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Abstract. This paper addresses the problem of obtaining a concise description
of a physical environment for robotic exploration. We aim to determine the num-
ber of robots required to clear an environment using non-recontaminating ex-
ploration. We introduce the medial axis as a configuration space and derive a
mathematical representation of a continuous environment that captures its under-
lying topology and geometry. We show that this representation provides a concise
description of arbitrary environments, and that reasoning about points in this rep-
resentation is equivalent to reasoning about robots in physical space. We leverage
this to derive a lower bound on the number of required pursuers. We provide a
transformation from this continuous representation into a symbolic representa-
tion. Finally, we present a generalized pursuit-evasion algorithm. Given an envi-
ronment we can compute how many pursuers we need, and generate an optimal
pursuit strategy that will guarantee the evaders are detected with the minimum
number of pursuers.

Keywords: swarm robotics, frontier-based exploration, distributed pursuit-
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1 Introduction
This paper deals with the problem of developing a concise representation of a physical
environment for robotic exploration. We address a specific type of exploration scenario
called pursuit-evasion. In this scenario, a group of robots are required to sweep an un-
explored environment and detect any intruders that are present. Pursuit-evasion is an
example of non-recontaminating exploration, whereby an initially unexplored and con-
taminated region is cleared while ensuring that the cleared region does not become
contaminated again. Pursuit-evasion is a useful model for many applications such as
surveillance, security and military operations. Aside from the classical pursuit-evasion
problem, there are other scenarios that motivate non-recontaminating exploration. One
example is cleaning up an oil spill in the ocean using robots, where the oil can leak
into previously decontaminated water whenever part of the frontier is not guarded by
a robot. Another example is a disaster response scenario such as after an earthquake,
where a group of robots is required to locate all survivors in some inaccessible area,
while the survivors are possibly moving in the environment.
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1.1 Related Work

Visibility-based pursuit-evasion in continuous two-dimensional space was first intro-
duced in [25]. Frontier-based exploration was introduced in [28] and extended to mul-
tiple robots in [29]. In [7] the authors consider limited visibility frontier-based pursuit-
evasion in non-polygonal environments, making use of the fact that not allowing recon-
tamination means we do not need to store a map of the environment; here a distributed
algorithm is presented which works by locally updating the frontier formed by the sen-
sor footprints of the robots. Another distributed model was more recently considered in
[3]. Limited visibility was also considered in [23] which presents an algorithm for clear-
ing an unknown environment without localization. In [8] the problem was considered
for a single searcher in a known environment. Generally speaking, these algorithms
do the correct thing locally, but do not rely on, or make any guarantees for, a global
description of an environment. As such, they may not be guaranteed to terminate.

Environment characterization for pursuit-evasion has been considered for polygo-
nal spaces. In [11], [12] pursuit-evasion in connected polygonal spaces is investigated,
and tight bounds derived on the number of pursuers necessary based on the number of
polygon edges and holes. In [19] basic environment characterization is established, by
means of a general decomposition concept based on a finite complex of conservative
cells. In [27] similar ideas were explored, and several metrics proposed for primitive
characterization of polygonal spaces. We highlight that these studies considered robots
equipped with infinite range visibility sensors deployed in polygonal spaces. Conse-
quently the scope of environment characterization was limited. By contrast we consider
limited visibility sensors, and we do not require the environment to be polygonal.

The medial axis has previously been studied in the context of robotic navigation.
For example, in [10], [13], [26] the medial axis was used as a heuristic for probabilistic
roadmap planning. One of the key features that makes the medial axis attractive for such
applications is that it captures the connectivity of the free space. In this work, we use
the medial axis to similarly capture the underlying topological and geometric properties
of our environment, and use it to transform the problem into a graph formulation.

Pursuit-evasion on graphs that are representations of some environment goes back
as early as [20], [21]. Randomized pursuit strategies on a graph are considered in [1].
Roadmap-based pursuit-evasion is considered in [14] and [22] where the pursuer and
evader share a map and act according to different rules. In [22] a graph-based represen-
tation of the environment is used to derive heuristic policies in various scenarios. More
recently, [17] presents a graph-based approach to the pursuit-evasion problem whereby
agents use blocking or sweeping actions to detect all intruders in the environment. In
[15] and [16] the more general graph variant of the problem was reduced to a tree by
blocking edges. Although discrete graph-based models offer termination and correct-
ness guarantees, they assume the world is suitably characterized and make no reference
to the underlying physical geometry of the environment that is being represented.

The aim of this paper is to bridge the different levels of abstraction that work to
date has been grounded in. We make use of the medial axis as a configuration space to
derive a robust representation of a continuous environment that captures its underlying
properties. We use the medial axis leveraged by existing exploration models to build a
concise representation of arbitrary environments in continuous two-dimensional space.
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We then transform this representation into the discrete domain. First, this allows us
to calculate bounds on the number of pursuers required to clear an environment, and
to provide termination guarantees for existing pursuit-evasion algorithms. Second, this
establishes an application platform for existing graph-based algorithms making them
applicable to continuous environment descriptions.

1.2 Paper Organization

This paper is organized as follows. In Section 2 we provide a formal model for non-
recontaminating exploration and state the problem that we are addressing. In Section
3 we introduce the medial axis as a configuration space and show that reasoning about
points in this space is equivalent to reasoning about robots in the physical world. We
formalize the notion of width, corridors and junctions and derive bounds on the number
of robots required to traverse a junction. In Section 4 we present a transformation from
this continuous configuration space into a symbolic representation in the discrete do-
main. Finally, we present an optimal pursuit-evasion algorithm, and prove correctness
for this algorithm.

2 Problem Formulation
We now present a formal model of the problem we are addressing. Our model builds
on the notation and terminology introduced in [7]. We have a team of n exploration
robots deployed in the Euclidean plane R2. Each robot is equipped with a holonomic
(uniform in all orientations) sensor that records a line of sight perception of the envi-
ronment within a maximum sensing radius r. We assume that two robots can reliably
communicate if they are within line of sight of each other and if the distance between
their positions is less than or equal to 2r.

The position of a robot is constrained to be within some free region Q, which is a
closed compact subset of R2. The obstacle region B makes up the rest of the world,
and is defined as the complement of Q. In this paper we require both Q and B to
be connected spaces, which means there are no holes in the environment. We define
the obstacle boundary ∂B as the oriented boundary of the obstacle region (which by
definition is the oriented boundary of the free region).

