9,653 research outputs found

    Too sick to drive : how motion sickness severity impacts human performance

    Get PDF
    There are multiple concerns surrounding the development and rollout of self-driving cars. One issue has largely gone unnoticed - the adverse effects of motion sickness as induced by self-driving cars. The literature suggests conditionally, highly and fully autonomous vehicles will increase the onset likelihood and severity of motion sickness. Previous research has shown motion sickness can have a significant negative impact on human performance. This paper uses a simulator study design with 51 participants to assess if the scale of motion sickness is a predictor of human performance degradation. This paper finds little proof that subjective motion sickness severity is an effective indicator of the scale of human performance degradation. The performance change of participants with lower subjective motion sickness is mostly statistically indistinguishable from those with higher subjective sickness. Conclusively, those with even acute motion sickness may be just as affected as those with higher sickness, considering human performance. Building on these results, it could indicate motion sickness should be a consideration for understanding user ability to regain control of a self-driving vehicle, even if not feeling subjectively unwell. Effectiveness of subjective scoring is discussed and future research is proposed to help ensure the successful rollout of self-driving vehicles

    Towards Design Principles for Experimental Simulations in Virtual Reality – Learning from Driving Simulators

    Get PDF
    Experiments play an important role in Information Systems research. In this area, Virtual Reality (VR) technologies can serve as a tool for enabling and conducting research. e.g., to investigate human behavior in specific situations. A prime example is VR-supported driving simulators that allow researchers in the automotive domain to gather knowledge while reducing cost and complexity compared to field studies with real cars. We argue that the use of carefully designed VR-supported experiments might allow researchers to get deeper insights into human behavior. Thus, we derive design principles for VR Experiments as an artifact from the literature about VR-supported driving simulations that have been accepted as a useful tool for research in their domain

    Remote Monitoring and Teleoperation of Autonomous Vehicles - Is Virtual Reality an Option?

    Full text link
    While the promise of autonomous vehicles has led to significant scientific and industrial progress, fully automated, SAE level 5 conform cars will likely not see mass adoption anytime soon. Instead, in many applications, human supervision, such as remote monitoring and teleoperation, will be required for the foreseeable future. While Virtual Reality (VR) has been proposed as one potential interface for teleoperation, its benefits and drawbacks over physical monitoring and teleoperation solutions have not been thoroughly investigated. To this end, we contribute three user studies, comparing and quantifying the performance of and subjective feedback for a VR-based system with an existing monitoring and teleoperation system, which is in industrial use today. Through these three user studies, we contribute to a better understanding of future virtual monitoring and teleoperation solutions for autonomous vehicles. The results of our first user study (n=16) indicate that a VR interface replicating the physical interface does not outperform the physical interface. It also quantifies the negative effects that combined monitoring and teleoperating tasks have on users irrespective of the interface being used. The results of the second user study (n=24) indicate that the perceptual and ergonomic issues caused by VR outweigh its benefits, like better concentration through isolation. The third follow-up user study (n=24) specifically targeted the perceptual and ergonomic issues of VR; the subjective feedback of this study indicates that newer-generation VR headsets have the potential to catch up with the current physical displays

    From Manual Driving to Automated Driving: A Review of 10 Years of AutoUI

    Full text link
    This paper gives an overview of the ten-year devel- opment of the papers presented at the International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutoUI) from 2009 to 2018. We categorize the topics into two main groups, namely, manual driving-related research and automated driving-related re- search. Within manual driving, we mainly focus on studies on user interfaces (UIs), driver states, augmented reality and head-up displays, and methodology; Within automated driv- ing, we discuss topics, such as takeover, acceptance and trust, interacting with road users, UIs, and methodology. We also discuss the main challenges and future directions for AutoUI and offer a roadmap for the research in this area.https://deepblue.lib.umich.edu/bitstream/2027.42/153959/1/From Manual Driving to Automated Driving: A Review of 10 Years of AutoUI.pdfDescription of From Manual Driving to Automated Driving: A Review of 10 Years of AutoUI.pdf : Main articl
    corecore