74 research outputs found

    Performance of virtual full-duplex relaying on cooperative multi-path relay channels

    Get PDF
    We consider a cooperative multi-path relay channel (MPRC) where multiple half-duplex relays assist in the packet transmissions from a source to its destination. A virtual full-duplex (FD) relaying scheme is proposed that allows the source to transmit a new packet simultaneously with the selected best relay, with the rest of the relays attempting to decode this new packet. Thus, a new source packet can be served in each time slot, as in FD relay systems. Taking into account the effect of inter-relay interference (IRI) that is caused by simultaneous relay and source transmissions, a Markov chain analytical model is used to characterize the decoding performance at the relays, based on which the overall outage probability of MPRC is obtained in closed-form expressions. The asymptotic performance analysis reveals that in low rate scenarios, a close-to-full diversity order is achieved by the proposed scheme while substantially improving the spectrum efficiency. In high rate scenarios, the decoding performance of relays is limited by IRI and the system outage performance experiences an error floor. Simulation results demonstrate the performance gains of the proposed scheme by comparisons with existing half-duplex and FD relay systems in the literature

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Study on Generalized Buffer-State-Based Relay Selection in Cooperative Cognitive Radio Networks

    Get PDF
    学位の種別: 修士University of Tokyo(東京大学

    Buffer-aided successive relay selection scheme for energy harvesting IoT networks

    Get PDF
    In this paper, we analyze the impact of buffer-aided full-duplex successive relay selection schemes with energy harvesting capability of relay nodes in amplifying and forward (AF) and decode and forward (DF) relaying environments for the Internet of Things networks. We propose to select a relay pair based on the energy harvested and signal strength at relay and destination to receive and transmit in the same time slot, respectively. Contrary to the previous relay pair selection schemes which are based on the signal strength only and cause the relay overuse problem, the proposed scheme ensures the balanced use of energy of relay nodes. The proposed relay selection scheme is implemented with the time switching (TS) and power splitting (PS)-based energy harvesting models in AF and DF relaying environments separately. Furthermore, we derive the closed-form expression of the outage probability and average throughput for both the TS and PS approaches in the DF and AF relaying modes. We compare the proposed relay selection scheme with the S-MMRS scheme and prove that the proposed scheme significantly reduces the outage probability and improves the average throughput. Furthermore, the analytical findings are reinforced with the extensive Monte Carlo simulations
    corecore