We assume a continuous time model, i.e. time t ∈ R≥0. Let Hi
t be the holonomic

sensor footprint of robot i at time t, which is defined as the subset of Q that is within
direct line of sight of robot i and within distance r of robot i. Formally, if p ∈ R2 is the
position of robot i at time t, then Hi

t = {x ∈ Q | d(p, x) ≤ r ∧ ∀y ∈
[
px
]
, y ∈ Q}

where d(x, y) is the Euclidean distance between x and y (see Fig. 1a). Let Ht be the
union of the sensor footprints of all robots at some time t, given byHt =

⋃n
i=0H

i
t . This

corresponds to the region being sensed by the robots at time t. We define the inspected
region It ⊆ Q as the union at time t of all previously recorded sensor footprints, given
by It = {p ∈ R2 | ∃t0 ∈ [0, t] such that p ∈ Ht0}. The contaminated region (or
unexplored region) Ut is defined as the free space that has not been inspected by time
t, given by Ut = Q \ It (see Fig. 1b). Note that at time t = 0 the contaminated region
is given by Q \H0. We define the cleared region Ct ⊆ It as the inspected region that is
not currently being sensed, given by Ct = It \Ht. We say that recontamination occurs
at time t if the cleared region Ct comes in contact with the contaminated region Ut (we
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(a) Sensor Footprint (b) Inspected region (c) Boundaries

Fig. 1: Fig. 1a shows a robot located at some position p within the free region Q. The sensor
footprint H and its oriented boundary ∂H are shown on the right. Fig. 1b shows the inspected
region It and the contaminated region Ut at some time t. Fig. 1c shows the inspected region
boundary ∂I , the inspected obstacle boundary ∂IB and the frontier F .

understand two regions to be in contact if the intersection of their closure is non-empty,
i.e. cl(Ct) ∩ cl(Ut) 6= ∅).

When time is clear from context, we understand I and U to mean the current in-
spected region and the current contaminated region, respectively. We define the in-
spected region boundary ∂I as the oriented boundary of the inspected region I . We
define the inspected obstacle boundary ∂IB as the intersection of the inspected region
boundary and the obstacle boundary, given by ∂IB = ∂I ∩ ∂B. We define the frontier
F as the free (non-obstacle) boundary of the inspected region, given by F = ∂I \ ∂IB
(see Fig. 1c). Observe that by definition the frontier F separates the free region Q into
the inspected region I and the contaminated region U . Observe also that the frontier
need not be connected, and is in general the union of one or more disjoint maximally
connected arcs. We understand the frontier of a group of robots F ′ ⊆ F to mean a
single maximally connected arc of the total frontier formed by the exterior boundary of
the sensor footprints of that group of robots.

The goal of exploration algorithms is to inspect the entire free region. For non-
recontaminating exploration the goal is to inspect the entire fee region without ad-
mitting recontamination. In both cases we say that an environment has been success-
fully explored if It = Q at some time t. In this paper we deal specifically with non-
recontaminating exploration and present an algorithm that is guaranteed to explore a
space without admitting recontamination.

An algorithm for exploration relies on robots to “expand” the frontier boundary
until the entire free region becomes inspected. However, in a non-recontaminating ex-
ploration algorithm the goal is not only to expand, but also to “guard” the frontier, en-
suring that the inspected region does not become contaminated again. This difference
makes non-recontaminating exploration more restrictive than conventional exploration.
For example, observe that regardless of the size of the sensing radius of the robots (as
long as r > 0), or the properties of the world (as long as Q is a connected space), a sin-
gle robot can always explore the world. However, in non-recontaminating exploration
this is not true in general. Informally speaking, if the “width” of the corridors in the free
region is larger than the sensing radius of a robot, then it should appear obvious that a
single robot cannot simultaneously expand and guard the frontier to inspect the entire
free region.
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Consider the simple rectangular free region Q shown in Fig. 1b. We can reason that
if the width of Q is less than the sum of the sensor diameters of the n robots, then the
environment can be explored without admitting recontamination. However, even in this
simple example it is not completely clear what is meant by width. Notice that if we
consider width to be the distance from the left to the right border then this reasoning
fails — in this case width would specifically mean the smaller of the two dimensions.
So it is already non-trivial how to characterize a very simple environment, and things
become much more complicated in non-rectangular environments.

In this paper we study the relationship between an environmentQ, the sensor radius
r, and the number of robots n required for non-recontaminating exploration of Q. Intu-
ition tells us that corridor width and junctions are important features. We formalize the
notion of corridors and junctions and present a general method for computing a con-
figuration space representation of the environment that captures this intuition. We show
that this representation provides a concise description of arbitrary environments.

A canonical example of non-recontaminating exploration is pursuit-evasion. In this
scenario there is a group of robot pursuers and a group of robot evaders deployed in
the free region Q. The evaders are assumed to be arbitrarily small and fast. The goal
of the pursuers is to catch the evaders (by detecting their presence within the sensor
footprint), and the goal of the evaders is to avoid getting caught. Whenever part of the
frontier is not being guarded by the pursuers, the evaders can move undetected from the
contaminated region to the previously inspected region, thereby recontaminating it.

3 Environment Analysis
In this section we present the medial axis as a configuration space and show that rea-
soning about points in this configuration space is equivalent to reasoning about robots
in physical space. First, we establish the necessary geometric framework, accompanied
by a series of definitions and claims. Second, we introduce an exploration model in this
configuration space and justify that it allows us to reason about the physical movement
of the robots in the environment.

3.1 Environment Geometry

The distance transform is a mapping D : R2 → R where D(x) = miny∈B {d(x, y)}
and d(x, y) is the Euclidean distance between x and y (extending definition in [5] to the
continuous domain) (see Fig. 2b). Observe that by definition if x /∈ Q then D(x) = 0.
The distance transform of a point x ∈ Q captures the notion of “undirected width” of a
region around a point x in free space, that is we get a measure of how wide or narrow a
region is without being explicit about orientation.

