142,056 research outputs found
The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework
Computers continue to diversify with respect to system designs, emerging
memory technologies, and application memory demands. Unfortunately, continually
adapting the conventional virtual memory framework to each possible system
configuration is challenging, and often results in performance loss or requires
non-trivial workarounds. To address these challenges, we propose a new virtual
memory framework, the Virtual Block Interface (VBI). We design VBI based on the
key idea that delegating memory management duties to hardware can reduce the
overheads and software complexity associated with virtual memory. VBI
introduces a set of variable-sized virtual blocks (VBs) to applications. Each
VB is a contiguous region of the globally-visible VBI address space, and an
application can allocate each semantically meaningful unit of information
(e.g., a data structure) in a separate VB. VBI decouples access protection from
memory allocation and address translation. While the OS controls which programs
have access to which VBs, dedicated hardware in the memory controller manages
the physical memory allocation and address translation of the VBs. This
approach enables several architectural optimizations to (1) efficiently and
flexibly cater to different and increasingly diverse system configurations, and
(2) eliminate key inefficiencies of conventional virtual memory. We demonstrate
the benefits of VBI with two important use cases: (1) reducing the overheads of
address translation (for both native execution and virtual machine
environments), as VBI reduces the number of translation requests and associated
memory accesses; and (2) two heterogeneous main memory architectures, where VBI
increases the effectiveness of managing fast memory regions. For both cases,
VBI significanttly improves performance over conventional virtual memory
Load Balancing and Virtual Machine Allocation in Cloud-based Data Centers
As cloud services see an exponential increase in consumers, the demand for faster processing of data and a reliable delivery of services becomes a pressing concern. This puts a lot of pressure on the cloud-based data centers, where the consumers’ data is stored, processed and serviced. The rising demand for high quality services and the constrained environment, make load balancing within the cloud data centers a vital concern. This project aims to achieve load balancing within the data centers by means of implementing a Virtual Machine allocation policy, based on consensus algorithm technique. The cloud-based data center system, consisting of Virtual Machines has been simulated on CloudSim – a Java based cloud simulator
Modeling the virtual machine allocation problem
Finding the right allocation of virtual machines (VM) in cloud data centers is one of the key optimization
problems in cloud computing. Accordingly, many algorithms have been proposed for the problem. However,
lacking a single, generally accepted formulation of the VM allocation problem, there are many subtle differences
in the problem formulations that these algorithms address; moreover, in several cases, the exact problem formu-
lation is not even defined explicitly. Hence in this paper, we present a comprehensive generic model of the VM
allocation problem. We also show how the often-investigated problem variants fit into this general model
A Genetic Algorithm for Power-Aware Virtual Machine Allocation in Private Cloud
Energy efficiency has become an important measurement of scheduling algorithm
for private cloud. The challenge is trade-off between minimizing of energy
consumption and satisfying Quality of Service (QoS) (e.g. performance or
resource availability on time for reservation request). We consider resource
needs in context of a private cloud system to provide resources for
applications in teaching and researching. In which users request computing
resources for laboratory classes at start times and non-interrupted duration in
some hours in prior. Many previous works are based on migrating techniques to
move online virtual machines (VMs) from low utilization hosts and turn these
hosts off to reduce energy consumption. However, the techniques for migration
of VMs could not use in our case. In this paper, a genetic algorithm for
power-aware in scheduling of resource allocation (GAPA) has been proposed to
solve the static virtual machine allocation problem (SVMAP). Due to limited
resources (i.e. memory) for executing simulation, we created a workload that
contains a sample of one-day timetable of lab hours in our university. We
evaluate the GAPA and a baseline scheduling algorithm (BFD), which sorts list
of virtual machines in start time (i.e. earliest start time first) and using
best-fit decreasing (i.e. least increased power consumption) algorithm, for
solving the same SVMAP. As a result, the GAPA algorithm obtains total energy
consumption is lower than the baseline algorithm on simulated experimentation.Comment: 10 page
- …
