141 research outputs found

    The Trade-off between Processing Gains of an Impulse Radio UWB System in the Presence of Timing Jitter

    Get PDF
    In time hopping impulse radio, NfN_f pulses of duration TcT_c are transmitted for each information symbol. This gives rise to two types of processing gain: (i) pulse combining gain, which is a factor NfN_f, and (ii) pulse spreading gain, which is Nc=Tf/TcN_c=T_f/T_c, where TfT_f is the mean interval between two subsequent pulses. This paper investigates the trade-off between these two types of processing gain in the presence of timing jitter. First, an additive white Gaussian noise (AWGN) channel is considered and approximate closed form expressions for bit error probability are derived for impulse radio systems with and without pulse-based polarity randomization. Both symbol-synchronous and chip-synchronous scenarios are considered. The effects of multiple-access interference and timing jitter on the selection of optimal system parameters are explained through theoretical analysis. Finally, a multipath scenario is considered and the trade-off between processing gains of a synchronous impulse radio system with pulse-based polarity randomization is analyzed. The effects of the timing jitter, multiple-access interference and inter-frame interference are investigated. Simulation studies support the theoretical results.Comment: To appear in the IEEE Transactions on Communication

    Performance Evaluation of RAKE Receiver for UWB Systems using Measured Channels in Industrial Environments

    Full text link
    The industrial environments are an important scenario for ultra wideband (UWB) communication systems. However, due to large number of metallic scatterers in the surroundings, the multipath offered by UWB channels is dense with significant energy. In this paper, the performance of RAKE receivers operating in a non line-of-sight (NLOS) scenario in these environments is evaluated. The channels used for the evaluation are measured in a medium-sized industrial environment. In addition, a standard IEEE 802.15.4a channel model is used for comparison with the results of the measured data. The performance of partial RAKE (PRake) and selective RAKE (SRake) is evaluated in terms of uncoded bit-error-rate (BER) using different number of fingers. The performance of maximal ratio combining (MRC) and equal gain combining (EGC) is compared for the RAKE receiver assuming perfect knowledge of the channel state. Finally, based on the simulation results, conclusions are drawn considering the performance and complexity issues for system design in these environments

    Performance Evaluation of Rake Receiver for UWB Systems Using Measured

    Get PDF
    Abstract-The industrial environments are an important scenario for ultra wideband (UWB) communication systems. However, due to large number of metallic scatterers in the surroundings, the multipath offered by UWB channels is dense with significant energy. In this paper, the performance of RAKE receivers operating in a non line-of-sight (NLOS) scenario in these environments is evaluated. The channels used for the evaluation are measured in a medium-sized industrial environment. In addition, a standard IEEE 802.15.4a channel model is used for comparison with the results of the measured data. The performance of partial RAKE (PRake) and selective RAKE (SRake) is evaluated in terms of uncoded bit-error-rate (BER) using different number of fingers. The performance of maximal ratio combining (MRC) and equal gain combining (EGC) is compared for the RAKE receiver assuming perfect knowledge of the channel state. Finally, based on the simulation results, conclusions are drawn considering the performance and complexity issues for system design in these environments

    Modelling and Comparative Performance Analysis of a Time Reversed UWB System

    Get PDF
    The effects of multipath propagation lead to a significant decrease in system performance in most of the proposed ultra-wideband communication systems. A time-reversed system utilises the multipath channel impulse response to decrease receiver complexity, through a prefiltering at the transmitter. This paper discusses the modelling and comparative performance of a UWB system utilising time-reversed communications. System equations are presented, together with a semianalytical formulation on the level of intersymbol interference and multiuser interference. The standardised IEEE 802.15.3a channel model is applied, and the estimated error performance is compared through simulation with the performance of both time-hopped time-reversed and RAKE-based UWB systems

    UWB channel measurements in an industrial environment

    Get PDF
    In this paper, we present the (to our knowledge) first measurement results for ultra-wideband channels in industrial environments, i.e., a factory hall. The measurements are done with virtual arrays, which allows analysis of the small-scale fading statistics, as well as a directional analysis. We find that there is dense multipath scattering due to the abundance of metallic scatterers in the considered environment. Multiple scatterer clusters can be identified both in the delay and the angular domain. Typical rms delay spreads lie between 30 ns for LOS scenarios and 40 ns for NLOS scenarios. For non-LOS scenarios at large distances, the maximum of the power delay profile is observed some 40 ns after the arrival of the first multipath components. We also draw conclusions about the behavior of typical UWB system designs in the measured channel