The medial axis or skeleton S of a free space is defined as the locus of the centers
of all maximal inscribed circles in the free space [4] (see Fig. 2c). Equivalently, the
skeleton can be defined as the locus of quench points of a fire that has been set to
a grass meadow at all points along its boundary [2], [24]. The skeleton captures the
topology of the free space, and aids us in determining which parts of an environment
should be considered “corridors” and which parts should be considered “junctions” of
multiple corridors.

The degree of a point x ∈ S is given by the function θ : S → N>0 which maps
every point on the skeleton to a natural number k. Specifically, we define a point x ∈ S
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(a) Environment image (b) Distance transform (c) Skeleton (d) Relief map

Fig. 2: The environment is represented by a binary image in Fig. 2a. Fig. 2b shows the distance
transform D of the environment. Fig. 2c shows the skeleton S. Fig. 2d shows the relief map
quantization. The relief contours indicate multiples of the sensing radius r.

to have degree θ(x) = k if there exists an a ∈ R>0 such that ∀ε ∈ (0, a] a circle
centered at x of radius ε intersects the skeleton S at exactly k points.

Borrowing notation from [6], we use the degree of a point x ∈ S to distinguish
between three types of points on the skeleton: corridor points, end points and junction
points. Specifically, for a point x ∈ S, we say x is an end point if θ(x) = 1, x is a
corridor point if θ(x) = 2, and x is a junction point if θ(x) > 2 (see Fig. 3a). We refer
to a continuous arc of corridor points on the skeleton simply as a corridor.

An alternative definition for θ(·) can be stated as follows. For a point x ∈ S let C
be the maximal inscribed circle centered at x, and let G be the intersection of this circle
with the obstacle boundary, given by G = C ∩ ∂B. (Observe that by definition C has
radiusD(x) 6= 0, and since C is maximal, G is non-empty.) Then θ(x) is defined as the
number of maximally connected arcs in G. This definition for for θ(·) is equivalent to
the previous one [4], [9], [18].

Let G1, G2, . . . , Gθ(x) be the set of maximally connected arcs of G. Note that in
most cases these arcs are in fact just single points, which corresponds to the intuitive
notion of the circle being tangent to the boundary at these points. A cursory glance
reveals that this is the case for most corridor points and junction points. For end points
that lie on the obstacle boundary, the tangent point coincides with the end point itself.
However, the generality is necessary in a few special cases, such as end points of regions
that taper off in a sector. In these cases the maximal inscribed circle C will be tangent
to the obstacle boundary at a continuous arc segment of points. In order to simplify the
discussion we define the tangent points τ1(x), τ2(x), . . . , τθ(x)(x) of a point x ∈ S as
the midpoints of the tangent arcs G1, G2, . . . , Gθ(x) (see Fig. 3b).

We define a boundary wall as a maximally connected arc segment of the obstacle
boundary ∂B that does not contain a tangent point of any end point. Formally ∂B0 ⊂
∂B is a boundary wall if it is a maximally connected arc segment such that ∀e ∈ S |
θ(e) = 1, τ(e) /∈ ∂B0.

Lemma 1. For a junction point j ∈ S, the θ(j) tangent points of j are located on θ(j)
distinct boundary walls.

Proof. A circle C of radius D(j) centered at a junction point j will be tangent to the
obstacle boundary at the θ(j) tangent points of j. Each pair of adjacent tangent points
τi, τi+1 ∈ C (in the sense of counter-clockwise orientation alongC) will be on opposite
sides of one corridor. Consider the obstacle boundary arc segment [τi τi+1] (in the sense
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(a) Skeleton points (b) Dead end tangent point (c) Junction tangent points

Fig. 3: Fig. 3a shows the three types of points on the skeleton: end points, corridor points, and
junction points. A corridor is a continuous arc of corridor points. Fig. 3b shows three points on
the skeleton e, e′, j and their respective tangent points. For end point e the tangent point τ1(e) is
the midpoint of the tangent arc segment shown (dotted outline). For end point e′ the tangent point
τ1(e

′) coincides with the end point itself. For junction point j there are θ(j) = 3 tangent points
τ1, τ2, τ3. Fig. 3c shows a junction point j of degree θ(j) = 3. All 3 tangent points τ1, τ2, τ3 are
located on distinct boundary walls.

of counter-clockwise orientation along ∂B). If e is the end point of the corridor that
straddles the interior of [τi τi+1], then τ(e) will lie on [τi τi+1]. Thus the boundary wall
containing τi is disjoint from the boundary wall containing τi+1 since neither contains
τ(e). Since this applies for each pair of adjacent tangent points, we conclude that all
θ(j) tangent points τ1, τ2, . . . , τθ(j) will be located on θ(j) distinct boundary walls (see
Fig. 3c). ut

3.2 Exploration Model

We now show how we can use the preceding definitions and geometric claims to form
a model for frontier-based exploration and establish an equivalence between the the
medial axis configuration space and the physical environment.

We claim that reasoning about a single point moving along the skeleton allows us to
reason about a group of robots that form a frontier with their end to end sensor footprints
moving through physical space. We call this point the swarm locus. By definition a
corridor point x ∈ S has exactly two tangent points. For a swarm locus stationed at x
we call these two points the frontier anchor points. The frontier of a group of robots
is represented by a corresponding frontier formed by two line segments joining the
swarm locus to its anchor points. A group of robots engaged in non-recontaminating
exploration will form a frontier arc subtended between two obstacle boundary walls
in physical space; the frontier arc separates the inspected region on one side from the
contaminated region on the other side. Our abstraction allows us to reason in similar
terms: a swarm locus stationed at a point x on the corridor of the skeleton will similarly
form a frontier arc consisting of two line segments subtended between two obstacle
boundary walls; the frontier arc transposed onto Q likewise separates the inspected
region from the contaminated region (see Fig. 4a). We understand the frontier of a
swarm locus to mean the frontier F ′ ⊆ F of a group of robots represented by a swarm
locus stationed at a point x ∈ S.

