the minimum number of pursuers.Singapore-MIT Alliance for Research and Technology Center (Future Urban Mobility Project)United States. Air Force Office of Scientific Research (Award FA9550-08-1-0159)National Science Foundation (U.S.) (Award CNS-0715397)National Science Foundation (U.S.) (Award CCF-0726514)National Science Foundation (U.S.) (Grant 0735953

    Search and Pursuit-Evasion in Mobile Robotics, A survey

    Get PDF
    This paper surveys recent results in pursuitevasion and autonomous search relevant to applications in mobile robotics. We provide a taxonomy of search problems that highlights the differences resulting from varying assumptions on the searchers, targets, and the environment. We then list a number of fundamental results in the areas of pursuit-evasion and probabilistic search, and we discuss field implementations on mobile robotic systems. In addition, we highlight current open problems in the area and explore avenues for future work

    Coordinated Exploration of unknown labyrinthine environments applied to the Pusruite-Evasion problem

    No full text
    International audienceThis paper introduces a multi-robot cooperation approach to solve the "pursuit evasion'' problem for mobile robots that have omni-directional vision sensors in unknown environments. The main characteristic of this approach is based on the robots cooperation by sharing knowledge and making them work as a team: a complete algorithm for computing robots motion strategy is presented as well as the deliberation protocol which distributes the exploration task among the team and takes the best possible outcome from the robots resources

    Capturing an Evader Using Multiple Pursuers with Sensing Limitations in Convex Environment

    Get PDF
    A modified continuous-time pursuit-evasion game with multiple pursuers and a single evader is studied. The game has been played in an obstacle-free convex environment which consists an exit gate through which the evader may escape. The geometry of the convex is unknown to all players except pursuers know the location of the exit gate and they can communicate with each other. All players have equal maximum velocities and identical sensing range. An evader is navigating inside the environment and seeking the exit gate to win the game. A novel sweep-pursuit-capture strategy for the pursuers to search and capture the evader under some necessary and sufficient conditions is presented. We also show that three pursuers are sufficient to finish the operation successfully. Non-holonomic wheeled mobile robots of the same configurations have been used as the pursuers and the evader. Simulation studies demonstrate the performance of the proposed strategy in terms of interception time and the distance traveled by the players.

    Construction of Barrier in a Fishing Game With Point Capture

    Get PDF
    This paper addresses a particular pursuit-evasion game, called as “fishing game” where a faster evader attempts to pass the gap between two pursuers. We are concerned with the conditions under which the evader or pursuers can win the game. This is a game of kind in which an essential aspect, barrier, separates the state space into disjoint parts associated with each player's winning region. We present a method of explicit policy to construct the barrier. This method divides the fishing game into two subgames related to the included angle and the relative distances between the evader and the pursuers, respectively, and then analyzes the possibility of capture or escape for each subgame to ascertain the analytical forms of the barrier. Furthermore, we fuse the games of kind and degree by solving the optimal control strategies in the minimum time for each player when the initial state lies in their winning regions. Along with the optimal strategies, the trajectories of the players are delineated and the upper bounds of their winning times are also derived
    corecore