9,503 research outputs found

    Is spatial intelligibility critical to the design of largescale virtual environments?

    Get PDF
    This paper discusses the concept of 'intelligibility', a concept usually attributed to the design of real-world environments and suggests how it might be applied to the construction of virtual environments. In order to illustrate this concept, a 3d, online, collaborative environment, AlphaWorld, is analyzed in a manner analogous to spatial analysis techniques applied to cities in the real world. The outcome of this form of spatial analysis is that AlphaWorld appears to be highly 'intelligible' at the small-scale, 'local neighborhood' level, and yet is completely 'unintelligible' at a global level. This paper concludes with a discussion of the relevance of this finding to virtual environment design plus future research applications

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    Spatial ability, urban wayfinding and location-based services:a review and first results

    Get PDF
    Location-Based Services (LBS) are a new industry at the core of which are GISand spatial databases. With increasing mobility of individuals, the anticipatedavailability of broadband communications for mobile devices and growingvolumes of location specific information available in databases there willinevitably be an increase in demand for services providing location relatedinformation to people on the move. New Information and CommunicationTechnologies (NICTs) are providing enhanced possibilities for navigating ?smartcities?. Urban environments, meanwhile, have increasing spatial complexity.Navigating urban environments is becoming an important issue. The time is ripefor a re-appraisal of urban wayfinding. This paper critically reviews the currentLBS applications and raises a series of questions with regard to LBS for urbanwayfinding. Research is being carried out to measure individuals? spatialability/awareness and their degree of preference for using LBS in wayfinding. Themethodology includes both the use of questionnaires and a virtual reality CAVE.Presented here are the results of the questionnaire survey which indicate therelationships between individuals? spatial ability, use of NICTs and modepreference for receiving wayfinding cues. Also discussed are our future researchdirections on LBS, particular on issues of urban wayfinding using NICTs

    Wayfinding and Glaucoma: A Virtual Reality Experiment.

    Get PDF
    PurposeWayfinding, the process of determining and following a route between an origin and a destination, is an integral part of everyday tasks. The purpose of this study was to investigate the impact of glaucomatous visual field loss on wayfinding behavior using an immersive virtual reality (VR) environment.MethodsThis cross-sectional study included 31 glaucomatous patients and 20 healthy subjects without evidence of overall cognitive impairment. Wayfinding experiments were modeled after the Morris water maze navigation task and conducted in an immersive VR environment. Two rooms were built varying only in the complexity of the visual scene in order to promote allocentric-based (room A, with multiple visual cues) versus egocentric-based (room B, with single visual cue) spatial representations of the environment. Wayfinding tasks in each room consisted of revisiting previously visible targets that subsequently became invisible.ResultsFor room A, glaucoma patients spent on average 35.0 seconds to perform the wayfinding task, whereas healthy subjects spent an average of 24.4 seconds (P = 0.001). For room B, no statistically significant difference was seen on average time to complete the task (26.2 seconds versus 23.4 seconds, respectively; P = 0.514). For room A, each 1-dB worse binocular mean sensitivity was associated with 3.4% (P = 0.001) increase in time to complete the task.ConclusionsGlaucoma patients performed significantly worse on allocentric-based wayfinding tasks conducted in a VR environment, suggesting visual field loss may affect the construction of spatial cognitive maps relevant to successful wayfinding. VR environments may represent a useful approach for assessing functional vision endpoints for clinical trials of emerging therapies in ophthalmology

    Modeling user navigation

    Get PDF
    This paper proposes the use of neural networks as a tool for studying navigation within virtual worlds. Results indicate that the network learned to predict the next step for a given trajectory. The analysis of hidden layer shows that the network was able to differentiate between two groups of users identified on the basis of their performance for a spatial task. Time series analysis of hidden node activation values and input vectors suggested that certain hidden units become specialised for place and heading, respectively. The benefits of this approach and the possibility of extending the methodology to the study of navigation in Human Computer Interaction applications are discussed

    Three levels of metric for evaluating wayfinding

    Get PDF
    Three levels of virtual environment (VE) metric are proposed, based on: (1) users’ task performance (time taken, distance traveled and number of errors made), (2) physical behavior (locomotion, looking around, and time and error classification), and (3) decision making (i.e., cognitive) rationale (think aloud, interview and questionnaire). Examples of the use of these metrics are drawn from a detailed review of research into VE wayfinding. A case study from research into the fidelity that is required for efficient VE wayfinding is presented, showing the unsuitability in some circumstances of common metrics of task performance such as time and distance, and the benefits to be gained by making fine-grained analyses of users’ behavior. Taken as a whole, the article highlights the range of techniques that have been successfully used to evaluate wayfinding and explains in detail how some of these techniques may be applied

    A Connectionist Model of Spatial Knowledge Acquisition in a Virtual Environment

    Get PDF
    This paper proposes the use of neural networks as a tool for studying navigation within virtual worlds. Results indicate that network learned to predict the next step for a given trajectory, acquiring also basic spatial knowledge in terms of landmarks and configuration of spatial layout. In addition, the network built a spatial representation of the virtual world, e.g. cognitive-like map, which preserves the topology but lacks metric accuracy. The benefits of this approach and the possibility of extending the methodology to the study of navigation in Human Computer Interaction are discussed

    Gaze Behaviour during Space Perception and Spatial Decision Making

    Get PDF
    A series of four experiments investigating gaze behavior and decision making in the context of wayfinding is reported. Participants were presented with screen-shots of choice points taken in large virtual environments. Each screen-shot depicted alternative path options. In Experiment 1, participants had to decide between them in order to find an object hidden in the environment. In Experiment 2, participants were first informed about which path option to take as if following a guided route. Subsequently they were presented with the same images in random order and had to indicate which path option they chose during initial exposure. In Experiment 1, we demonstrate (1) that participants have a tendency to choose the path option that featured the longer line of sight, and (2) a robust gaze bias towards the eventually chosen path option. In Experiment 2, systematic differences in gaze behavior towards the alternative path options between encoding and decoding were observed. Based on data from Experiments 1 & 2 and two control experiments ensuring that fixation patterns were specific to the spatial tasks, we develop a tentative model of gaze behavior during wayfinding decision making suggesting that particular attention was paid to image areas depicting changes in the local geometry of the environments such as corners, openings, and occlusions. Together, the results suggest that gaze during a wayfinding tasks is directed toward, and can be predicted by, a subset of environmental features and that gaze bias effects are a general phenomenon of visual decision making
    corecore