Note that we are making a simplifying abstraction in representing the frontier F ′ ⊆
F of a group of n0 robots by two end to end line segments subtended between two
obstacle boundary walls. Observe that as n grows, the abstraction becomes more accu-



8 Environment Characterization for Non-Recontaminating Robotic Exploration

swarm locus

(a) Swarm locus (b) Initial frontier (c) Split frontier

Fig. 4: Fig. 4a shows a group of robots at positions pi forming a frontier F ′ with the exterior
boundary of their sensor footprints. Superimposed is the corresponding swarm locus stationed at
a point x ∈ S forming a frontier F ′′ with two line segments subtended between two obstacle
boundary walls. Fig. 4b shows the initial frontier F ′ of a swarm locus stationed at an end point
e, separating the environment into I0 = ∅ and U0 = Q. As the swarm locus moves along the
skeleton to reach a point x ∈ S, it forms a frontier F ′′. The swarm locus has swept across the
environment and cleared the region to the left of F ′′. Fig. 4c shows the configuration of a split
frontier. A swarm locus is traversing a junction point j with θ(j) = 3. The ingoing frontier F ′

0

splits, producing 1 split point s and 2 outgoing frontiers F ′
1,F ′

2.

rate as the periodic protrusion of the frontier due to the curvature of sensor footprints
becomes finer-grained and less prominent with respect to its length. In general, this ab-
straction is justified as we are usually interested in characterizing environments where
n� 0.

For the purposes of introducing the exploration model we assume that the swarm
locus always begins at an end point. (Note that this assumption only serves to simplify
the discussion, and can be removed easily by introducing several special cases.) From
the definition of the degree of a point on the skeleton, a maximal inscribed circle C
centered at an end point e ∈ S will be tangent to the obstacle boundary at a single point
τ(e). Thus both anchor points are the same point τ(e) and the frontier F ′ ⊆ F of a
swarm locus stationed at e is formed by two identical line segments [e τ(e)]. In this
configuration, F ′ separates the environment Q into the inspected region I0 = ∅ and the
contaminated region U0 = Q, corresponding to the fact that the swarm locus has not yet
explored any of the environment. As the swarm locus starts moving along the skeleton,
the anchor points will move along ∂B on either side of the corridor and the frontier
will “sweep” across the environment. The frontier now separates Q into two disjoint
nonempty regions. The inspected region begins growing, while the contaminated re-
gion begins shrinking, corresponding to the fact that the robots have begun clearing the
environment (see Fig. 4b).

Moving Through Corridors We define the relief mapR : R2 → N as the quantization
of the distance transform using the sensing radius r, given by R(x) = dD(x)/re (see
Fig. 2d). The relief map uses the distance transform to similarly capture the notion of
width, expressing the same information in terms of the number of robots required at a
point x to reach the closest point on the obstacle boundary.

Lemma 2. A group of n0 robots represented by a swarm locus that reaches a corridor
point x ∈ S prevents recontamination if and only if n0 ≥ R(x).
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Proof. In order to prevent recontamination, the group of robots must subtend a fron-
tier between two obstacle boundary walls in physical space. By definition, the distance
between x ∈ S and the closest point to the obstacle boundary on either side is exactly
D(x) ≤ R(x). Thus we can always produce two lines l1, l2 from x to the two closest
points on the obstacle boundary of combined length L ≤ 2R(x). If n0 ≥ R(x) then
the robots can always align themselves in physical space such that their frontier passes
through x in the same arrangement as l1, l2 of combined length L ≥ 2R(x). Therefore
a group of n0 ≥ R(x) robots can always form a frontier that subtends between two
obstacle boundary walls, and recontamination can always be prevented. If n0 < R(x)
then any arrangement of the robots in physical space such that their frontier passes
through x will always result in a frontier of length L < 2R(x). Therefore a group of
n0 < R(x) robots can never form a frontier that subtends between two obstacle bound-
ary walls, and recontamination will always occur. ut

Corollary 1. A group of n0 robots represented by a swarm locus moving along a cor-
ridor G = [a b] ⊂ S prevents recontamination at all points x ∈ G if and only if
n0 ≥ maxx∈G {R(x)}.

When a swarm locus reaches an end point, the situation is the reverse of that at the
beginning. From the definition of the degree of a point on the skeleton, a maximal in-
scribed circle C centered at an end point e ∈ S will be tangent to the obstacle boundary
at a single point τ(e). Thus both anchor points are the same point τ(e) and the fron-
tier F ′ ⊆ F of a swarm locus stationed at e is formed by two identical line segments
[e τ(e)]. In this configuration, F ′ separates the environmentQ into the inspected region
It and some part of the contaminated region ∅, corresponding to the fact that the swarm
locus has cleared a particular corridor. In the case where there is only one swarm locus,
F ′ separates the environment Q into the inspected region It = Q and the entire con-
taminated region Ut = ∅, corresponding to the fact that the entire environment has been
cleared.

Traversing Junctions When a group of robots reaches a junction in physical space,
they should split and explore the outgoing junction corridors separately. If the robots
do not split then recontamination will occur due to any of the unattended outgoing cor-
ridors coming in contact with the inspected region. Upon reaching a physical junction
with some number of outgoing corridors, a single group of robots forms more than
one group of robots with that number of disjoint maximally connected arcs making up
the exterior boundary of their sensor footprints. Correspondingly, we define the fron-
tier F ′0 ⊆ F of a group of robots to split when the exterior boundary of the sensor
footprints of the robots is no longer connected and becomes the union of two or more
disjoint maximally connected arcs. Thus a group of robots splits when their frontier
splits. For a junction point j with θ(j) − 1 outgoing corridors, the junction is consid-
ered traversed when the frontier F ′0 ⊆ F of the group of robots splits to form θ(j)− 1
outgoing frontiers F ′1,F ′2, . . . ,F ′θ(j)−1 ⊂ F .

Observe that since the total frontier is at all times given by F = ∂I \ ∂IB , if one
or more new disjoint maximally connected frontier arcs form, then by necessity one or
more new disjoint maximally connected inspected obstacle boundary arcs also form. At
the time t0 that a frontier F ′0 ⊆ F of a group of robots splits to form θ(j)− 1 frontiers,
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(a) Lower bound split frontier (b) Upper bound split frontier

Fig. 5: Frontier configurations for lower and upper bound derivations.

it will have θ(j)− 2 points of contact with the obstacle boundary. We call a frontier F ′0
in such a configuration a split frontier and we call these points split points (see Fig. 4c).
For t > t0 the split points on the obstacle boundary grow into the θ(j)− 2 new disjoint
maximally connected inspected obstacle boundary arcs.

