6 research outputs found

    Wi-Fi Signals Database Construction using Chebyshev Wavelets for Indoor Positioning Systems

    Get PDF
    Nowadays fast and accurate positioning of assets and people is as a crucial part of many businesses, such as, warehousing, manufacturing and logistics. Applications that offer different services based on mobile user location gaining more and more attention. Some of the most common applications include location-based advertising, directory assistance, point-to-point navigation, asset tracking, emergency and fleet management. While outdoors mostly covered by the Global Positioning System, there is no one versatile solution for indoor positioning. For the past decade Wi-Fi fingerprinting based indoor positioning systems gained a lot of attention by enterprises as an affordable and flexible solution to track their assets and resources more effectively. The concept behind Wi-Fi fingerprinting is to create signal strength database of the area prior to the actual positioning. This process is known as a calibration carried out manually and the indoor positioning system accuracy highly depends on a calibration intensity. Unfortunately, this procedure requires huge amount of time, manpower and effort, which makes extensive deployment of indoor positioning system a challenging task.  approach of constructing signal strength database from a minimal number of measurements using Chebyshev wavelets approximation. The main objective of the research is to minimize the calibration workload while providing high positioning accuracy.  The field tests as well as computer simulation results showed significant improvement in signal strength prediction accuracy compared to existing approximation algorithms. Furhtermore, the proposed algorithm can recover missing signal values with much smaller number of on-site measurements compared to conventional calibration algorithm

    Indoor positioning model based on people effect and ray tracing propagation

    Get PDF
    WLAN-fingerprinting has been highlighted as the preferred technology in an Indoor Positioning System (IPS) due to its accurate positioning results and minimal infrastructure cost. However, the accuracy of IPS fingerprinting is highly influenced by the fluctuation in signal strength as a result of encountering obstacles. Many researchers have modelled static obstacles such as walls and ceilings, but hardly any have modelled the effect of people presence as an obstacle although the human body significantly impacts signal strength. Hence, the people presence effect must be considered to obtain highly accurate positioning results. Previous research proposed a model that only considered the direct path between the transmitter and the receiver. However, for indoor propagation, multipath effects such as reflection can also have a significant influence, but were not considered in past work. Therefore, this research proposes an accurate indoor positioning model that considers people presence using a ray tracing (AIRY) model in a dynamic environment which relies on existing infrastructure. Three solutions were proposed to construct AIRY: an automatic radio map using ray tracing (ARM-RT), a new human model in ray tracing (HUMORY), and a people effect constant for received signal strength indicator (RSSI) adaptation. At the offline stage, 30 RSSIs were recorded at each point using a smartphone to create a radio map database (523 points). The real-time RSSI was then compared to the radio map database at the online stage using MATLAB software to determine the user position (65 test points). The proposed model was tested at Level 3 of Razak Tower, UTM Kuala Lumpur (80 × 16 m). To test the influence of people presence, the number, position, and distance of the people around the mobile device (MD) were varied. The results showed that the closer the people were to the MD in both the Line of Sight (LOS) and Non-LOS position, the greater the decrease in RSSI, in which the increment number of people will increase the amount of reflection signals to be blocked. The signal strength reduction started from 0.5 dBm with two people and reached 0.9 dBm with seven people. In addition, the ray tracing model produced smaller errors on RSSI prediction than the multi-wall model when considering the effect of people presence. The k-nearest neighbour (KNN) algorithm was used to define the position. The initial accuracy was improved from 2.04 m to 0.57 m after people presence and multipath effects were considered. In conclusion, the proposed model successfully increased indoor positioning accuracy in a dynamic environment by overcoming the people presence effect

    Virtual and oriented WiFi fingerprinting indoor positioning based on multi-wall multi-floor propagation models

    No full text
    Virtual fingerprints have been proposed in the context of WiFi Fingerprinting Indoor Positioning systems in order to reduce the effort dedicated to offline measurements. In this work, the use of Multi-Wall Multi-Floor indoor propagation models to generate such virtual fingerprints is investigated. A strategy taking into account the impact of user/device orientation on the signal propagation is proposed, leading to the creation of virtual and oriented fingerprints. The work analyzes then the trade-offs between model accuracy and measurement efforts by means of experimental results, showing that good modeling accuracy can be guaranteed while significantly reducing the complexity of the offline measurement phase

    Editorial: Emerging Technologies for Ubiquitous and Intelligent Infrastructures

    No full text
    The editorial describe the content of the Special Issue on Emerging Technologies for Ubiquitous and Intelligent Infrastructures, including six papers: “Joint Atomic Norm based Estimation of Sparse Time Dispersive SIMO Channels with Common Support in Pilot Aided OFDM Systems,” “Performance Evaluation of Non-prefiltering vs. Time Reversal prefiltering in distributed and uncoordinated IR-UWB Ad-Hoc networks,” “Analysis of Two-Tier LTE network with Randomized Resource Allocation and Proactive Offloading,” “Energy-Efficient Context Aware Power Management with Asynchronous Protocol for Body Sensor Network,” “Virtual and Oriented WiFi Fingerprinting Indoor Positioning based on Multi- Wall Multi-Floor Propagation Models,” and “Analysis of the Impact of AuthRF and AssRF Attacks on IEEE 802.11e-based Access Point.

    Adaptive indoor positioning system based on locating globally deployed WiFi signal sources

    Get PDF
    Recent trends in data driven applications have encouraged expanding location awareness to indoors. Various attributes driven by location data indoors require large scale deployment that could expand beyond specific venue to a city, country or even global coverage. Social media, assets or personnel tracking, marketing or advertising are examples of applications that heavily utilise location attributes. Various solutions suggest triangulation between WiFi access points to obtain location attribution indoors imitating the GPS accurate estimation through satellites constellations. However, locating signal sources deep indoors introduces various challenges that cannot be addressed via the traditional war-driving or war-walking methods. This research sets out to address the problem of locating WiFi signal sources deep indoors in unsupervised deployment, without previous training or calibration. To achieve this, we developed a grid approach to mitigate for none line of site (NLoS) conditions by clustering signal readings into multi-hypothesis Gaussians distributions. We have also employed hypothesis testing classification to estimate signal attenuation through unknown layouts to remove dependencies on indoor maps availability. Furthermore, we introduced novel methods for locating signal sources deep indoors and presented the concept of WiFi access point (WAP) temporal profiles as an adaptive radio-map with global coverage. Nevertheless, the primary contribution of this research appears in utilisation of data streaming, creation and maintenance of self-organising networks of WAPs through an adaptive deployment of mass-spring relaxation algorithm. In addition, complementary database utilisation components such as error estimation, position estimation and expanding to 3D have been discussed. To justify the outcome of this research, we present results for testing the proposed system on large scale dataset covering various indoor environments in different parts of the world. Finally, we propose scalable indoor positioning system based on received signal strength (RSSI) measurements of WiFi access points to resolve the indoor positioning challenge. To enable the adoption of the proposed solution to global scale, we deployed a piece of software on multitude of smartphone devices to collect data occasionally without the context of venue, environment or custom hardware. To conclude, this thesis provides learning for novel adaptive crowd-sourcing system that automatically deals with tolerance of imprecise data when locating signal sources
    corecore