35 research outputs found

    Intuitive Teleoperation of an Intelligent Robotic System Using Low-Cost 6-DOF Motion Capture

    Get PDF
    There is currently a wide variety of six degree-of-freedom (6-DOF) motion capture technologies available. However, these systems tend to be very expensive and thus cost prohibitive. A software system was developed to provide 6-DOF motion capture using the Nintendo Wii remote’s (wiimote) sensors, an infrared beacon, and a novel hierarchical linear-quaternion Kalman filter. The software is made freely available, and the hardware costs less than one hundred dollars. Using this motion capture software, a robotic control system was developed to teleoperate a 6-DOF robotic manipulator via the operator’s natural hand movements. The teleoperation system requires calibration of the wiimote’s infrared cameras to obtain an estimate of the wiimote’s 6-DOF pose. However, since the raw images from the wiimote’s infrared camera are not available, a novel camera-calibration method was developed to obtain the camera’s intrinsic parameters, which are used to obtain a low-accuracy estimate of the 6-DOF pose. By fusing the low-accuracy estimate of 6-DOF pose with accelerometer and gyroscope measurements, an accurate estimation of 6-DOF pose is obtained for teleoperation. Preliminary testing suggests that the motion capture system has an accuracy of less than a millimetre in position and less than one degree in attitude. Furthermore, whole-system tests demonstrate that the teleoperation system is capable of controlling the end effector of a robotic manipulator to match the pose of the wiimote. Since this system can provide 6-DOF motion capture at a fraction of the cost of traditional methods, it has wide applicability in the field of robotics and as a 6-DOF human input device to control 3D virtual computer environments

    Interactive remote robotic arm control with hand motions

    Get PDF
    Geographically-separated people are now connected by smart devices and networks to enjoy remote human interactions. However, current online interactions are still confined to a virtual space. Extending pure virtual interactions to the physical world requires multidisciplinary research efforts, including sensing, robot control, networking, and kinematics mapping. This paper introduces a remote motion-controlled robotic arm framework by integrating these techniques, which allows a user to control a far-end robotic arm simply by hand motions. In the meanwhile, the robotic arm follows the user’s hand to perform tasks and sends back its live states to the user to form a control loop. Furthermore, we explore using cheap robotic arms and off-the-shelf motion capture devices to facilitate the widespread use of the platform in people’s daily life. we implement a test bed that connects two US states for the remote control study. We investigate the different latency components that affect the user’s remote control experience, conduct a comparative study between the remote control and local control, and evaluate the platform with both free-form in-air hand gestures and hand movements following reference curves. We also are investigating the possibility of using VR (Virtual Reality) headsets to enhance first-person vision presence and control allowing for smoother robot teleoperation. Finally, a user study is conducted to find out user satisfaction with different setups while completing a set of tasks to achieve an intuitive and easy-to-use platfor

    Algorithms and graphic interface design to control and teach a humanoid robot through human imitation

    Get PDF
    Projecte fet en col.laboració amb l'Institut de Robòtica i Informàtica IndustrialGiven that human-like robots are finding their place in different areas of our world, research is being carried out in order to improve human-robot interaction. Humanoid robots not only require a human appearance but also require human-like movements. Along these lines we present this project which tries to give a solution to the question of human to robot arm mapping with the objective to control in real time and to teach a robot by imitation. For the technical implementation we have worked with a SR3000 ToF camera to sense the human movements which allows us to perform a markerless arm tracking based on proximity information. The robot used is a Robotis Bioloid; still, the software has been designed to be adapted with few modifications to other robots having similar arm structures

    Markerless 3D human pose tracking through multiple cameras and AI: Enabling high accuracy, robustness, and real-time performance

    Full text link
    Tracking 3D human motion in real-time is crucial for numerous applications across many fields. Traditional approaches involve attaching artificial fiducial objects or sensors to the body, limiting their usability and comfort-of-use and consequently narrowing their application fields. Recent advances in Artificial Intelligence (AI) have allowed for markerless solutions. However, most of these methods operate in 2D, while those providing 3D solutions compromise accuracy and real-time performance. To address this challenge and unlock the potential of visual pose estimation methods in real-world scenarios, we propose a markerless framework that combines multi-camera views and 2D AI-based pose estimation methods to track 3D human motion. Our approach integrates a Weighted Least Square (WLS) algorithm that computes 3D human motion from multiple 2D pose estimations provided by an AI-driven method. The method is integrated within the Open-VICO framework allowing simulation and real-world execution. Several experiments have been conducted, which have shown high accuracy and real-time performance, demonstrating the high level of readiness for real-world applications and the potential to revolutionize human motion capture.Comment: 19 pages, 7 figure