Split Frontier Bounds We establish the lower bound as follows. To traverse a junction
we require a split frontierF ′s to be formed with θ(j)−2 split points. The ingoing frontier
F ′0 subtends between two boundary walls ∂B1, ∂Bθ(j), intersecting them at the frontier
anchor points c1, c2. Therefore the split points s1, s2, . . . , sθ(j)−2 are located on each
of the other θ(j) − 2 boundary walls ∂B2, ∂B3, . . . , ∂Bθ(j)−1. Without a split point
on each of these boundary walls, the split frontier cannot be formed and the junction
cannot be traversed. Hence, a lower bound on the number of robots required to traverse
a junction is given by minimizing the length of the split frontier over all possible points
on the respective boundary walls. Thus we can never form a split frontier of total length
less than

∥∥F ′s,min∥∥ = min
{
‖c1 s1‖+ ‖s1 s2‖+ . . .+

∥∥sθ(j)−3 sθ(j)−2∥∥+ ∥∥sθ(j)−2 c2∥∥} ,
for c1 ∈ ∂B1, s1 ∈ ∂B2, . . . , sθ(j)−2 ∈ ∂Bθ(j)−1, c2 ∈ ∂Bθ(j) . (1)

If the number of robots is insufficient to form a split frontier of the smallest possible
length, then it will certainly be insufficient to form a split frontier of any other length.
But a split frontier must be formed in order to traverse a junction, irrespective of the
exploration model. Thus no exploration model can dictate a configuration of robots that
is able to traverse a given junction with fewer than ‖F ′s,min‖ robots. This establishes
the lower bound (see Fig. 5a).

We establish the upper bound as follows. Assume we have some number of robots at
a junction of degree θ(j). The ingoing frontierF ′0 subtends between two boundary walls
∂B1, ∂B2, intersecting them at the frontier anchor points c1, c2. The ingoing frontier
can always be aligned, without admitting recontamination, such that its anchor points
correspond to the tangent points τ1, τθ(j) on the two boundary walls that it subtends. By
Lemma 1, a junction of degree θ(j) will have tangent points on θ(j) distinct boundary
walls. Thereafter the ingoing frontier can always be extruded toward each of the other
θ(j) − 2 tangent points in turn, likewise without admitting recontamination. Thus for
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a junction j with tangent points τ1, τ2, . . . , τθ(j) we can always form a split frontier of
total length

∥∥F ′s,max∥∥ = ‖c1 s1‖+ ‖s1 s2‖+ . . .+
∥∥sθ(j)−3 sθ(j)−2∥∥+ ∥∥sθ(j)−2 c2∥∥

= ‖τ1 τ2‖+ ‖τ2 τ3‖+ . . .+
∥∥τθ(j)−1 τθ(j)∥∥ . (2)

We can traverse any junction in this way, thus no junction will ever require more
than ‖F ′s,max‖ robots to traverse. This establishes the upper bound (see Fig. 5b). Ob-
serve that since all the tangent points are on the boundary of a maximal inscribed circle
centered at j, the ingoing frontier F ′0, aligned such that its anchor points correspond
to τ1, τθ(j), is at most 2D(j) in length, i.e. the diameter of the circle. For each of the
θ(j) − 2 split points, the frontier gains an additional line segment, likewise of at most
2D(j) in length. Thus we get a numeric upper bound on the maximum length of the
split frontier, given by

∥∥F ′s,max∥∥ ≤ 2
(
θ(j)− 1

)
D(j) . (3)

We have now established an equivalence between the medial axis configuration
space and the physical movement and frontier expansion of robots in physical space.
We introduced an exploration model whereby a swarm locus moving along the skeleton
allows us to reason about a group of robots moving through physical space. We defined
what it means for a frontier to split and for a group of robots to traverse a junction, and
derived lower and upper bounds on the number of robots required to traverse a junction.

4 Topology Tree
In this section we present a series of steps that will transform our continuous configura-
tion space into a symbolic representation of the environment in the discrete domain. We
establish a set of rules for navigating the environment in this discrete representation,
that allow us to develop an algorithmic pursuit strategy. Using the junction lower bound
from Result (1) we derive a lower bound on the total number of pursuers necessary to
clear the environment, showing that no fewer than this number can possibly clear the
environment regardless of the exploration model or pursuit strategy. Using the junction
upper bound from Result (2) we develop an upper bound on the total number of pur-
suers that will always be sufficient to clear the environment, for any pursuit strategy.
Finally, we derive an optimal pursuit strategy and prove that it guarantees we can clear
the environment with the minimum number of pursuers for a given exploration model.

The most natural representation of the skeleton of an environment where both Q
and B are connected is a tree. Since we are also given a starting point on the skeleton,
we consider a directed rooted tree (rooted at the start node). We refer to this as the en-
vironment topology tree, denoted by T = (V,E), where V is the set of vertices (nodes)
and E is the set of edges of T . Let s ∈ V be the root node of T . Nodes correspond
to end points and junction points, and edges correspond to corridors connecting these
points on the skeleton.

Let γ : V → N denote the out-degree of a node. There are four types of nodes on the
topology tree. The swarm locus starts at an end point on the skeleton which corresponds
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to the root node s of out-degree γ(s) = 1. Every other end point corresponds to a leaf
node w of out-degree γ(w) = 0. Each junction point j is represented by a unique
junction entry node u of out-degree γ(u) = θ(j)− 1, connected to an associated set of
distinct junction exit nodes {v1, v2, . . . , vγ(u)} of out-degree γ(v) = 1. (Observe that
since T is a directed rooted tree, every node has in-degree 1, except for the root node s
which has in-degree 0.)

The root node is connected to some junction entry node, while junction exit nodes
are connected to leaf nodes and other junction entry nodes, as determined by the corri-
dors connecting these points on the skeleton. Every edge e ∈ E on the topology tree is
assigned a weight α : E → N. There are two fundamentally different types of edges:
edges that represent a corridor on the skeleton and edges that represent the split frontier
at a junction point.

Motivated by Corollary 1, for an edge e connecting node u of out-degree γ(u) = 1
to a node v, the edge weight α(e) is determined by the number of robots necessary and
sufficient to advance from u to v, given by the maximum relief value R(x) at some
point x ∈ S amongst the points along that corridor.

