50,969 research outputs found

    Virtualization: an old concept in a new approach

    Get PDF
    Virtualization technology is transforming today’s IT community, offering new possi-bilities to improve the performance and efficiency of IT infrastructure by a dynamic mapping of the PC resources, enabling to run multiple applications and operating systems on a single physical system. Virtualization also offers high availability and error recovery solutions by encapsulating entire systems into single files that can be replicated and restored on any desti-nation machine. This paper brings new elements related to the concept of virtualization, presenting the princi-ples, the new architectures and the advantages of the virtualization. We make also a brief comparison between the PC’s functional structure before and after the virtualization. Finally, we present licensed software to create and run multiple virtual machines on a personal com-puter

    Virtualizing Monitoring and Control Systems: First Operational Experience and Future Applications

    Get PDF
    Virtualization is a technology that allows emulating a complete computer platform. The potential use ranges from consolidating hardware to running several different operating systems in parallel on one computer to preserving the operability of heritage software. GSOC has been investigating the possibilities of virtualization for some time. Aside from the usual approach of virtualizing the central servers out of administrational, consolidational reasons, the possibilities and advantages of control room client virtualization was explored. While moving mainstream in other businesses, the space community is cautious to apply this technique to the mission critical monitoring and control systems. This paper illustrates three virtualization steps that are underway at GSOC and presents the experiences gained

    Real-Time Containers: A Survey

    Get PDF
    Container-based virtualization has gained a significant importance in a deployment of software applications in cloud-based environments. The technology fully relies on operating system features and does not require a virtualization layer (hypervisor) that introduces a performance degradation. Container-based virtualization allows to co-locate multiple isolated containers on a single computation node as well as to decompose an application into multiple containers distributed among several hosts (e.g., in fog computing layer). Such a technology seems very promising in other domains as well, e.g., in industrial automation, automotive, and aviation industry where mixed criticality containerized applications from various vendors can be co-located on shared resources. However, such industrial domains often require real-time behavior (i.e, a capability to meet predefined deadlines). These capabilities are not fully supported by the container-based virtualization yet. In this work, we provide a systematic literature survey study that summarizes the effort of the research community on bringing real-time properties in container-based virtualization. We categorize existing work into main research areas and identify possible immature points of the technology
    • …
    corecore