774 research outputs found

    Novel Actuation Methods for High Force Haptics

    Get PDF

    Towards a Twisted String Actuated Haptic Device: Experimental Testing of a 2-D Virtual Environment and Teleoperation Interface

    Get PDF
    In the article, a first stage implementation of a haptic device towards a complete 3-D workspace twisted-string actuated haptic interface is discussed. In the present work, a 2-D setup is presented, with the aim of preliminarly testing the behaviour of this novel haptic system, especially with respect to the adopted cable-based actuation solution. In particular, the component descriptions, kinematics of the planar device and the controller for teleoperation purposes are illustrated. Results regarding the behaviour of the system in rendering a virtual environment and in a robot teleoperation scenario with haptic force feedback are reported. The experimental outcomes show that the designed and implemented system is suitable for teleoperation with haptic interfaces, providing positive perspectives for the realization of the fully functional 3-D haptic interface in the future work

    CoVR: A Large-Scale Force-Feedback Robotic Interface for Non-Deterministic Scenarios in VR

    Full text link
    We present CoVR, a novel robotic interface providing strong kinesthetic feedback (100 N) in a room-scale VR arena. It consists of a physical column mounted on a 2D Cartesian ceiling robot (XY displacements) with the capacity of (1) resisting to body-scaled users' actions such as pushing or leaning; (2) acting on the users by pulling or transporting them as well as (3) carrying multiple potentially heavy objects (up to 80kg) that users can freely manipulate or make interact with each other. We describe its implementation and define a trajectory generation algorithm based on a novel user intention model to support non-deterministic scenarios, where the users are free to interact with any virtual object of interest with no regards to the scenarios' progress. A technical evaluation and a user study demonstrate the feasibility and usability of CoVR, as well as the relevance of whole-body interactions involving strong forces, such as being pulled through or transported.Comment: 10 pages (without references), 14 pages tota

    Haptics in Robot-Assisted Surgery: Challenges and Benefits

    Get PDF
    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intra-operative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper objectives and challenges of deploying haptic technologies in surgical robotics is discussed and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It has been tried to encompass both classical works and the state of the art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts

    On the Influence of Hand Dynamics on Motion Planning of Reaching Movements in Haptic Environments

    Get PDF
    The paper presents an analysis of human reaching movements in the manipulation of flexible objects. Two models, the minimum hand jerk and the minimum driving hand forcechange, are used for modelling and verification of experimental data. The data are collected with the haptic system supporting dynamic simulation of the flexible object in real time. We describe some initial experimental results and analyze the applicability of the models. It is found that even for short-term movements human motion planning strategy can depend on arm inertia and configuration. This conclusion is based on the experimental evidence of the multi-phased hand velocity profiles that can be well captured by the minimum driving hand force-change criterion. To support the latest observation, an experiment with reinforcement learning was conducted

    Haptic Interaction with Guitar and Bass Virtual Strings

    Get PDF
    A multimodal simulation of instrumental virtual strings is proposed. The system presents two different scenes under the Unity3D software, respectively representing guitar and bass strings. Physical interaction is enabled by a Sensable Technologies Phantom TM Omni, a portable haptic device with six degrees of freedom. Thanks to this device, credible physically-modeled haptic cues are returned by the virtual strings. Audio and visual feedback are dealt with by the system, too. Participants in a pilot user test appreciated the simulation especially concerning the haptic component
    • …
    corecore