Motivated by the reasoning in Section 3.2.2, for junction nodes the representation
is as follows. For each junction entry node u ∈ V let Eu ⊂ E be the set of edges
{e1, e2, . . . , eγ(u)} connecting u to its associated set of junction exit nodes {v1, v2, . . . ,
vγ(u)}. For each junction, we define a traversal function δ : Eu → N, where

∑
i δ(ei) is

the number of robots required to traverse the junction. This corresponds to the minimum
number of robots required to form a split frontier at the junction, given by its ceiling
length d‖F ′s‖e. Since we do not have tight bounds on the length of the split frontier, the
traversal function depends on the the context of the analysis. Namely, if the goal is to
derive a lower bound on the number of robots required to clear an environment, then
we consider the length of the split frontier d‖F ′s,min‖e given by Result (1). If the goal
is to derive an upper bound then we consider the length of the split frontier d‖F ′s,max‖e
given by Result (2). Each edge ei is assigned weight α(ei) = δ(ei) which corresponds
to the number of robots ni that are are required to form a frontier F ′i at each outgoing
corridor, given by the ceiling length of each outgoing frontier d‖F ′i‖e.
4.1 Exploration Rules

We consider exploration of the topology tree to be a game. We start the game with a
single group of n0 robots stationed at the root node s. Every node v ∈ V on the topology
tree is marked with a label λ, which can have one of three values: CONTAMINATED,
EXPLORED and CLEARED. Initially, the root node is marked EXPLORED and all
other nodes are marked CONTAMINATED.

We play the game in rounds, each round moving some number of robots from one
node to another. If a group of robots is unable to move from one node to another on some
round, then the robots are “stuck” at that node. This corresponds to the fact that if there
are insufficient robots to clear a corridor, they will remain stuck guarding the corridor,
unable to retreat without allowing recontamination. Let λk(v) denote the labeling of a
node v ∈ V on round k. We win the game if the tree is cleared on some round k0, that
is if ∃k0 ∈ N | ∀k > k0 ∀v ∈ V, λk(v) = CLEARED. We lose the game if all robots
are stuck at some node but the tree has not been cleared by some round k0, that is if
∃k0 ∈ N | ∀k > k0 ∃v ∈ V, λk(v) 6= CLEARED.
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Robots can split into smaller groups and join to form larger groups. In general, we
are free to choose how we move the robots on the topology tree, provided that we obey
the following transition rules.

1. If a group of n0 robots reaches a node u where γ(u) > 0, then the group splits into
some permutation of γ(u) groups of ni robots advancing to each of the children
nodes {v1, v2, . . . , vγ(u)}. We are free to choose this permutation, subject to the
following restrictions:
(a) If λ(vi) = CONTAMINATED, then ni ≥ α(ei(u)).
(b) If λ(vi) = EXPLORED, then ni ≥ 0.
(c) If λ(vi) = CLEARED, then ni = 0.
If no such permutation exists, then the group remains stuck at node u.

2. If a group of robots is stationed at a node u where λ(u) = CLEARED, then the
group backtracks to the parent node.

3. If a group of robots reaches a node u that is marked CONTAMINATED, then u is
marked EXPLORED.

4. If a group of robots reaches a leaf node u or a node u where all children of u are
marked CLEARED, then u is also marked CLEARED.

5. If two or more groups of n1, n2, . . . , nk groups of robots are stationed at the same
node, then they form a single group of n1 + n2 + . . .+ nk robots.

The reasoning behind these rules follows from the problem formulation and results
in Section 3. Rule 1(a) enforces that our exploration is non-recontaminating. Rule 1(b)
allows robots to move to explored nodes and join other robots. Rules 3 and 4 define
the progression of the game, and Rules 1(c) and 2 ensure that exploration is always
progressive (the latter ensures a group of robots leaves a region once it has been cleared,
while the former ensures that no group of robots re-enters that region unnecessarily).
Rule 5 ensures that robots always act in a single group when stationed at a node.

We understand a state of the topology tree to mean the labeling of each node and
the number of robots stationed at each node on a given round. We call a sequence of
transitions between states of the topology tree a pursuit strategy. (We omit a formal
definition for brevity.) A pursuit strategy is like a written record of a game of chess
that allows the game to be replayed by carrying out the recorded sequence of transi-
tions. Observe that the only degree of freedom in choosing a pursuit strategy is what
to do at a given junction entry node u. We can always choose what junction exit node
to send a group of robots to as long as it is not marked CLEARED. If the junction
exit nodes are marked CONTAMINATED then the group traverses the junction if and
only if n0 ≥

∑
i α(ei(u)). If the junction is traversed, then the group splits into some

permutation of γ(u) groups of ni robots advancing to each of the associated junction
exit nodes {v1, v2, . . . , vγ(u)}. We are free to choose this permutation, provided that
∀i, ni ≥ α(ei(u)). The choice we make in selecting this permutation may affect the
outcome of the game. (Note also that a node u is only marked CLEARED once the en-
tire subtree T (u) is marked cleared. Thus robots are forced to clear subtrees recursively,
and can only backtrack once a given subtree is cleared.)

We also note that because n0 and |V | are finite, there are a finite number of possible
pursuit strategies for a given topology tree. Intuition tells us that if n0 is too low, every
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pursuit strategy will be a losing strategy, whereas if n0 is sufficiently high then any
pursuit strategy will be a winning strategy. We now formalize this intuition, and derive
lower and upper bounds on the total number of robots that can clear the topology tree.

4.2 Environment Bounds

Consider the topology tree T with root node s. Let T (q) be the tree obtained by con-
sidering node q as the root node and removing nodes that are not descendants of q.
Let n(T (q)) be the number of robots required to clear T (q). Let P (v) be the set of
nodes {p1, p2, . . . , pγ(v)} that are children of v ∈ V , enumerated in order of ascending
n(T (pi)).

We motivate the lower bound as follows. At each node s we consider whether more
robots are required to advance to the child node p1 than are required to clear the rest
of the subtree T (p1), and apply this recursively for the entire tree. At each junction en-
try node we consider the maximum number of robots required to clear a given subtree
T (pi) while guarding the remaining junction exit nodes that have not been cleared. For-
mally, let nmin(T (s)) be the total number of robots necessary to clear the environment
with topology tree T , given by

nmin(T (s)) =
0 if γ(s) = 0

max

{
γ(s)∑
i=1

α
(
ei(s)

)
, max
i=1,...,γ(s)

{
nmin

(
T (pi)

)
+

γ(s)∑
j=i+1

α
(
ej(s)

)}}
otherwise .