    Trust in Robots

    Get PDF
    Robots are increasingly becoming prevalent in our daily lives within our living or working spaces. We hope that robots will take up tedious, mundane or dirty chores and make our lives more comfortable, easy and enjoyable by providing companionship and care. However, robots may pose a threat to human privacy, safety and autonomy; therefore, it is necessary to have constant control over the developing technology to ensure the benevolent intentions and safety of autonomous systems. Building trust in (autonomous) robotic systems is thus necessary. The title of this book highlights this challenge: “Trust in robots—Trusting robots”. Herein, various notions and research areas associated with robots are unified. The theme “Trust in robots” addresses the development of technology that is trustworthy for users; “Trusting robots” focuses on building a trusting relationship with robots, furthering previous research. These themes and topics are at the core of the PhD program “Trust Robots” at TU Wien, Austria

    The design and evaluation of an ergonomic contactless gesture control system for industrial robots

    Get PDF
    In industrial human-robot collaboration, variability commonly exists in the operation environment and the components, which induces uncertainty and error that require frequent manual intervention for rectification. Conventional teach pendants can be physically demanding to use and require user training prior to operation. Thus, a more effective control interface is required. In this paper, the design and evaluation of a contactless gesture control system using Leap Motion is described. The design process involves the use of RULA human factor analysis tool. Separately, an exploratory usability test was conducted to compare three usability aspects between the developed gesture control system and an off-the-shelf conventional touchscreen teach pendant. This paper focuses on the user-centred design methodology of the gesture control system. The novelties of this research are the use of human factor analysis tools in the human-centred development process, as well as the gesture control design that enable users to control industrial robot’s motion by its joints and tool centre point position. The system has potential to use as an input device for industrial robot control in a human-robot collaboration scene. The developed gesture control system was targeting applications in system recovery and error correction in flexible manufacturing environment shared between humans and robots. The system allows operators to control an industrial robot without the requirement of significant training

    Exploring Natural User Abstractions For Shared Perceptual Manipulator Task Modeling & Recovery

    Get PDF
    State-of-the-art domestic robot assistants are essentially autonomous mobile manipulators capable of exerting human-scale precision grasps. To maximize utility and economy, non-technical end-users would need to be nearly as efficient as trained roboticists in control and collaboration of manipulation task behaviors. However, it remains a significant challenge given that many WIMP-style tools require superficial proficiency in robotics, 3D graphics, and computer science for rapid task modeling and recovery. But research on robot-centric collaboration has garnered momentum in recent years; robots are now planning in partially observable environments that maintain geometries and semantic maps, presenting opportunities for non-experts to cooperatively control task behavior with autonomous-planning agents exploiting the knowledge. However, as autonomous systems are not immune to errors under perceptual difficulty, a human-in-the-loop is needed to bias autonomous-planning towards recovery conditions that resume the task and avoid similar errors. In this work, we explore interactive techniques allowing non-technical users to model task behaviors and perceive cooperatively with a service robot under robot-centric collaboration. We evaluate stylus and touch modalities that users can intuitively and effectively convey natural abstractions of high-level tasks, semantic revisions, and geometries about the world. Experiments are conducted with \u27pick-and-place\u27 tasks in an ideal \u27Blocks World\u27 environment using a Kinova JACO six degree-of-freedom manipulator. Possibilities for the architecture and interface are demonstrated with the following features; (1) Semantic \u27Object\u27 and \u27Location\u27 grounding that describe function and ambiguous geometries (2) Task specification with an unordered list of goal predicates, and (3) Guiding task recovery with implied scene geometries and trajectory via symmetry cues and configuration space abstraction. Empirical results from four user studies show our interface was much preferred than the control condition, demonstrating high learnability and ease-of-use that enable our non-technical participants to model complex tasks, provide effective recovery assistance, and teleoperative control

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation
    corecore