4,045 research outputs found

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Resource management in IP-based radio access networks

    Get PDF
    IP is being considered to be used in the Radio Access Network (RAN) of UMTS. It is of paramount importance to be able to provide good QoS guarantees to real time services in such an IP-based RAN. QoS in IP networks is most efficiently provided with Differentiated services (Diffserv). However, currently Diffserv mainly specifies Per Hop Behaviors (PHB). Proper mechanisms for admission control and resource reservation have not yet been defined. A new resource management concept in the IP-based RAN is needed to offer QoS guarantees to real time services. We investigate the current Diffserv mechanisms and contribute to development of a new resource management protocol. We focus on the load control algorithm [9], which is an attempt to solve the problem of admission control and resource reservation in IP-based networks. In this document we present some load control issues and propose to enhance the load control protocol with the Measurement Based Admission Control (MBAC) concept. With this enhancement the traffic load in the IP-based RAN can be estimated, since the ingress router in the network path can be notified by marking packets with the resource state information. With this knowledge, the ingress router can perform admission control to keep the IP-based RAN stable with a high utilization even in overload situations

    The Octopus switch

    Get PDF
    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules placed in the data streams. Thus, communication between components is not broadcast over a bus but delivered exactly where it is needed, work is carried out where the data passes through, bypassing the memory. The amount of buffering is minimised, and if it is required at all, it is placed right on the data path, where it is needed. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies. The switch is implemented as a simplified ATM switch and provides Quality of Service guarantees and enough bandwidth for multimedia applications. We have built a testbed of the architecture, of which we will present performance and energy consumption characteristics

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Operating-system support for distributed multimedia

    Get PDF
    Multimedia applications place new demands upon processors, networks and operating systems. While some network designers, through ATM for example, have considered revolutionary approaches to supporting multimedia, the same cannot be said for operating systems designers. Most work is evolutionary in nature, attempting to identify additional features that can be added to existing systems to support multimedia. Here we describe the Pegasus project's attempt to build an integrated hardware and operating system environment from\ud the ground up specifically targeted towards multimedia

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    corecore