(4)

Lemma 3. nmin(T (s)) robots are necessary to clear an environment with topology
tree T , regardless of exploration model or pursuit strategy.

Proof. We begin at the root node s, which has out-degree γ(s) = 1. If α(e1(s)) >
n(T (p1)), i.e. if more robots are required to advance to the child node p1 ∈ P (s) than
to clear the rest of the tree T (p1), then nmin(T (s)) = α(e1(s)). (The second term in
the outer max expression is not evaluated if γ(s) = 1.) This applies recursively for
any node of out-degree γ(s) = 1. Leaf nodes provide the recursion base case, where
n(T (w)) = 0 for w ∈ V if γ(w) = 0.

For junctions the logic is as follows. For a junction entry node u ∈ V , each associ-
ated junction exit node pi ∈ P (u) is the root node of a subtree T (pi). By Rules 1 and
2, a group of robots that reaches a leaf node w will backtrack until it reaches a node
with previously unexplored children. By induction a group of robots that clears T (pi)
will backtrack until it returns to v and advance to a different junction exit node pj 6=i.
By Rule 5, this group of robots will join with any other group of robots stationed at pj .
When a group of robots reaches a junction, at least n0 >

∑
i α(ei(u)) robots are re-

quired to traverse it thus stationing ni = α(ei(u)) robots at the γ(u) junction exit nodes
pi. Thereafter n0 must be at least enough to clear the subtree with smallest n(T (pi))
while holding station at the remaining γ(u)− 1 exit nodes. This subtree is T (p1) since
pi ∈ P (u) are enumerated in order of ascending n(T (pi)). If n0 robots is not enough
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to clear T (p1), then it will certainly not be enough to clear any other subtree, and thus
the junction cannot be traversed. If n0 robots is enough to clear T (p1) then n(T (p1))
robots are now able to join one of the groups guarding the remaining γ(u)− 1 junction
exit nodes. We apply this iteratively for all subtrees T (pi), each time gaining the ser-
vices of the group that cleared the previous subtree. The final subtree simply requires
n(T (pγ(u))) robots, since all other subtrees have been cleared and do not require any
robots to guard the junction exit nodes. (Note that all ni groups of robots will actu-
ally clear their subtrees simultaneously, in which case two given groups may not join
at the junction exit nodes, but elsewhere along a given subtree. However, considering
each group to clear its subtree in stages with the other groups guarding the junction
exit nodes simplifies the abstraction.) We now consider the maximum of the number
of robots required to traverse the junction (the first term in the outer max expression)
and the maximum number of robots required to clear a given subtree T (pi) and guard
the remaining γ(u) − i junction exit nodes (the second term in the outer max expres-
sion, itself a maximum over γ(u) stages). The maximum of these two outer terms is
the minimum number of robots required to clear the subtree T (u). We apply this logic
recursively for all junctions.

Thus no fewer than nmin(T (s)) robots can clear an environment with topology
tree T , for a given exploration model. Using the junction lower bound from Result (1)
to obtain the traversal function δmin for each junction, we know that no fewer than∑
i δmin(ei(u)) robots can traverse the junction point j corresponding to the junction

entry node u. Thus, using α(ei(u)) = δmin(ei(u)) for each junction entry point u,
nmin(T (s)) gives a lower bound on the number of robots that is necessary to clear an
environment with topology tree T , regardless of exploration model or pursuit strategy.

ut

We motivate the upper bound as follows. We imagine an adversary that dictates the
pursuit strategy of a number of robots, with the goal of placing the maximum num-
ber of them on the topology tree T , while preventing T from being cleared. Then we
argue that given any such adversarial configuration of n?(T (s)) robots, n?(T (s)) + 1
robots will always be able to clear T , regardless of the pursuit strategy chosen by the
adversary. Formally, let nmax(T (s)) be the total number of robots sufficient to clear the
environment with topology tree T , given by

nmax(T (s)) = n?(T (s)) + 1 ,

n?(T (s)) =


0 if γ(s) = 0

max

{( γ(s)∑
i=1

α
(
ei(s)

))
− 1 ,

γ(s)∑
i=1

n?
(
T (pi)

)}
otherwise .

(5)

Lemma 4. nmax(T (s)) robots are sufficient to clear an environment with topology tree
T , for a given exploration model, regardless of pursuit strategy.

Proof. The adversary begins at the root node s, which has out-degree γ(s) = 1. If
α(e1(s)) > n(T (p1)), i.e. if more robots are required to advance to the child node p1 ∈
P (s) than to clear the rest of the tree T (p1), then n?(T (s)) simply equals α(e1(s))− 1
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since adding one more robot will result in the entire tree being cleared. This applies
recursively for any node of out-degree γ(s) = 1. Leaf nodes provide the recursion base
case, where n(T (w)) = 0 for w ∈ V if γ(w) = 0.

For junctions the logic is as follows. For a junction entry node u ∈ V , each asso-
ciated junction exit node pi ∈ P (u) is the root node of a subtree T (pi). The adversary
can choose one of two options: either place

(∑γ(s)
i=1 α(ei(s))

)
− 1 robots at u such that

the junction cannot be traversed, or traverse the current junction with
∑γ(s)
i=1 n

?
(
T (pi)

)
robots knowing that they will not be able to clear the rest of the tree. The adversary
chooses the maximum of these two values since she is trying to maximize the number
of robots on the tree. We apply this logic recursively for all junctions.

Consider any such configuration of n?(T (s)) robots. We now introduce one ad-
ditional robot at the root node s. The robot must navigate the tree according to the
exploration rules, but the adversary is still free to choose its pursuit strategy. By Rule 5,
whenever the robot reaches any node u with n?(T (u)) robots stationed at the node, a
single group of n?(T (u)) + 1 robots forms at u which is sufficient to clear the subtree
T (u). By Rule 2, any group of robots that clears a subtree will backtrack along the tree
until it reaches a previously unexplored part of the tree. This group of robots will join
other groups of n?(T (v)) robots similarly stationed at other nodes v ∈ V . This will
continue recursively until the entire tree is cleared. Thus placing an additional robot
at s causes a “chain reaction” that results in T being cleared regardless of the pursuit
strategy that the adversary chooses for any of the n?(T (s)) + 1 robots.