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Measurement-Based Modeling of Wireless Propagation Channels - MIMO and UWB

    Get PDF
    Future wireless systems envision higher speeds and more reliable services but at the same time face challenges in terms of bandwidth being a limited resource. Two promising techniques that can provide an increased throughput without requiring additional bandwidth allocation are multiple-input multiple-output (MIMO) systems and ultra-wideband (UWB) systems. However, the performance of such systems is highly dependent on the properties of the wireless propagation channel, and an understanding of the channel is therefore crucial in the design of future wireless systems. Examples of such systems covered by this thesis are wireless personal area networks (papers I and II), vehicle-to-vehicle communications (paper III), board-to-board communications inside computers (paper IV) and sensor networks for industrial applications (paper V). Typically, channel models are used to evaluate the performance of different transmission and reception schemes. Channel modeling is the focus of this thesis, which contains a collection of papers that analyze and model the behavior of MIMO and UWB propagation channels. Paper I investigates the fading characteristics of wireless personal area networks (PANs), networks that typically involve human influence close to the antenna terminals. Based on extensive channel measurements using irregular antenna arrays, typical properties of PAN propagation channels are discussed and a model for the complete fading of a single link is presented. Paper II extends the model from paper I to a complete MIMO channel model. The paper combines the classical LOS model for MIMO with results from paper I by prescribing different fading statistics and mean power at the different antenna elements. The model is verified against measurement data and the paper also provides a parameterization for an example of a PAN scenario. Paper III presents a geometry-based stochastic MIMO model for vehicle-to-vehicle communications. The most important propagation effects are discussed based on the results from extensive channel measurements, and the modeling approach is motivated by the non-stationary behavior of such channels. The model distinguishes between diffuse contributions and those stemming from interaction with significant objects in the propagation channel, and the observed fading characteristics of the latter are stochastically accounted for in the model. Paper IV gives a characterization of UWB propagation channels inside desktop computer chassis. By studying measurement results from two different computers, it is concluded that the propagation channel only shows minor differences for different computers and positions within the chassis. It is also found out that the interference power produced by the computer is limited to certain subbands, suggesting that multiband UWB systems are more suitable for this type of applications. Paper V describes a UWB channel model based on the first UWB measurements in an industrial environment. Analyzing results from two different factory halls, it is concluded that energy arrives at the receiver in clusters, which motivates the use of a classical multi-cluster model to describe the channel impulse response. Parts of the results from this paper were also used as input to the channel model in the IEEE 802.15.4a UWB standardization work. In summary, the work within this thesis leads to an increased understanding of the behavior of wireless propagation channels for MIMO and UWB systems. By providing three detailed simulation models, two for MIMO and one for UWB, it can thus contribute to a more efficient design of the wireless communications systems of tomorrow

    Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

    Get PDF
    This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, Pe, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional Pe expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of Pe. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind

    Adaptive RAKE receiver structures for ultra wide-band systems

    Get PDF
    Ultra wide band (UWB) is an emerging technology that recently has gained regulatory approval. It is a suitable solution for high speed indoor wireless communications due to its promising ability to provide high data rate at low cost and low power consumption. Another benefit of UWB is its ability to resolve individual multi-path components. This feature motivates the use of RAKE multi-path combining techniques to provide diversity and to capture as much energy as possible from the received signal. Potential future and rule limitation of UWB, lead to two important characteristics of the technology: high bit rate and low emitting power. Based on the power emission limit of UWB, the only choice for implementation is the low level modulation technology. To obtain such a high bit rate using low level modulation techniques, significant inter-symbol interference (ISI) is unavoidable. Three N (N means the numbers of fingers) fingers RAKE receiver structures are proposed: the N-selective maximal ratio combiner (MRC), the N-selective MRC receiver with least-mean-square (LMS) adaptive equalizer and the N-selective MRC receiver with LMS adaptive combiner. These three receiver structures were all simulated for N=8, 16 and 32. Simulation results indicate that ISI is effectively suppressed. The 16-selective MRC RAKE receiver with LMS adaptive combiner demonstrates a good balance between performance, computation complexity and required length of the training sequence. Due to the simplicity of the algorithm and a reasonable sampling rate, this structure is feasible for practical VLSI implementations

    A Measurement-Based Statistical Model for Industrial Ultra-Wideband Channels

    Full text link
    corecore