Thus no more than nmax(T (s)) = n?(T (s))+1 robots will ever be required to clear
an environment with topology tree T , regardless of pursuit strategy. Using the junction
upper bound from Result (2) to obtain the traversal function δmax for each junction, we
know that no more than δmax(ei(u)) robots are required to traverse the junction point j
corresponding to the junction entry node u for the given exploration model. Thus, using
α(ei(u)) = δmax(ei(u)) for each junction entry point u, nmax(T (s)) gives an upper
bound on the number of robots that is sufficient to clear an environment with topology
tree T , for a given exploration model, regardless of pursuit strategy. ut

4.3 Optimal Pursuit Strategy

We now present an optimal pursuit strategy that guarantees that the environment is
cleared with the minimum number of robots for a given exploration model. Consider
the topology tree T with root node s. We know that nmin(T (s)) robots are necessary to
clear T , given by Result (4). The following algorithm guarantees that T will be cleared
with nmin(T (s)) robots. (We use the same notation as in Section 4.2.)

Algorithm 1 – Clear
(
T (s), n0

)
Given n0 robots located at root node s of topology tree T = (V,E):

1. If s is a leaf node or if all children of s are marked CLEARED, then:
(a) mark s← CLEARED.
(b) Backtrack to parent node. If parent node does not exist, terminate.

2. If λ(s) = CONTAMINATED, mark s← EXPLORED.
3. If γ(s) = 1, Clear

(
T (p1), n0

)
.
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4. If γ(s) > 1 and if all children of s are marked CONTAMINATED, then:
(a) for i = 2, . . . , γ(s): Clear

(
T (pi), α(ei(s))

)
.

(b) Clear
(
T (p1), n0−

∑γ(s)
i=2 α(ei(s))

)
.

5. If γ(s) > 1 and if all children of s are not marked CONTAMINATED, then:
(a) let i = min2,...,γ(s)

{
i | λ(pi) 6= CLEARED

}
.

(b) Clear
(
T (pi), n0

)
.

Lemma 5. nmin(T (s)) robots are necessary and sufficient to clear an environment
with topology tree T , for a given exploration model.

Proof. Given nmin(T (s)) robots we prove that we can use the Clear algorithm to
clear the environment. Let n0 = nmin(T (s)). We begin at the root node s, which has
out-degree γ(s) = 1. A group of robots can always advance to the child node p1 since
we have n0 = nmin(T (s)) robots. This applies for all nodes of out-degree γ(s) = 1.
When a group of robots reaches a leaf node it is marked CLEARED. A group of robots
stationed at a node that is marked CLEARED will backtrack until it reaches a node with
children that are not marked CLEARED.

For junctions, the logic is as follows. The first time a group of robots reaches a
given junction entry node u, all children of u are marked CONTAMINATED. We send
ni = α

(
ei(s)

)
robots to each of the γ(s) − 1 junction exit nodes pi, and use the

remaining n1 = n0 −
∑γ(s)
i=2+1 α

(
ei(s)

)
robots to clear the subtree T (p1). By proof

to Lemma 3, we know that the entire subtree T (p1) can be cleared with n1 robots,
and therefore n1 robots will eventually backtrack to u. Thereafter, all children of u are
either EXPLORED or CLEARED. Each group of robots reaching u in this way is sent
to clear T (pi) where i is the smallest number such that λ(i) 6= CLEARED. We do this
iteratively for each subtree, each time gaining the services of the group that cleared
the previous subtree. We can always clear each subtree T (pi) in this manner because
{p1, p2, . . . , pγ(v)} are enumerated in order of ascending n(T (pi)), and by proof to
Lemma 3 we know that n(T (u)) robots is enough to clear every subtree in this way.
For each subtree T (pi) cleared in this way, pi is marked CLEARED. When all subtrees
have been cleared, u will be marked CLEARED, and the entire group of robots will
backtrack to the parent node. This applies recursively recursively for all junctions. ut

Using the junction upper bound from Result (2) to obtain the traversal function
δmax for each junction, we know that no more than δmax(ei(u)) robots are required to
traverse the junction point j corresponding to the junction entry node u for the given
exploration model. Thus, using α(ei(u)) = δmax(ei(u)) for each junction entry point
u, the Clear algorithm gives an optimal pursuit strategy for clearing an environment
with topology tree T , for a given exploration model.

5 Conclusion
The problem of obtaining a concise characterization of a physical environment in the
context of frontier-based non-recontaminating exploration was considered. We intro-
duced the medial axis as a configuration space and showed that reasoning about points
in this configuration space is equivalent to reasoning about robots in physical space.
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We formalized the notion of width, corridors and junctions and derived lower and up-
per bounds on the number of robots required to traverse a junction. We presented a
transformation from this continuous configuration space into a symbolic representation
in the discrete domain. We cast the exploration problem as a game, established rules
for playing this game, and derived bounds on the number of robots necessary and suf-
ficient to clear the environment. Finally we presented an optimal pursuit strategy that
guarantees that we can clear the environment with the minimum number of robots.

There are a number of interesting future lines of research for this work. First, the
establishment of tight bounds on the number of robots required to traverse a junction —
we suspect that the lower bound given by Result (1) in Section 3.2 is in-fact necessary
and sufficient. A rigorous proof of this fact would have to generalize to accommodate a
number of special cases.

Second, the extension of this work to environments with holes would be a signif-
icant contribution. The medial axis configuration space was chosen with this in mind,
and the model presented in Section 3 soundly generalizes the characterization to arbi-
trary connected environments. A number of issues need to be addressed in transforming
this representation into the discrete domain. One would need to consider an undirected
graph and junctions would need to be represented accordingly. It is known that comput-
ing the number of searchers required to clear a general graph is NP-hard [21], so suitable
heuristics or approximations would need to be employed. Alternatively, the graph could
be converted into a tree such as in [15], [16]; however the non-isotropic nature of the
junction transition function would demand a judicious approach to blocking cycles.
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